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Random CSPs

Constraint Satisfaction Problems (“CSPs")

® X1,...,Xn: variables with a finite domain D (“spins”).
o (1,...,Cy: constraints binding a small number of variables each.
@ Goal: an assignment

o:{x1,...,xa} = D

that satisfies all constraints.
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Example: graph colouring

@ G = a graph with n vertices and m edges. J

@ Question: does G admit a 3-colouring?

Amin Coja-Oghlan (Frankfurt) Hypergraphs 3/27



Example: graph colouring

@ G = a graph with n vertices and m edges. J

@ Question: does G admit a 3-colouring?
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Random CSPs

@ Xi,...,Xn: variables with domain D. J

e Constraints Cy, ..., Cy, chosen independently, uniformly at random.
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Random CSPs

@ Xi,...,Xn: variables with domain D.

o Constraints Cy, ..

., Cm chosen independently, uniformly at random. J

Kirkpatrick, Selman (experimental)

[Science 1994]

There occurs a sharp satisfiability phase transition.

] A Pl@ satisfiable]

: log,(run time)/n
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Random CSPs

e Existence of non-uniform thresholds [Friedgut 1999]
@ Second moment method [Achlioptas, Moore'OZ]J
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Random CSPs

e Existence of non-uniform thresholds [Friedgut 1999]
@ Second moment method [Achlioptas, Moore'02]
@ The sharp threshold conjecture.

Pinning down the thresholds (random k-SAT, graph colouring, ...)

(Computational aspect.)
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Random CSPs

e Existence of non-uniform thresholds [Friedgut 1999]
@ Second moment method [Achlioptas, Moore'02]
@ The sharp threshold conjecture.

Pinning down the thresholds (random k-SAT, graph colouring, ...)

(Computational aspect.)

v

Cavity method: “Survey propagation” [Mézard, Parisi, Zecchina 2002]
The condensation transition [KMRSZ 2007]
Universal picture (random k-SAT, graph colouring, ...)

v
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The statistical mechanics perspective

@ Phase transitions in glasses hypothesized by Kauzmann (1948).
@ Mean-field models of disorered systems (such as glasses).

@ This work: first proof of condensation in a “diluted mean-field
model”.
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Random CSPs

This work: random hypergraph 2-colouring

@ Pinning down the threshold in a problem with condensation.

@ Rigorous approach to condensation.
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Random CSPs

This work: random hypergraph 2-colouring

@ Pinning down the threshold in a problem with condensation.

@ Rigorous approach to condensation.

v

Known thresholds

e Random 2-SAT [Chvatal, Reed’92; Goerdt'92]
o Random 1-in-k-SAT [Achlioptas, Chtcherba, Istrate, Moore'01]
e Random k-XORSAT [Dubois, Mandler'02]
@ Uniquely extendible problems [Connamacher, Molloy'04]
@ Random k-SAT with k > log, n [Frieze, Wormald'05])
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Random Hypergraph 2-colouring

Random Hypergraphs

o V={vi,...,vy}: vertices.
e H =random k-uniform hypergraph with m edges.

@ Let r = m/n be fixed while n — co.
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Random Hypergraph 2-colouring

Random Hypergraphs

o V={vi,...,vy}: vertices.
@ H =random k-uniform hypergraph with m edges.

@ Let r = m/n be fixed while n — co.

Hypergraph 2-colouring

@ Is there o : V — {e, e} s.t. no edge is monochromatic.

@ NP-hard in the worst case.
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The partition function

@ Let B > 0 be a parameter (“inverse temperature” ).
@ Foro:V — {e e} let

w(o) = #monochromatic edges in H under o.
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The partition function

@ Let B > 0 be a parameter (“inverse temperature” ).
@ Foro:V — {e e} let

w(o) = #monochromatic edges in H under o.

o Define the partition function by

Zo= Y ew(-6 wlo)

o:V—{e e}
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The partition function

Let 5 > 0 be a parameter ( “inverse temperature”).
Foro:V — {e, e} let

w(o) = #monochromatic edges in H under o.

Define the partition function by
Zi= Y en(-8 wlo)).
o:V—{e e}

Goal: to find

.1
(ﬂ,r)HnIer;O;E[InZB] > 0.

Bayati, Gamarnik, Tetali 2010: the limit exists for any 0 < 8 < oc.

v
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The partition function

Zero temperature

@ Special case: = .

@ Set
Z = Z, = # 2-colourings of H.
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The partition function

Zero temperature

@ Special case: = .
@ Set

Z = Z, = # 2-colourings of H.

Conjecture

1
The limit Ii_}m . E[In(1+ Zx)] exists for any r > 0.

This implies the “sharp threshold conjecture”.

S
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The partition function

Phase transitions

@ a point (3, r) where the limit is non-analytic.

@ a density r where the zero temperature limit is non-analytic.
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The partition function

Phase transitions

@ a point (3, r) where the limit is non-analytic.
@ a density r where the zero temperature limit is non-analytic.
Key questions

@ Do one or more phase transitions exist?

