Putnam E. 2

Po-Shen Loh

5 Sep 2012

1 Problems

Putnam 1987/B1. Evaluate

$$
\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}
$$

Putnam 1987/B2. Let r, s, and t be integers with $0 \leq r, 0 \leq s$, and $r+s \leq t$. Prove that

$$
\frac{\binom{s}{0}}{\binom{t}{r}}+\frac{\binom{s}{1}}{\binom{t}{r+1}}+\cdots+\frac{\binom{s}{s}}{\binom{t}{r+s}}=\frac{t+1}{(t+1-s)\binom{t-s}{r}} .
$$

Putnam 1987/B3. Let F be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^{2}+y^{2}=1$ with x and y in F is given by $(x, y)=(1,0)$ and

$$
(x, y)=\left(\frac{r^{2}-1}{r^{2}+1}, \frac{2 r}{r^{2}+1}\right)
$$

where r runs through the elements of F such that $r^{2} \neq-1$.

