

The Hypergraph 2-colouring Threshold

Amin Coja-Oghlan

Goethe University Frankfurt

Constraint Satisfaction Problems (“CSPs”)

- x_1, \dots, x_n : *variables* with a finite domain D (“spins”).
- C_1, \dots, C_m : *constraints* binding a small number of variables each.
- **Goal:** an assignment

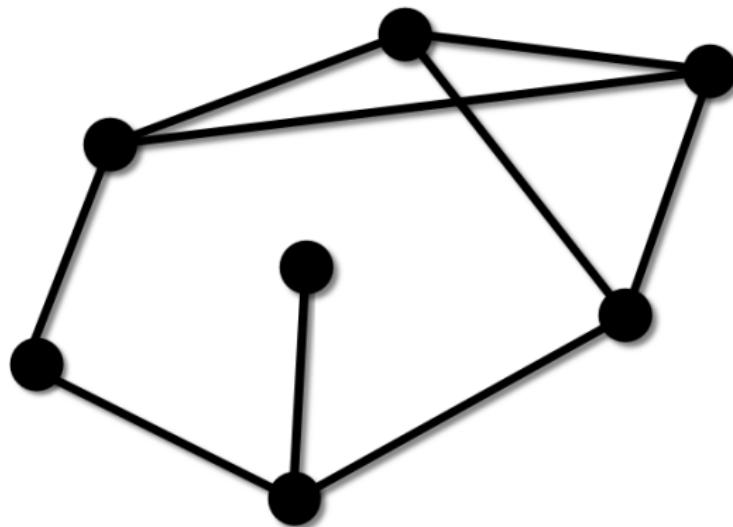
$$\sigma : \{x_1, \dots, x_n\} \rightarrow D$$

that satisfies *all* constraints.



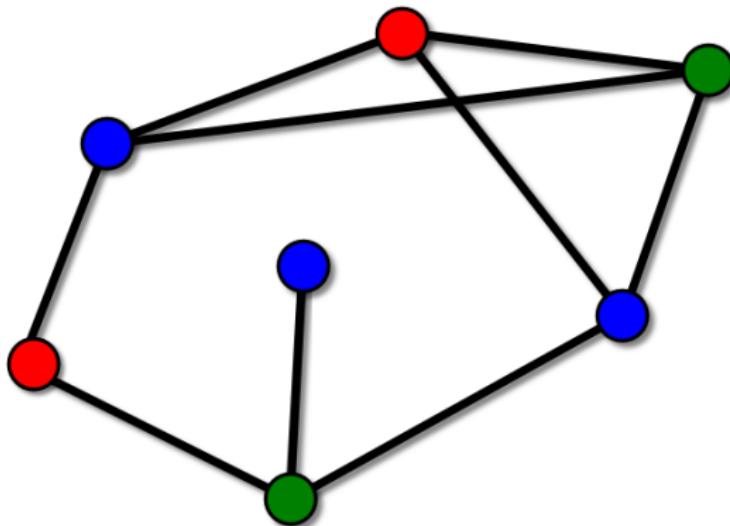
Example: graph colouring

- G = a graph with n *vertices* and m *edges*.
- **Question:** does G admit a *3-colouring*?



Example: graph colouring

- G = a graph with n *vertices* and m *edges*.
- **Question:** does G admit a *3-colouring*?



Random CSPs

- x_1, \dots, x_n : *variables* with domain D .
- Constraints C_1, \dots, C_m chosen *independently*, uniformly at random.

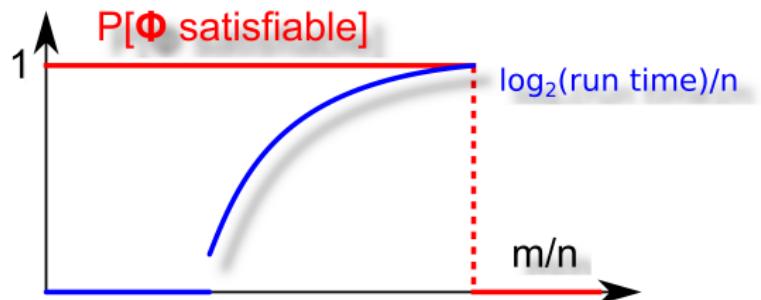
Random CSPs

- x_1, \dots, x_n : *variables* with domain D .
- Constraints C_1, \dots, C_m chosen *independently*, uniformly at random.

