12. Integer polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2012

1 Classical results

Vandermonde determinant. Let $a_{0}, a_{1}, \ldots, a_{n}$ be distinct numbers, and let $b_{0}, b_{1}, \ldots, b_{n}$ be arbitrary (possibly equal to each other or to any of the a_{i}). Then there is a unique polynomial $p(x)=c_{n} x^{n}+$ $\cdots+c_{0}$ such that $p\left(a_{i}\right)=b_{i}$ for all $0 \leq i \leq n$.

Lagrange interpolation. An expression for the above polynomial is

$$
p(x)=\sum_{i=0}^{n} \frac{b_{i}}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \prod_{j \neq i}\left(x-a_{j}\right) .
$$

Fermat's Last Theorem. The equation $x^{n}+y^{n}=z^{n}$ has no positive integer solutions (x, y, z, n) with $n \geq 3$.

2 Problems

Putnam 1940/A1. Let $p(x)$ be a polynomial with integer coefficients. Suppose that for some positive integer c, none of $p(1), p(2), \ldots, p(c)$ are divisible by c. Prove that $p(b)$ is not zero for any integer b.

Putnam 1947/B5. Let $p(x)$ be the polynomial $(x-a)(x-b)(x-c)(x-d)$. Assume $p(x)=0$ has four distinct integral roots and that $p(x)=4$ has an integral root k. Show that k is the mean of a, b, c, d.

Putnam 1953/B2. Let $p(x)$ be a real polynomial of degree n such that $p(m)$ is integral for all integers m. Show that if k is a coefficient of $p(x)$, then $n!k$ is an integer.

Putnam 1940/B5. Find all rational triples (a, b, c) for which a, b, c are the roots of $x^{3}+a x^{2}+b x+c=0$.
Putnam 1955/A6. For what positive integers n does the polynomial $p(x)=x^{n}+(2+x)^{n}+(2-x)^{n}$ have a rational root?

Putnam 1950/A6. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, and suppose that each a_{n} is 0 or 1 .
(1) Show that if $f(1 / 2)$ is rational, then $f(x)$ has the form $p(x) / q(x)$ for some integer polynomials $p(x)$ and $q(x)$.
(2) Show that if $f(1 / 2)$ is not rational, then $f(x)$ does not have the form $p(x) / q(x)$ for any integer polynomials $p(x)$ and $q(x)$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

