Putnam E. 5

Po-Shen Loh

26 Sep 2012

1 Problems

Putnam 1985/A1. Determine, with proof, the number of ordered triples $\left(A_{1}, A_{2}, A_{3}\right)$ of sets which have the property that
(i) $A_{1} \cup A_{2} \cup A_{3}=\{1,2, \ldots, 10\}$, and
(ii) $A_{1} \cap A_{2} \cap A_{3}=\emptyset$.

Express the answer in the form $2^{a} 3^{b} 5^{c} 7^{d}$, where a, b, c, and d are nonnegative integers.
Putnam 1985/A2. Let T be an acute triangle. Inscribe a rectangle R in T such that the bottom edge of R is on the base of T, and the two top corners of R touch the sides of T. Inscribe another rectangle S by placing the bottom edge of S on the top edge of R, and the top corners of S on the sides of T. Let $A(X)$ denote the area of polygon X. Find the maximum value, or show that no maximum exists, of $\frac{A(R)+A(S)}{A(T)}$, where T ranges over all triangles and R, S over all rectangles.
Putnam 1985/A3. Let d be a real number. For each integer $m \geq 0$, define a sequence $\left\{a_{m}(j)\right\}, j=$ $0,1,2, \ldots$ by the condition

$$
a_{m}(0)=d / 2^{m}, \quad \text { and } \quad a_{m}(j+1)=\left(a_{m}(j)\right)^{2}+2 a_{m}(j), \quad j \geq 0
$$

Evaluate $\lim _{n \rightarrow \infty} a_{n}(n)$.