@ Zero temperature: the 2-colouring threshold roy, plus ...7?
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Theorem [ACO, Zdeborové 2012]

© The zero temperature limit is non-analytic at

feond =251IN2—In2+0k(1)  and  reo > reond-
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Theorem [ACO, Zdeborové 2012]

© The zero temperature limit is non-analytic at

feond =251IN2—In2+0k(1)  and  reo > reond-

@ As 3 — oo, the limit is non-analytic at 2= 1In2 — In 2 + oy 5(1).
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Theorem [ACO, Zdeborové 2012]

© The zero temperature limit is non-analytic at

feond =251IN2—In2+0k(1)  and  reo > reond-

@ As 3 — oo, the limit is non-analytic at 2= 1In2 — In 2 + oy 5(1).

e Zero temperature: (at least) two phase transitions.

@ Low temperature: at least one.
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Theorem [ACO, Panagiotou 2012]

In2 1
We have reoy = 2871 In2 — nT == + ok(1).
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Results

Theorem [ACO, Panagiotou 2012]
We have reoy = 2871 In2 — % - % + ok(1).
Density What's happening?
2k"1in2 — % - % + ok(1) | “vanilla” second moment [AM'02]
2571102 — In2 + o (1) phase transition (“condensation”)
2k"1in2 — ”]72 — % + ok(1) | 2-colouring threshold
2k 1n2 — In72 + ok(1) first moment upper bound
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The first moment

@ Recall that Z = # 2-colourings of H.

V
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The first moment

@ Recall that Z = # 2-colourings of H.

@ It's easy to see that

Bz 27 (0 = 2=,

V
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The first moment

@ Recall that Z = # 2-colourings of H.

@ It's easy to see that
E[Z] ~2"-(1—2"F)m,

and thus i
~InE[Z] ~In2+r-In(1- 217Ky,

V
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The first moment

@ Recall that Z = # 2-colourings of H.

@ It's easy to see that
E[Z] ~2"- (1 -2 ™
and thus

%InE[Z] ~In2+r-In(1—215).

@ By convexity, we have
1 1
—E[lnZ] < =-InE[Z].
n n

@ Hence,

In2
feog <2 Lin2 — ”7 + op(1).

V
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

o For r <2k-1n2— 12 — 1 4 0,(1) we have
E[Z?] < C-E[2].

o Consequently, reoy > 25"1In2 — % — % + ok(1).
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

o For r <2k-1n2— 12 — 1 4 0,(1) we have
E[Z?] < C-E[2].

o Consequently, reoy > 25"1In2 — % — % + ok(1).

@ By symmetry, for any fixed o : V — {e, o},

E [Z?] =E[Z] - E[Z|o is 2-colouring] .

V.
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

o For r <2k-1n2— 12 — 1 4 0,(1) we have
E[Z?] < C-E[2].

o Consequently, reoy > 25"1In2 — % — % + ok(1).

@ By symmetry, for any fixed o : V — {e, o},

E [Z?] =E[Z] - E[Z|o is 2-colouring] .

Let Z(d) = #colourings 7 with dist(o,7) = d.
Then

E[Z|o] =Y E[Z(d)|o].
d=0

V.
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

E[Z%] < C-E[Z] for r <2K1In2— 192 — 1 4 04(1).

o We have E[Z|o] = ZE[Z )]

v
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

E[Z%] < C-E[Z] for r <2K1In2— 192 — 1 4 04(1).

o We have E[Z|o] = ZE[Z )]

e Now, InE[Z|0] No?c?é InE[Z(d)|o].
sSasn

v
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

E[Z%] < C-E[Z] for r <2K1In2— 192 — 1 4 04(1).

o We have E[Z|o] = ZE[Z )o].

e Now, InE[Z|0] No?c?é InE[Z(d)|o].
sSasn

o Further,

%InE Hienlls] = i) 5, v
H(a) = —aln(a)—(1—a)In(l - «a),
1-ak—(1-a)k
k11

E(d) = r-In|l1—

v
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The second moment

e We have InE [Z]|o] ~ [max, InE[Z(an)|o].

@ It's easy to plot a — % InE[Z(an)|o].
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The second moment

e We have InE [Z]|o] ~ [max, InE[Z(an)|o].

@ It's easy to plot a — % InE[Z(an)|o].

r<2k-lin2-12 14 0(1)

/N n

0.5
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The second moment

e We have InE [Z]|o] ~ [max, InE[Z(an)|o].

@ It's easy to plot a — % InE[Z(an)|o].

r>2ktin2 - 12 14 (1)
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The solution space

Stat mech hypothesis [Krzkala et al.: PNAS 2007]

o Let S(H) = {all 2-colourings of #}.
o At r ~2k71In2 —In2 the shape of S(#) changes.
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The solution space

Stat mech hypothesis [Krzkala et al.: PNAS 2007]

o Let S(H) = {all 2-colourings of #}.
o At r ~2k71In2 —In2 the shape of S(#) changes.

@ For r < 2K71In2 — In2 + o4(1), the set shatters into tiny clusters.
@ Each cluster size is exponentially small.
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The solution space

Stat mech hypothesis [Krzkala et al.: PNAS 2007]

o Let S(H) = {all 2-colourings of #}.
o At r ~2k71In2 —In2 the shape of S(#) changes.

