Number theory

Po-Shen Loh

5 October 2010

1 Problems

- **Gelca/Andreescu 733.** Prove that there are infinitely many prime numbers of the form 4m 1, where m is an integer.
- GA. The 9-digit number 2²⁹ has 9 distinct digits. Which of the 10 possible digits 0–9 does not appear?
- **VTRMC 2009/2.** Given that $40! = abc \ def \ 283 \ 247 \ 897 \ 734 \ 345 \ 611 \ 269 \ 596 \ 115 \ 894 \ 272 \ pqr \ stu \ vwx, find <math>p, q, r, s, t, u, v, w, x$, and then find a, b, c, d, e, f.
- **Putnam 2000/A2.** Prove that there exist infinitely many integers n such that n, n+1, n+2 are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.]

Putnam 2000/B2. Prove that the expression

$$\frac{\gcd(m,n)}{n} \binom{n}{m}$$

is an integer for all pairs of integers $n \ge m \ge 1$.

GA 727. Let n, a, b be positive integers. Prove that $gcd(n^a - 1, n^b - 1) = n^{gcd(a,b)} - 1$.

- **VTRMC 2006/3.** Recall that the Fibonacci numbers F(n) are defined by F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2) for $n \ge 2$. Determine the last digit of F(2006) (e.g. the last digit of 2006 is 6).
- **GA.** A positive integer is written at each integer point in the plane (\mathbb{Z}^2) , in such a way that each of these numbers is the arithmetic mean of its four neighbors. Prove that all of the numbers are equal.

2 Bonus problems

- **VTRMC 2009/6.** Let *n* be a nonzero integer. Prove that $n^4 7n^2 + 1$ can never be a perfect square (i.e. of the form m^2 for some integer *m*).
- Asia-Pacific Math Olympiad 1998 (from GA). Show that for any positive integers a and b, the product (36a + b)(a + 36b) cannot be a power of 2.

Putnam 1939 (GA 711). Prove that no integer n > 1 divides $2^n - 1$.