4. Calculus

Po-Shen Loh

CMU Putnam Seminar, Fall 2012

1 Classical results

1. Let $f:[0,1] \to \mathbb{R}$ be a monotone increasing function, and let $g:[0,1] \to \mathbb{R}$ be a monotone decreasing function. Show that $\int_0^1 f(x)g(x)dx \leq \int_0^1 f(x)dx \int_0^1 g(x)dx$, i.e., that the expected value of the product of two negatively correlated random variables is at most the product of their expected values.

2 Problems

Putnam 1946/A2. Given functions $f, g : \mathbb{R} \to \mathbb{R}$, and $x \in \mathbb{R}$, let I(fg) denote the function which maps x to $\int_{1}^{x} f(t)g(t)dt$. Prove that whenever a(x), b(x), c(x), and d(x) are real polynomials, the polynomial

$$I(ac)I(bd) - I(ad)I(bc)$$

is divisible by $(x-1)^4$.

- **Putnam 1947/B1.** Let $f: [1,\infty) \to \mathbb{R}$ be a differentiable function which satisfies $f'(x) = \frac{1}{x^2 + f(x)^2}$ and f(1) = 1. Show that as $x \to \infty$, f(x) tends to a limit which is less than $1 + \frac{\pi}{4}$.
- **Putnam 1958/A5.** Show that there is at most one continuous function $f: [0,1]^2 \to \mathbb{R}$ satisfying $f(x,y) = 1 + \int_0^x \int_0^y f(s,t) dt ds$.
- **Putnam 1958/B4.** Let S be a spherical shell of radius 1, i.e., the set of points satisfying $x^2 + y^2 + z^2 = 1$. Find the average straight line distance between two points of S.
- **Putnam 1946/A1.** Let p(x) be a real polynomial of degree at most 2, which satisfies $|p(x)| \le 1$ for all $-1 \le x \le 1$. Show that $|p'(x)| \le 4$ for all $-1 \le x \le 1$.
- **Putnam 1947/B2.** Let K be a positive real number, and let $f : [0,1] \to \mathbb{R}$ be a differentiable function whose derivative satisfies $|f'(x)| \le K$ for all $0 \le x \le 1$. Prove that

$$\left| \int_0^1 f(x) dx - \sum_{i=1}^n \frac{f(i/n)}{n} \right| \le \frac{K}{n}.$$

Putnam 1957/B3. Let $f:[0,1] \to \mathbb{R}^+$ be a monotone decreasing continuous function. Show that

$$\int_0^1 f(x) dx \int_0^1 x f(x)^2 dx \le \int_0^1 x f(x) dx \int_0^1 f(x)^2 dx.$$

Putnam 1958/B7. Let $f : [0,1] \to \mathbb{R}$ be a continuous function which satisfies $\int_0^1 x^n f(x) dx = 0$ for all non-negative integers n. Prove that f is the zero function.