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Random CSPs

Constraint Satisfaction Problems (“CSPs”)

x1, . . . , xn: variables with a finite domain D (“spins”).

C1, . . . ,Cm: constraints binding a small number of variables each.

Goal: an assignment

σ : {x1, . . . , xn} → D

that satisfies all constraints.
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An instance of a random constraint satisfaction problem defines
a random subset S (the set of solutions) of a large product space
X N (the set of assignments). We consider two prototypical prob-
lem ensembles (random k-satisfiability and q-coloring of random
regular graphs), and study the uniform measure with support on
S. As the number of constraints per variable increases, this mea-
sure first decomposes into an exponential number of pure states
(‘clusters’), and subsequently condensates over the largest such
states. Above the condensation point, the mass carried by the n
largest states follows a Poisson-Dirichlet process.
For typical large instances, the two transitions are sharp. We de-
termine for the first time their precise location. Further, we provide
a formal definition of each phase transition in terms of different
notions of correlation between distinct variables in the problem.
The degree of correlation naturally affects the performances of
many search/sampling algorithms. Empirical evidence suggests
that local Monte Carlo Markov Chain strategies are effective up to
the clustering phase transition, and belief propagation up to the
condensation point. Finally, refined message passing techniques
(such as survey propagation) may beat also this threshold.

Phase transitions | Random graphs | Constraint satisfaction problems |
Message passing algorithms

Constraint satisfaction problems (CSPs) arise in a large spectrum
of scientific disciplines. An instance of aCSP is said to be satisfi-

able if there exists an assignment ofN variables (x1, x2, . . . , xN ) ≡
x, xi ∈ X (X being a finite alphabet) which satisfies all the con-
straints within a given collection. The problem consists in find-
ing such an assignment or show that the constraints are unsatisfi-
able. More precisely, one is given a set of functions ψa : X k →
{0, 1}, with a ∈ {1, . . . , M} ≡ [M ] and of k-tuples of indices
{ia(1), . . . , ia(k)} ⊆ [N ], and has to establish whether there exists
x ∈ X N such that ψa(xia(1), . . . , xia(k)) = 1 for all a’s. In this arti-
cle we shall consider two well known families of CSP’s (both known
to be NP-complete [1]):

(i) k-satisfiability (k-SAT) with k ≥ 3. In this case
X = {0, 1}. The constraints are defined by fix-
ing a k-tuple (za(1), . . . , za(k)) for each a, and set-
ting ψa(xia(1), . . . , xia(k)) = 0 if (xia(1), . . . , xia(k)) =
(za(1), . . . , za(k)) and = 1 otherwise.

(ii) q-coloring (q-COL) with q ≥ 3. Given a graph G with N ver-
tices and M edges, one is asked to assign colors xi ∈ X ≡
{1, . . . , q} to the vertices in such a way that no edge has the
same color at both ends.

The optimization (maximize the number of satisfied constraints)
and counting (count the number of satisfying assignments) versions
of this problems are defined straightforwardly. It is also convenient
to represent CSP instances as factor graphs [2], i.e. bipartite graphs
with vertex sets [N ], [M ] including an edge between node i ∈ [N ]
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Fig. 1. The factor graph of a small CSP allows to define the distance d(i, j)
between variables xi and xj (filled squares are constraints and empty circles
variables). Here, for instance, d(6, 1) = 2 and d(3, 5) = 1.

and a ∈ [M ] if and only if the i-th variable is involved in the a-th
constraint, cf. Fig. 1. This representation allows to define naturally a
distance d(i, j) between variable nodes.

