# 7. Convergence 

Po-Shen Loh

CMU Putnam Seminar, Fall 2012

## 1 Classical results

Monotonicity. Every bounded monotone real sequence $a_{1}, a_{2}, \ldots$ converges to a limit.
Cauchy sequence (definition). A sequence $a_{1}, a_{2}, \ldots$ is called a Cauchy sequence if for every $\epsilon>0$, there is a positive integer $N$ such that for all $i, j>N$, we have $\left|a_{i}-a_{j}\right|<\epsilon$. The real and complex number systems have the property that every Cauchy sequence converges to a limit, which is a number in the system.

Absolute convergence. Let $z_{1}, z_{2}, \ldots$ be a sequence of complex numbers, for which $\sum_{i}\left|z_{i}\right|$ converges. Then $\sum_{i} z_{i}$ converges as well.

Abel summation. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two sequences, and let $B_{k}$ denote $\sum_{i=1}^{k} b_{i}$ for every $k$. Then

$$
\sum_{i=1}^{n} a_{i} b_{i}=a_{n} B_{n}-\sum_{i=1}^{n-1} B_{i}\left(a_{i+1}-a_{i}\right)
$$

Classical. Prove that the sequence $\sqrt{7}, \sqrt{7+\sqrt{7}}, \sqrt{7+\sqrt{7+\sqrt{7}}}, \ldots$ converges, and determine its limit. This is often denoted as $\sqrt{7+\sqrt{7+\sqrt{7+\cdots}}}$.

## 2 Problems

Putnam 1940/A7. Show that if $\sum_{i=1}^{\infty} a_{i}^{2}$ and $\sum_{i=1}^{\infty} b_{i}^{2}$ both converge, then so does $\sum_{i=1}^{\infty}\left(a_{i}-b_{i}\right)^{p}$, for every $p \geq 2$.

Putnam 1964/B1. Let $a_{1}, a_{2}, \ldots$ be positive integers such that $\sum \frac{1}{a_{i}}$ converges. For each $n$, let $b_{n}$ denote the number of positive integers $i$ for which $a_{i} \leq n$. Prove that $\lim _{n \rightarrow \infty} \frac{b_{n}}{n}=0$.
Putnam 1951/A7. Let $a_{1}, a_{2}, \ldots$ be a sequence of real numbers for which the sum $\sum_{i=1}^{\infty} a_{i}$ converges. Show that the sum $\sum_{i=1}^{\infty} \frac{a_{i}}{i}$ also converges.
Putnam 1952/B5. Let $a_{i}$ be a monotonically decreasing sequence of positive real numbers, for which $\sum_{i=1}^{\infty} a_{i}$ converges. Show that $\sum_{i=1}^{\infty} i\left(a_{i}-a_{i+1}\right)$ also converges.

Putnam 1952/B7. Let $\alpha$ be an arbitrary real number. Define $a_{1}=\alpha$, and for all $n \geq 1$, let $a_{n+1}=\cos a_{n}$. Prove that $a_{n}$ converges to a limit, and that this limit does not depend on $\alpha$.

Putnam 1953/A6. Prove that the sequence $\sqrt{7}, \sqrt{7-\sqrt{7}}, \sqrt{7-\sqrt{7+\sqrt{7}}}, \sqrt{7-\sqrt{7+\sqrt{7-\sqrt{7}}}}, \ldots$, converges, and determine its limit.

Putnam 1949/A3. Let $z_{1}, z_{2}, \ldots$ be nonzero complex numbers with the property that $\left|z_{i}-z_{j}\right|>1$ for all $i, j$. Prove that $\sum \frac{1}{z_{i}^{3}}$ converges.

Putnam 1949/B5. Let $a_{i}$ be a sequence of positive real numbers. Show that $\lim \sup \left(\frac{a_{1}+a_{n+1}}{a_{n}}\right)^{n} \geq e$.
VTRMC 1998/5. Let $a_{1}, a_{2}, \ldots$ be a sequence of positive real numbers, for which $\sum_{i=1}^{\infty} \frac{1}{a_{i}}$ converges. For every $n$, let $b_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$. Show that $\sum_{i=1}^{\infty} \frac{1}{b_{n}}$ also converges.

## 3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

