X. Number Theory (Tech-Level 2)

Po-Shen Loh*

July 2, 2003

1 Warm-Ups

1. Factor a large (200+ digit) number.
2. (Uses Taylor Series). Find all integer polynomials $f(n)$ for which the sequence $\{f(1), f(2), f(3), f(4), \ldots\}$ eventually takes only prime values.
Solution: Apply Taylor's formula for $f(1+k f(1))$.

2 Theorems

1. (Lucas's Theorem). Let p be prime, and suppose we are trying to compute $\binom{n}{r}$ modulo p. Start by expressing n and r in base- p notation:

$$
\begin{aligned}
n & =\left\{n_{k} n_{k-1} n_{k-2} \ldots n_{0}\right\}=n_{0}+n_{1} p+n_{2} p^{2}+\cdots+n_{k} p^{k} \\
r & =\left\{r_{k} r_{k-1} r_{k-2} \ldots r_{0}\right\}=r_{0}+r_{1} p+r_{2} p^{2}+\cdots+r_{k} p^{k}
\end{aligned}
$$

(where the braces denote digit strings, and all of the digits are between 0 and $p-1$ inclusive). Then:

$$
\binom{n}{r} \equiv\binom{n_{k}}{r_{k}}\binom{n_{k-1}}{r_{k-1}} \cdots\binom{n_{0}}{r_{0}} \quad(\bmod p)
$$

2. (Wilson's Theorem). If p is prime, then $(p-1)!\equiv-1(\bmod p)$.
3. (Multiplicativity of Euler- ϕ). If $(a, b)=1$, then $\phi(a b)=\phi(a) \phi(b)$.

Solution: Write out the numbers from 0 to $a b-1$ as a table, with a columns and b rows. Then the numbers that are not relatively-prime to a or b are entire rows/columns.
4. (Formula for Euler- ϕ). We have a complete formula:

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Solution: For each prime power p^{e} with $e>0, \phi\left(p^{e}\right)=p^{e-1}(p-1)$: just count the number of multiples of p. Then use the multiplicative property.
5. (Existence of Primitive Roots). The only numbers having primitive roots are $2,4, p^{n}$, and $2 p^{n}$, where n is a positive integer and p is an odd prime.

[^0]6. (Criterion for Primitive Roots). If $p \not \backslash a$ and for every prime divisor q of $p-1$,
$$
a^{(p-1) / q} \not \equiv 1 \quad(\bmod p)
$$
then a is a primitive root of p.
Solution: Assume not. From last lecture, the order (call it k) divides $\phi(p)=p-1$; therefore, if $a^{k} \equiv 1 \quad(\bmod p)$, some more powering-up will get you to some $(p-1) / q$, and this should still give residue 1 , contradiction.
7. (Pythagorean Substitution). If x, y, z are pairwise relatively prime integers that satisfy $x^{2}+y^{2}=z^{2}$, then there exist integers r and s such that:
\[

$$
\begin{aligned}
x & =r^{2}-s^{2} \\
y & =2 r s \\
z & =r^{2}+s^{2}
\end{aligned}
$$
\]

(Here we assumed that y was even and x was odd. Note that by going modulo 4 , we see that we can't have both x and y odd, and if they are both even, then they aren't pairwise relatively prime.)
Solution: This comes from the y-axis parameterization of the rational points of the unit circle.
8. Prove that there are no integral solutions to $x^{4}+y^{4}=z^{4}$.

Solution: Use Pythagorean substitution. Suffices to consider the problem $x^{4}+y^{4}=z^{2}$. Suppose we are reduced. Then (WLOG y is even):

$$
\begin{aligned}
x^{2} & =r^{2}-s^{2} \\
y^{2} & =2 r s \\
z & =r^{2}+s^{2},
\end{aligned}
$$

and r, s relatively prime. From the first equation, we have $x^{2}+s^{2}=r^{2}$ with x odd, so s will be the $2 p q$ term and it's also reduced. Hence:

$$
\begin{aligned}
x & =p^{2}-q^{2} \\
s & =2 p q \\
r & =p^{2}+q^{2}
\end{aligned}
$$

with p and q relatively prime. Since we have $y^{2}=2 r s$, we can split (we know s is even) into $s=2 a^{2}$ and $r=b^{2}$. Now we have $2 a^{2}=s=2 p q$, so $p q=a^{2}$. So p and q are perfect squares. But then from $r=p^{2}+q^{2}$, since each of r, p, q are squares, we got a smaller one. Smaller by comparing r and z : $z=r^{2}+s^{2}$.

3 Quadratic Residues

Definition 1 We say that x is a quadratic residue modulo m if there exists integral a for which $x \equiv a^{2}$ $(\bmod m)$.

1. Show that if p is prime, n is positive, and $a \equiv b\left(\bmod p^{n}\right)$, then $a^{p^{k}} \equiv b^{p^{k}} \quad\left(\bmod p^{n+k}\right)$.

