5. Continuous functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2012

1 Functional equations

Cauchy. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function that satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that there must be a real number c such that $f(x)=c x$ for all $x \in \mathbb{R}$.

Putnam 1959/A3, made continuous. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a continuous function which satisfies $f(z)+$ $z f(1-z)=1+z$ for all $z \in \mathbb{C}$. Determine all possible such functions f. (Note: the original problem did not require f to be continuous. You can solve that one for fun if you would like.)

Putnam 1947/A2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies $f\left(\sqrt{x^{2}+y^{2}}\right)=f(x) f(y)$ for all real x and y. Show that $f(x)=f(1)^{x^{2}}$.

Putnam 1996/A6 (modern A6). Let $c>0$ be a constant. Give a complete description, with proof, of the set of all continuous functions $f: R \rightarrow R$ such that $f(x)=f\left(x^{2}+c\right)$ for all $x \in R$. Note that R denotes the set of real numbers.

2 Convergence

Putnam 1955/B6. Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}$be a function which satisfies $\lim _{n \rightarrow \infty} f(n)=0$. Show that there are only finitely many solutions to the equation $f(x)+f(y)+f(z)=1$.

Putnam 1954/A5. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function which satisfies $\lim _{x \rightarrow 0} f(x)=0$. Suppose that as $x \rightarrow 0$, we have $f(x)-f(x / 2)=o(x)$, which means that $\lim _{x \rightarrow 0} \frac{f(x)-f(x / 2)}{x}=0$. Show that $f(x)=o(x)$ as $x \rightarrow 0$ (i.e., that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$).
Putnam 1951/A7. Let a_{1}, a_{2}, \ldots be a sequence of real numbers for which the sum $\sum_{i=1}^{\infty} a_{i}$ converges. (This means that the sequence of partial sums $a_{1}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}, \ldots$ is itself a convergent sequence.) Show that the sum $\sum_{i=1}^{\infty} \frac{a_{i}}{i}$ also converges.

