5. Continuous functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2012

1 Functional equations

- **Cauchy.** Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function that satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Show that there must be a real number c such that f(x) = cx for all $x \in \mathbb{R}$.
- **Putnam 1959/A3, made continuous.** Let $f : \mathbb{C} \to \mathbb{C}$ be a continuous function which satisfies f(z) + zf(1-z) = 1 + z for all $z \in \mathbb{C}$. Determine all possible such functions f. (Note: the original problem did not require f to be continuous. You can solve that one for fun if you would like.)
- **Putnam 1947/A2.** Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies $f(\sqrt{x^2 + y^2}) = f(x)f(y)$ for all real x and y. Show that $f(x) = f(1)^{x^2}$.
- **Putnam 1996/A6 (modern A6).** Let c > 0 be a constant. Give a complete description, with proof, of the set of all continuous functions $f : R \to R$ such that $f(x) = f(x^2 + c)$ for all $x \in R$. Note that R denotes the set of real numbers.

2 Convergence

- **Putnam 1955/B6.** Let $f : \mathbb{Z}^+ \to \mathbb{R}^+$ be a function which satisfies $\lim_{n\to\infty} f(n) = 0$. Show that there are only finitely many solutions to the equation f(x) + f(y) + f(z) = 1.
- **Putnam 1954/A5.** Let $f: (0,1) \to \mathbb{R}$ be a function which satisfies $\lim_{x\to 0} f(x) = 0$. Suppose that as $x \to 0$, we have f(x) f(x/2) = o(x), which means that $\lim_{x\to 0} \frac{f(x) f(x/2)}{x} = 0$. Show that f(x) = o(x) as $x \to 0$ (i.e., that $\lim_{x\to 0} \frac{f(x)}{x} = 0$).
- **Putnam 1951/A7.** Let a_1, a_2, \ldots be a sequence of real numbers for which the sum $\sum_{i=1}^{\infty} a_i$ converges. (This means that the sequence of partial sums a_1 , $a_1 + a_2$, $a_1 + a_2 + a_3$, \ldots is itself a convergent sequence.) Show that the sum $\sum_{i=1}^{\infty} \frac{a_i}{i}$ also converges.