7. Inequalities

Po-Shen Loh

CMU Putnam Seminar, Fall 2011

1 Classical results

AM-GM. For any non-negative reals x_1, \ldots, x_n ,

$$\sqrt[n]{x_1x_2\cdots x_n} \le \frac{x_1+\cdots+x_n}{n} .$$

Rearrangement. For any reals $x_1 \leq x_2 \leq \cdots \leq x_n$ and $y_1 \leq y_2 \leq \cdots \leq y_n$, and any reordering $y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)}$,

$$x_1y_n + x_2y_{n-1} + \dots + x_ny_1 \le x_1y_{\sigma(1)} + x_2y_{\sigma(2)} + \dots + x_ny_{\sigma(n)} \le x_1y_1 + x_2y_2 + \dots + x_ny_n$$
.

Cauchy-Schwarz. For any reals x_1, \ldots, x_n and y_1, \ldots, y_n ,

$$(x_1y_1 + x_2y_2 + \dots + x_ny_n)^2 \le (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2).$$

Jensen. For any convex function f, and any reals x_1, \ldots, x_n ,

$$f\left(\frac{x_1+\cdots+x_n}{n}\right) \le \frac{f(x_1)+\cdots+f(x_n)}{n}$$
.

2 Problems

Warm-up. Over the nonnegative reals, determine the minimum values of (i) $x + \frac{4}{x}$ and (ii) $x^2 + \frac{4}{x^2+3} + 3$.

USAMO 1997/4. A set of n > 3 real numbers has sum at least n and the sum of the squares of the numbers is at least n^2 . Show that the largest positive number is at least 2.

IMO 1994/1. Let m and n be positive integers. Let a_1, a_2, \ldots, a_m be distinct elements of $\{1, 2, \ldots, n\}$ such that whenever $a_i + a_j \leq n$ for some i, j (possibly the same) we have $a_i + a_j = a_k$ for some k. Prove that:

$$\frac{a_1 + \dots + a_m}{m} \ge \frac{n+1}{2} \,.$$

Putnam 2001/A6. Can an arc of a parabola inside a circle of radius 1 have a length greater than 4?

From DNA nanotechnology. Define the functions

$$\chi(K) = \frac{(a+1)cK+1}{2cK} - \frac{\sqrt{(a-1)^2c^2K^2 + 2(a+1)cK+1}}{2cK}$$

$$Q(K) = \frac{\chi(zK)}{\chi(K)}.$$

Prove that for any $a, z \ge 1$ and c, K > 0, we always have $Q(K) \le z$.