Kirkpatrick, Selman (experimental)

[Science 1994]

There occurs a sharp satisfiability **phase transition**.



- Existence of *non-uniform* thresholds
- Second moment method

[Friedgut 1999]

[Achlioptas, Moore'02]

- Existence of *non-uniform* thresholds
- Second moment method

[Friedgut 1999]

[Achlioptas, Moore'02]

- The *sharp threshold* conjecture.
- Pinning down the *thresholds* (random k -SAT, graph colouring, ...)
- (*Computational* aspect.)

- Existence of *non-uniform* thresholds
- Second moment method

[Friedgut 1999]

[Achlioptas, Moore'02]

- The *sharp threshold* conjecture.
- Pinning down the *thresholds* (random k -SAT, graph colouring, ...)
- (*Computational* aspect.)

- Cavity method: “Survey propagation” [Mézard, Parisi, Zecchina 2002]
- The **condensation** transition [KMRSZ 2007]
- *Universal* picture (random k -SAT, graph colouring, ...)

The statistical mechanics perspective

- Phase transitions in **glasses** hypothesized by *Kauzmann* (1948).
- Mean-field models of disordered systems (such as glasses).
- **This work:** first *proof* of condensation in a “diluted mean-field model”.

This work: random hypergraph 2-colouring

- Pinning down the *threshold* in a problem with **condensation**.
- Rigorous approach to condensation.

This work: random hypergraph 2-colouring

- Pinning down the *threshold* in a problem with **condensation**.
- Rigorous approach to condensation.

Known thresholds

- Random 2-SAT *[Chvátal, Reed'92; Goerdt'92]*
- Random 1-in- k -SAT *[Achlioptas, Chtcherba, Istrate, Moore'01]*
- Random k -XORSAT *[Dubois, Mandler'02]*
- Uniquely extendible problems *[Connamacher, Molloy'04]*
- Random k -SAT with $k > \log_2 n$ *[Frieze, Wormald'05]*

Random Hypergraphs

- $V = \{v_1, \dots, v_n\}$: vertices.
- \mathcal{H} = random *k-uniform hypergraph* with m edges.
- Let $r = m/n$ be *fixed* while $n \rightarrow \infty$.

Random Hypergraph 2-colouring

Random Hypergraphs

- $V = \{v_1, \dots, v_n\}$: vertices.
- \mathcal{H} = random *k-uniform hypergraph* with m edges.
- Let $r = m/n$ be *fixed* while $n \rightarrow \infty$.

Hypergraph 2-colouring

- Is there $\sigma : V \rightarrow \{\bullet, \circ\}$ s.t. **no** edge is *monochromatic*.
- **NP-hard** in the *worst case*.

The partition function

- Let $\beta > 0$ be a parameter (*"inverse temperature"*).
- For $\sigma : V \rightarrow \{\bullet, \bullet\}$ let

$$w(\sigma) = \#\text{monochromatic edges in } \mathcal{H} \text{ under } \sigma.$$

The partition function

- Let $\beta > 0$ be a parameter (*"inverse temperature"*).

- For $\sigma : V \rightarrow \{\bullet, \bullet\}$ let

$$w(\sigma) = \#\text{monochromatic edges in } \mathcal{H} \text{ under } \sigma.$$

- Define the *partition function* by

$$Z_\beta = \sum_{\sigma: V \rightarrow \{\bullet, \bullet\}} \exp(-\beta \cdot w(\sigma)).$$

The partition function

- Let $\beta > 0$ be a parameter ("inverse temperature").
- For $\sigma : V \rightarrow \{\bullet, \bullet\}$ let

$$w(\sigma) = \#\text{monochromatic edges in } \mathcal{H} \text{ under } \sigma.$$

- Define the *partition function* by

$$Z_\beta = \sum_{\sigma: V \rightarrow \{\bullet, \bullet\}} \exp(-\beta \cdot w(\sigma)).$$

- Goal:** to find

$$(\beta, r) \mapsto \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E} [\ln Z_\beta] \geq 0.$$

- Bayati, Gamarnik, Tetali 2010:* the limit exists for any $0 < \beta < \infty$.