@ For r > 2K71In2 — In2 4 04(1), the set condenses.
@ A bounded number of clusters dominate.
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The solution space

The “shape” of the clusters

o Clusters are characterised by frozen vertices.

@ Frozen vertices govern the cluster size:

! f
— log, {cluster size} ~ 1 — M'
. n

Rigorous work
@ Achlioptas, Ricci-Tersenghi 2006.
@ Achlioptas, ACO 2008.
e Molloy 2012
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Second moment redux
Why does the second moment break before condensation? \

) ¥y 025 05 075 1
x

o In the plot of a — L InE[Z(an)|0]...
@ ...think of the max near 0 as the expected cluster size.

@ Driven up by fluctuations in the number of frozen vertices.
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Second moment redux

Controlling the cluster size [ACO, Zdeborovd 2012]

@ The second moment breaks because. . .

@ ...exceptional formulas drive up the expected cluster size.
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Second moment redux

Controlling the cluster size [ACO, Zdeborovd 2012]

@ The second moment breaks because. . .
@ ...exceptional formulas drive up the expected cluster size.

@ Remedy: work with

Zgood = Fcolourings whose cluster size is < E [Z].

Then E [Zgo0d] ~ E[Z] if r <257 1In2 —In2.
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Second moment redux

Controlling the cluster size [ACO, Zdeborovd 2012]

@ The second moment breaks because. . .
@ ...exceptional formulas drive up the expected cluster size.

@ Remedy: work with

Zgood = Fcolourings whose cluster size is < E [Z].

o Then E[Zgp0q] ~ E[Z] if r <2K"1In2 —In2.
o We have
E [Zg%ood] <C-E [Zgood]2
for any

r<2klmp2—In2= predicted condensation point.
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Second moment redux

Corollary [ACO, Zdeborovd 2012]

@ For r <2k71In2 — In2 4 o0, (1) we have

E[InZ] ~InE[Z] =In2+ r-In(1 —217K).
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Second moment redux

Corollary [ACO, Zdeborovd 2012]

@ For r <2k71In2 — In2 4 o0, (1) we have

E[InZ] ~InE[Z] =In2+ r-In(1 —217K).

@ There is shattering. . .

@ ...and the cluster size of a random 2-colouring is w.h.p.

Skl

1 k
— log, {cluster size} ~ exp ( —r) .
n
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The entropy crisis

A phase transition [ACO, Zdeborova 2012]

Let's plot the functions

1 1
r— —E[InZ] and r — —E[In {cluster size}].
n n

A
@9 n2
®...%
° 9.0
<055 @
@°o° o
00
0%, 0 ..
Y X
sh I'second Icond INAE I' rst >
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Into the condensation phase

Targeting small clusters [ACO, Panagiotou 2012]

@ |dea: count solutions in small clusters only.

@ These (supposedly) remain abundant and well-separated.

A
In 2
.
.
.
...
o « ©° O
* .
-@
.0
° oy
sh I'second Icond INAE r rst >
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Into the condensation phase

Targeting small clusters [ACO, Panagiotou 2012]

@ According to the physicists,

#£frozen vertices

1
— | |uster si ~1-—
p og, {cluster size} -

@ Key parameter: #frozen vertices.
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@ According to the physicists,

#£frozen vertices

1
— | |uster si ~1-—
p og, {cluster size} -

@ Key parameter: #frozen vertices.

@ Proxy: v is blocked in o if flipping v leaves an edge monochromatic.

Amin Coja-Oghlan (Frankfurt) Hypergraphs 25 /27



Into the condensation phase

Targeting small clusters [ACO, Panagiotou 2012]

@ According to the physicists,

#£frozen vertices

1
— | |uster si ~1-—
p og, {cluster size} -

@ Key parameter: #frozen vertices.
@ Proxy: v is blocked in o if flipping v leaves an edge monochromatic.

@ Let Z, = #colourings with yn blocked vertices.
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Into the condensation phase

Targeting small clusters [ACO, Panagiotou 2012]
@ According to the physicists,

1 _ frozen vertices
— log, {cluster size} ~ 1 — i .
n n

Key parameter: #£frozen vertices.
Proxy: v is blocked in o if flipping v leaves an edge monochromatic.
Let Z, = #colourings with yn blocked vertices.

The second moment analysis for Z, succeeds so long as

1 1
—In{cluster size} ~ (1 —y)In2 < —InE[Z,].
n n

@ Optimising over vy gives the threshold.
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Into the condensation phase

Corollary

Approximate expressions for. . .

@ ...the partition function %E [In Z],

@ ...the number of clusters (“complexity”).

[ACO, Panagiotou 2012]
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Conclusion

@ Main contricutions:
o first improvement over the “vanilla” 2nd moment from [AMO02],
e first rigorous proof of a condensation transition in this kind of model,
o pinned down the 2-colouring threshold up to ok(1).
@ Techniques:
e physics-inspired second moment argument,
o exploiting the solution space geometry,
o differential equation, cores, ...
@ Open problems:

e exact threshold for any k7
e extension to graph coloring?
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