2. Number theory

Po-Shen Loh

CMU Putnam Seminar, Fall 2012

1 Classical results

1. Show that $\sqrt{6}$ is irrational.

2 Problems

Putnam 1955/A1. Prove that if a, b, c are integers and $a \sqrt{2}+b \sqrt{3}+c=0$, then $a=b=c=0$.
Natural. Find all integral x and y satisfying the equation $2 \sqrt{6}+5 \sqrt{10}=\sqrt{x}+\sqrt{y}$.
Putnam 1956/A2. Given any positive integer n, show that we can find a positive integer m such that $m n$ uses all ten digits when written in the usual base 10 .

Putnam 1954/B1. Show that for any positive integer r, we can find integers m, n such that $m^{2}-n^{2}=r^{3}$.
Putnam 1958/B2. Let n be a positive integer. Prove that $n(n+1)(n+2)(n+3)$ cannot be a square or a cube.

Putnam 1952/A6. Prove that there are only finitely many cuboidal blocks with integer sides $a \times b \times c$, such that if the block is painted on the outside and then cut into unit cubes, exactly half the cubes have no face painted.

Putnam 1959/B6. α and β are positive irrational numbers satisfying $1 / \alpha+1 / \beta=1$. Let $a_{n}=\lfloor n \alpha\rfloor$ and $b_{n}=\lfloor n \beta\rfloor$, for $n=1,2,3, \ldots$. Show that the sequences a_{n} and b_{n} are disjoint and that every positive integer belongs to one or the other.

Putnam 1954/B6. If x is a positive rational, show that we can find distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that $x=\sum 1 / a_{i}$.

Putnam 1953/B7. Show that we can express any irrational number $0<\alpha<1$ uniquely in the form $\sum_{1}^{\infty}(-1)^{n+1} 1 /\left(a_{1} a_{2} \cdots a_{n}\right)$, where a_{i} is a strictly monotonic increasing sequence of positive integers. Find a_{1}, a_{2}, a_{3} for $\alpha=1 / \sqrt{2}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