Ensembles of randomCSP’s (rCSP)were introduced (see e.g. [3])
with the hope of discovering generic mathematical phenomena that
could be exploited in the design of efficient algorithms. Indeed several
search heuristics, such as Walk-SAT [4] and ‘myopic’ algorithms [5]
have been successfully analyzed and optimized over rCSP ensembles.
The most spectacular advance in this direction has probably been the
introduction of a new and powerful message passing algorithm (‘sur-
vey propagation’, SP) [6]. The original justification for SP was based
on the (non-rigorous) cavity method from spin glass theory. Subse-
quent work proved that standard message passing algorithms (such as
belief propagation, BP) can indeed be useful for some CSP’s [7, 8, 9].
Nevertheless, the fundamental reason for the (empirical) superiority
of SP in this context remains to be understood and a major open prob-
lem in the field. Building on a refined picture of the solution set of
rCSP, this paper provides a possible (and testable) explanation. We
consider two ensembles that have attracted the majority of work in the
field: (i) random k-SAT: each k-SAT instance with N variables and
M = Nα clauses is consideredwith the same probability; (ii) q-COL
on random graphs: the graph G is uniformly random among the ones
over N vertices, with uniform degree l (the number of constraints is
therefore M = Nl/2).
Phase transitions in random CSP. It is well known that rCSP’s
may undergo phase transitions as the number of constraints per vari-
able α is varied1. The best known of such phase transitions is the
SAT-UNSAT one: as α crosses a critical value αs(k) (that can, in
principle, depend on N ), the instances pass from being satisfiable to
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1For coloring l-regular graphs, we can use l = 2α as a parameter. When considering a
phase transition defined through some propertyP increasing in l, we adopt the convention of
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2The term ‘with high probability’ (whp) means with probability approaching one as N → ∞.
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Example: graph colouring

G = a graph with n vertices and m edges.

Question: does G admit a 3-colouring?
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Random CSPs

x1, . . . , xn: variables with domain D.

Constraints C1, . . . ,Cm chosen independently, uniformly at random.

Kirkpatrick, Selman (experimental) [Science 1994]

There occurs a sharp satisfiability phase transition.
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Random CSPs

Existence of non-uniform thresholds [Friedgut 1999]

Second moment method [Achlioptas, Moore’02]

The sharp threshold conjecture.

Pinning down the thresholds (random k-SAT, graph colouring, . . . )

(Computational aspect.)

Cavity method: “Survey propagation” [Mézard, Parisi, Zecchina 2002]

The condensation transition [KMRSZ 2007]

Universal picture (random k-SAT, graph colouring, . . . )
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The statistical mechanics perspective

Phase transitions in glasses hypothesized by Kauzmann (1948).

Mean-field models of disorered systems (such as glasses).

This work: first proof of condensation in a “diluted mean-field
model”.
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Random CSPs

This work: random hypergraph 2-colouring

Pinning down the threshold in a problem with condensation.

Rigorous approach to condensation.

Known thresholds

Random 2-SAT [Chvátal, Reed’92; Goerdt’92]

Random 1-in-k-SAT [Achlioptas, Chtcherba, Istrate, Moore’01]

Random k-XORSAT [Dubois, Mandler’02]

Uniquely extendible problems [Connamacher, Molloy’04]

Random k-SAT with k > log2 n [Frieze, Wormald’05]
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Random Hypergraph 2-colouring

Random Hypergraphs

V = {v1, . . . , vn}: vertices.

H = random k-uniform hypergraph with m edges.

Let r = m/n be fixed while n→∞.

Hypergraph 2-colouring

Is there σ : V → {•, •} s.t. no edge is monochromatic.

NP-hard in the worst case.
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The partition function

Let β > 0 be a parameter (“inverse temperature”).

For σ : V → {•, •} let

w(σ) = #monochromatic edges in H under σ.

Define the partition function by

Zβ =
∑

σ:V→{•,•}
exp(−β · w(σ)).

Goal: to find
(β, r) 7→ lim

n→∞
1

n
E [ ln Zβ ] ≥ 0.

Bayati, Gamarnik, Tetali 2010: the limit exists for any 0 < β <∞.
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The partition function

Zero temperature

Special case: β =∞.

Set
Z = Z∞ = # 2-colourings of H.

Conjecture

The limit lim
n→∞

1

n
E [ ln (1 + Z∞) ] exists for any r > 0.

This implies the “sharp threshold conjecture”.
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The partition function

Phase transitions

a point (β, r) where the limit is non-analytic.

a density r where the zero temperature limit is non-analytic.

