Putnam E. 1

Po-Shen Loh

29 Aug 2012

1 Problems

Putnam 1987/A1. Curves A, B, C, and D are defined in the plane as follows: ${ }^{1}$

$$
\begin{aligned}
& A=\left\{(x, y): x^{2}-y^{2}=\frac{x}{x^{2}+y^{2}}\right\}, \\
& B=\left\{(x, y): 2 x y+\frac{y}{x^{2}+y^{2}}=3\right\}, \\
& C=\left\{(x, y): x^{3}-3 x y^{2}+3 y=1\right\}, \\
& D=\left\{(x, y): 3 x^{2} y-3 x-y^{3}=0\right\} .
\end{aligned}
$$

Prove that $A \cap B=C \cap D$.
Putnam 1987/A2. The sequence of digits

$$
123456789101112131415161718192021 \ldots
$$

is obtained by writing the positive integers in order. If the 10^{n}-th digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, define $f(n)$ to be m. For example, $f(2)=2$ because the 100th digit enters the sequence in the placement of the two-digit integer 55 . Find, with proof, $f(1987)$.

Putnam 1987/A3. For all real x, the real-valued function $y=f(x)$ satisfies

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} .
$$

(a) If $f(x)>0$ for all real x, must $f^{\prime}(x)>0$ for all real x ? Explain.
(b) If $f^{\prime}(x)>0$ for all real x, must $f(x)>0$ for all real x ? Explain.

[^0]
[^0]: ${ }^{1}$ The equations defining A and B are indeterminate at $(0,0)$. The point $(0,0)$ belongs to neither.