The partition function

Zero temperature

- *Special case:* $\beta = \infty$.
- Set

$$Z = Z_\infty = \# \text{2-colourings of } \mathcal{H}.$$

The partition function

Zero temperature

- *Special case:* $\beta = \infty$.
- Set

$$Z = Z_\infty = \# \text{2-colourings of } \mathcal{H}.$$

Conjecture

The limit $\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E} [\ln (1 + Z_\infty)]$ exists for any $r > 0$.

This implies the “*sharp threshold conjecture*”.

Phase transitions

- a point (β, r) where the limit is **non-analytic**.
- a density r where the **zero temperature** limit is non-analytic.

Phase transitions

- a point (β, r) where the limit is **non-analytic**.
- a density r where the **zero temperature** limit is non-analytic.

Key questions

- Do **one or more** phase transitions **exist**?
- **Zero temperature**: the **2-colouring threshold** r_{col} , plus . . . ?

Results

Theorem

[ACO, Zdeborová 2012]

- ① The *zero temperature* limit is **non-analytic** at

$$r_{cond} = 2^{k-1} \ln 2 - \ln 2 + o_k(1) \quad \text{and} \quad r_{col} > r_{cond}.$$

Results

Theorem

[ACO, Zdeborová 2012]

- ① The *zero temperature* limit is **non-analytic** at

$$r_{cond} = 2^{k-1} \ln 2 - \ln 2 + o_k(1) \quad \text{and} \quad r_{col} > r_{cond}.$$

- ② As $\beta \rightarrow \infty$, the limit is **non-analytic** at $2^{k-1} \ln 2 - \ln 2 + o_{k,\beta}(1)$.

Results

Theorem

[ACO, Zdeborová 2012]

① The *zero temperature* limit is **non-analytic** at

$$r_{cond} = 2^{k-1} \ln 2 - \ln 2 + o_k(1) \quad \text{and} \quad r_{col} > r_{cond}.$$

② As $\beta \rightarrow \infty$, the limit is **non-analytic** at $2^{k-1} \ln 2 - \ln 2 + o_{k,\beta}(1)$.

- *Zero temperature*: (at least) **two** phase transitions.
- *Low temperature*: at least **one**.

Results

Theorem

[ACO, Panagiotou 2012]

We have $r_{col} = 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{4} + o_k(1)$.

Results

Theorem

[ACO, Panagiotou 2012]

We have $r_{col} = 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{4} + o_k(1)$.

Density	What's happening?
$2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$	“vanilla” second moment [AM’02]
$2^{k-1} \ln 2 - \ln 2 + o_k(1)$	<i>phase transition</i> (“condensation”)
$2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{4} + o_k(1)$	2-colouring <i>threshold</i>
$2^{k-1} \ln 2 - \frac{\ln 2}{2} + o_k(1)$	<i>first moment</i> upper bound

The first moment

- Recall that $Z = \# \text{2-colourings}$ of \mathcal{H} .

The first moment

- Recall that $Z = \# \text{2-colourings}$ of \mathcal{H} .
- It's easy to see that

$$\mathbb{E}[Z] \sim 2^n \cdot (1 - 2^{1-k})^m,$$

The first moment

- Recall that $Z = \# \text{2-colourings}$ of \mathcal{H} .
- It's easy to see that

$$\mathbb{E}[Z] \sim 2^n \cdot (1 - 2^{1-k})^m,$$

and thus

$$\frac{1}{n} \ln \mathbb{E}[Z] \sim \ln 2 + \textcolor{red}{r} \cdot \ln(1 - 2^{1-k}).$$