Key questions

Do one or more phase transitions exist?

Zero temperature: the 2-colouring threshold rcol , plus . . . ?
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Results

Theorem [ACO, Zdeborová 2012]

1 The zero temperature limit is non-analytic at

rcond = 2k−1 ln 2− ln 2 + ok(1) and rcol > rcond .

2 As β →∞, the limit is non-analytic at 2k−1 ln 2− ln 2 + ok,β(1).

Zero temperature: (at least) two phase transitions.

Low temperature: at least one.
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Results

Theorem [ACO, Panagiotou 2012]

We have rcol = 2k−1 ln 2− ln 2

2
− 1

4
+ ok(1).

Density What’s happening?

2k−1 ln 2− ln 2

2
− 1

2
+ ok(1) “vanilla” second moment [AM’02]

2k−1 ln 2− ln 2 + ok(1) phase transition (“condensation”)

2k−1 ln 2− ln 2

2
− 1

4
+ ok(1) 2-colouring threshold

2k−1 ln 2− ln 2

2
+ ok(1) first moment upper bound
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The first moment

Recall that Z = # 2-colourings of H.

It’s easy to see that

E [Z ] ∼ 2n · (1− 21−k)m,

and thus
1

n
lnE [Z ] ∼ ln 2 + r · ln(1− 21−k).

By convexity, we have

1

n
E [ln Z ] ≤ 1

n
lnE [Z ] .

Hence,

rcol ≤ 2k−1 ln 2− ln 2

2
+ ok(1).
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

For r ≤ 2k−1 ln 2− ln 2
2 −

1
2 + ok(1) we have

E
[
Z 2
]
≤ C · E [Z ]2 .

Consequently, rcol ≥ 2k−1 ln 2− ln 2
2 −

1
2 + ok(1).

By symmetry, for any fixed σ : V → {•, •},

E
[
Z 2
]

= E [Z ] · E [Z |σ is 2-colouring] .

Let Z (d) = #colourings τ with dist(σ, τ) = d .

Then

E [Z |σ] =
n∑

d=0

E [Z (d)|σ] .
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The second moment

Vanilla second moment [Achlioptas, Moore 2002]

E
[
Z 2
]
≤ C · E [Z ]2 for r ≤ 2k−1 ln 2− ln 2

2 −
1
2 + ok(1).

We have E [Z |σ] =
n∑

d=0

E [Z (d)|σ] .

Now, lnE [Z |σ] ∼ max
0≤d≤n

lnE [Z (d)|σ].

Further,

1

n
lnE [Z (αn)|σ] = H(α) + E (α), with

H(α) = −α ln(α)− (1− α) ln(1− α),

E (α) = r · ln
[

1− 1− αk − (1− α)k

2k−1 − 1

]
.
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The second moment

We have lnE [Z |σ] ∼ max
0≤α≤1

lnE [Z (αn)|σ].

It’s easy to plot α 7→ 1
n lnE [Z (αn)|σ].
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The second moment

We have lnE [Z |σ] ∼ max
0≤α≤1

lnE [Z (αn)|σ].

It’s easy to plot α 7→ 1
n lnE [Z (αn)|σ].

r > 2k−1 ln 2− ln 2
2 −

1
2 + ok(1)
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The solution space

Stat mech hypothesis [Krzkala et al.: PNAS 2007]

Let S(H) = {all 2-colourings of H}.
At r ∼ 2k−1 ln 2− ln 2 the shape of S(H) changes.
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Stat mech hypothesis [Krzkala et al.: PNAS 2007]

Let S(H) = {all 2-colourings of H}.
At r ∼ 2k−1 ln 2− ln 2 the shape of S(H) changes.

For r < 2k−1 ln 2− ln 2 + ok(1), the set shatters into tiny clusters.

Each cluster size is exponentially small.
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The solution space

Stat mech hypothesis [Krzkala et al.: PNAS 2007]

Let S(H) = {all 2-colourings of H}.
At r ∼ 2k−1 ln 2− ln 2 the shape of S(H) changes.