Solution: Induct on k. Then for each inductive step, just write $b=a+p^{n} \alpha$ and use Binomial expansion to get b^{p}, and see that it differs from a^{p} by a multiple of p^{n+1}.
2. Let p be an odd prime and let n be a positive integer. Prove that x is a quadratic residue modulo p^{n} if and only if x is a quadratic residue modulo p.
Solution: Since p is odd, we must have $a^{(p-1) / 2} \equiv 1(\bmod p)$ by Fermat's Little Theorem. Using the previous result, we can power both sides by p^{e-1} to get

$$
a^{p^{e-1}(p-1) / 2} \equiv 1 \quad\left(\bmod p^{e}\right)
$$

Now since we have a prime power $\left(p^{e}\right)$, there exists a primitive root; call it r. The order of r is $\phi\left(p^{e}\right)=p^{e-1}(p-1)$. Suppose that $a \equiv r^{k}$. Now this means that $r^{k p^{e-1}(p-1) / 2} \equiv 1\left(\bmod p^{e}\right)$. In other words, $\phi\left(p^{e}\right)$ divides the exponent. Hence $k / 2$ is an integer which implies that $a \equiv\left(r^{(k / 2)}\right)^{2}$, and we are done.
3. A number a is a quadratic residue modulo m if and only if it is a quadratic residue of all odd prime divisors of m and is a quadratic residue modulo the power-of-two component of m. Here, the "power-of-two-component" is defined as the largest factor that is a power of two.
Solution: Let $m=2^{e} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$. Chinese remainder theorem: the congruence $x^{2} \equiv a \quad(\bmod m)$ is equivalent to the system:

$$
\begin{array}{rll}
x^{2} & \equiv a & \left(\bmod 2^{e}\right) \\
x^{2} & \equiv a & \left(\bmod p_{1}^{e_{1}}\right) \\
x^{2} & \equiv a & \left(\bmod p_{2}^{e_{2}}\right) \\
& \vdots & \\
x^{2} & \equiv a & \left(\bmod p_{r}^{e_{r}}\right),
\end{array}
$$

since all of the modulo-thingies are coprime. Then use the previous result.
4. The quadratic residues modulo 2^{e} are:

If e is 1: everything
If e is 2: anything congruent to 0 or 1 modulo 4
If e is at least 3: anything congruent to 0 or 1 modulo 8
5. The Legendre symbol is defined as follows: (let p be an odd prime)

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
0, & \text { if } p \mid a \\
1, & \text { if } a \text { is a quadratic residue of } p \\
-1, & \text { if } a \text { is not a quadratic residue of } p
\end{aligned}\right.
$$

Prove the following properties:
(a) (Euler) $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \quad(\bmod p)$.

Solution: Use primitive root; suppose that $a \equiv r^{k}$. Then we get QR iff k is even, which does the trick.
(b) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Solution: Immediately from previous.
(c) If $a \equiv b \quad(\bmod p)$ then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(d) $\left(\frac{a^{2}}{p}\right)=1$ if $p \nmid a$.
(e) $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$. Actually, this just means that -1 is a quadratic residue of p exactly when $p \equiv 1 \quad(\bmod 4)$.
6. 2 is a quadratic residue of p exactly when $p \equiv \pm 1 \quad(\bmod 8)$.
7. (More Primitive Roots).
(a) 2 is a primitive root of the prime $p=4 q+1$ if q is an odd prime.
(b) 2 is a primitive root of $p=2 q+1$ if q is a prime congruent to 1 modulo 4 .
(c) -2 is a primitive root of $p=2 q+1$ if q is a prime congruent to -1 modulo 4 .
8. (Quadratic Reciprocity). Let p and q be distinct odd primes. Then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$ unless both p and q are congruent to -1 modulo 4 , in which case they are negatives of each other. More briefly:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

9. (Taiwan97/4). Let $k=2^{2^{n}}+1$ for some positive integer n. Show that k is a prime if and only if k is a factor of $3^{(k-1) / 2}+1$.
Solution: Suppose k is a factor of $3^{(k-1) / 2}+1$. Then $3^{(k-1) / 2} \equiv-1(\bmod k)$. Yet $3^{k-1} \equiv 1$ $(\bmod k)$. This means that the order of 3 modulo k is $k-1$. But this divides $\phi(k) \leq k-1$, and we get that k is prime.
Conversely, assume that k is prime; we need to show that $3^{(k-1) / 2} \equiv-1(\bmod k)$. This is Euler's Criterion for a quadratic residue, so we just need to compute $\left(\frac{3}{k}\right)$. By the Law of QR , this is $\left(\frac{k}{3}\right)$, and k is one more than a square of a non-multiple of 3 ; hence, $k \equiv 2(\bmod 3)$, and we are down to $\left(\frac{2}{3}\right)$, which is -1 since 2 is not a QR modulo 3 .
[^1]Signing off,

[^0]: *Much of this lecture was drawn from LeVeque's Fundamentals of Number Theory

[^1]: Well, thanks for making this MOP so wonderful, guys; I really liked your (Red Group) class. If any of you happen to pass by Caltech next year, feel free to drop me a line-my phone extension is the golden ratio (x1618). Also, since this is probably my last MOP, good luck to all of you in your future endeavors! I'm sure I will read about many of you in the years to come.

