Putnam E.1

Po-Shen Loh

29 Aug 2012

1 Problems

Putnam 1987/A1. Curves A, B, C, and D are defined in the plane as follows:¹

$$A = \left\{ (x, y) : x^2 - y^2 = \frac{x}{x^2 + y^2} \right\},$$

$$B = \left\{ (x, y) : 2xy + \frac{y}{x^2 + y^2} = 3 \right\},$$

$$C = \left\{ (x, y) : x^3 - 3xy^2 + 3y = 1 \right\},$$

$$D = \left\{ (x, y) : 3x^2y - 3x - y^3 = 0 \right\}.$$

Prove that $A \cap B = C \cap D$.

Putnam 1987/A2. The sequence of digits

$123456789101112131415161718192021\ldots$

is obtained by writing the positive integers in order. If the 10^{n} -th digit in this sequence occurs in the part of the sequence in which the *m*-digit numbers are placed, define f(n) to be *m*. For example, f(2) = 2 because the 100th digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, f(1987).

Putnam 1987/A3. For all real x, the real-valued function y = f(x) satisfies

 $y'' - 2y' + y = 2e^x$.

(a) If f(x) > 0 for all real x, must f'(x) > 0 for all real x? Explain.

(b) If f'(x) > 0 for all real x, must f(x) > 0 for all real x? Explain.

¹The equations defining A and B are indeterminate at (0,0). The point (0,0) belongs to neither.