For r > 2k−1 ln 2− ln 2 + ok(1), the set condenses.

A bounded number of clusters dominate.

Amin Coja-Oghlan (Frankfurt) Hypergraphs 18 / 27



The solution space

The “shape” of the clusters

Clusters are characterised by frozen vertices.

Frozen vertices govern the cluster size:

1

n
log2 {cluster size} ∼ 1− #frozen

n
.

Rigorous work

Achlioptas, Ricci-Tersenghi 2006.

Achlioptas, ACO 2008.

Molloy 2012
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Second moment redux

Question

Why does the second moment break before condensation?

In the plot of α 7→ 1
n lnE [Z (αn)|σ]. . .

. . . think of the max near 0 as the expected cluster size.

Driven up by fluctuations in the number of frozen vertices.
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Second moment redux

Controlling the cluster size [ACO, Zdeborová 2012]

The second moment breaks because. . .

. . . exceptional formulas drive up the expected cluster size.

Remedy: work with

Zgood = #colourings whose cluster size is ≤ E [Z ].

Then E [Zgood ] ∼ E [Z ] if r ≤ 2k−1 ln 2− ln 2.

We have
E
[
Z 2
good

]
≤ C · E [Zgood ]2

for any

r ≤ 2k−1 ln 2− ln 2 = predicted condensation point.
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≤ C · E [Zgood ]2

for any

r ≤ 2k−1 ln 2− ln 2 = predicted condensation point.
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Second moment redux

Corollary [ACO, Zdeborová 2012]

For r ≤ 2k−1 ln 2− ln 2 + ok(1) we have

E [ln Z ] ∼ lnE [Z ] = ln 2 + r · ln(1− 21−k).

There is shattering. . .

. . . and the cluster size of a random 2-colouring is w.h.p.

1

n
log2 {cluster size} ∼ exp

(
− kr

2k−1 − 1

)
.
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For r ≤ 2k−1 ln 2− ln 2 + ok(1) we have

E [ln Z ] ∼ lnE [Z ] = ln 2 + r · ln(1− 21−k).

There is shattering. . .

. . . and the cluster size of a random 2-colouring is w.h.p.

1

n
log2 {cluster size} ∼ exp

(
− kr

2k−1 − 1

)
.

Amin Coja-Oghlan (Frankfurt) Hypergraphs 22 / 27



The entropy crisis

A phase transition [ACO, Zdeborová 2012]

Let’s plot the functions

r 7→ 1

n
E [ln Z ] and r 7→ 1

n
E [ln {cluster size}].

rsecond rcond rNAE rfirst

ln 2

rsh
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Into the condensation phase

Targeting small clusters [ACO, Panagiotou 2012]

Idea: count solutions in small clusters only.

These (supposedly) remain abundant and well-separated.

rsecond rcond rNAE rfirst

ln 2

rsh
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Into the condensation phase

Targeting small clusters [ACO, Panagiotou 2012]

According to the physicists,

1

n
log2 {cluster size} ∼ 1− #frozen vertices

n
.

Key parameter: #frozen vertices.

Proxy: v is blocked in σ if flipping v leaves an edge monochromatic.

Let Zγ = #colourings with γn blocked vertices.

The second moment analysis for Zγ succeeds so long as

1

n
ln {cluster size} ∼ (1− γ) ln 2 ≤ 1

n
lnE [Zγ ] .

Optimising over γ gives the threshold.
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Into the condensation phase

Corollary [ACO, Panagiotou 2012]

Approximate expressions for. . .

. . . the partition function 1
nE [ln Z ],

. . . the number of clusters (“complexity”).
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Conclusion

Main contricutions:

first improvement over the “vanilla” 2nd moment from [AM02],
first rigorous proof of a condensation transition in this kind of model,
pinned down the 2-colouring threshold up to ok(1).

Techniques:

physics-inspired second moment argument,
exploiting the solution space geometry,
differential equation, cores, . . .

Open problems:

exact threshold for any k?
extension to graph coloring?
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