The first moment

- Recall that $Z = \# \text{2-colourings}$ of \mathcal{H} .
- It's easy to see that

$$\mathbb{E}[Z] \sim 2^n \cdot (1 - 2^{1-k})^m,$$

and thus

$$\frac{1}{n} \ln \mathbb{E}[Z] \sim \ln 2 + \textcolor{red}{r} \cdot \ln(1 - 2^{1-k}).$$

- By convexity, we have

$$\frac{1}{n} \mathbb{E}[\ln Z] \leq \frac{1}{n} \ln \mathbb{E}[Z].$$

- Hence,

$$r_{col} \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} + o_k(1).$$

The second moment

Vanilla second moment

[Achlioptas, Moore 2002]

- For $r \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$ we have

$$\mathbb{E}[Z^2] \leq C \cdot \mathbb{E}[Z]^2.$$

- Consequently, $r_{col} \geq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$.

The second moment

Vanilla second moment

[Achlioptas, Moore 2002]

- For $r \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$ we have

$$\mathbb{E}[Z^2] \leq C \cdot \mathbb{E}[Z]^2.$$

- Consequently, $r_{col} \geq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$.

- By symmetry, for any *fixed* $\sigma : V \rightarrow \{\bullet, \circ\}$,

$$\mathbb{E}[Z^2] = \mathbb{E}[Z] \cdot \mathbb{E}[Z | \sigma \text{ is 2-colouring}].$$

The second moment

Vanilla second moment

[Achlioptas, Moore 2002]

- For $r \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$ we have

$$\mathbb{E}[Z^2] \leq C \cdot \mathbb{E}[Z]^2.$$

- Consequently, $r_{col} \geq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1)$.

- By symmetry, for any *fixed* $\sigma : V \rightarrow \{\bullet, \circ\}$,

$$\mathbb{E}[Z^2] = \mathbb{E}[Z] \cdot \mathbb{E}[Z | \sigma \text{ is 2-colouring}].$$

- Let $Z(d) = \#\text{colourings } \tau \text{ with } \text{dist}(\sigma, \tau) = d$.

- Then

$$\mathbb{E}[Z | \sigma] = \sum_{d=0}^n \mathbb{E}[Z(d) | \sigma].$$

The second moment

Vanilla second moment

[Achlioptas, Moore 2002]

$$\mathbb{E}[Z^2] \leq C \cdot \mathbb{E}[Z]^2 \text{ for } r \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1).$$

- We have $\mathbb{E}[Z|\sigma] = \sum_{d=0}^n \mathbb{E}[Z(d)|\sigma]$.

The second moment

Vanilla second moment

[Achlioptas, Moore 2002]

$$\mathbb{E}[Z^2] \leq C \cdot \mathbb{E}[Z]^2 \text{ for } r \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1).$$

- We have $\mathbb{E}[Z|\sigma] = \sum_{d=0}^n \mathbb{E}[Z(d)|\sigma].$
- Now, $\ln \mathbb{E}[Z|\sigma] \sim \max_{0 \leq d \leq n} \ln \mathbb{E}[Z(d)|\sigma].$

The second moment

Vanilla second moment

[Achlioptas, Moore 2002]

$$\mathbb{E}[Z^2] \leq C \cdot \mathbb{E}[Z]^2 \text{ for } r \leq 2^{k-1} \ln 2 - \frac{\ln 2}{2} - \frac{1}{2} + o_k(1).$$

- We have $\mathbb{E}[Z|\sigma] = \sum_{d=0}^n \mathbb{E}[Z(d)|\sigma]$.
- Now, $\ln \mathbb{E}[Z|\sigma] \sim \max_{0 \leq d \leq n} \ln \mathbb{E}[Z(d)|\sigma]$.
- Further,

$$\frac{1}{n} \ln \mathbb{E}[Z(\alpha n)|\sigma] = H(\alpha) + E(\alpha), \text{ with}$$

$$H(\alpha) = -\alpha \ln(\alpha) - (1 - \alpha) \ln(1 - \alpha),$$

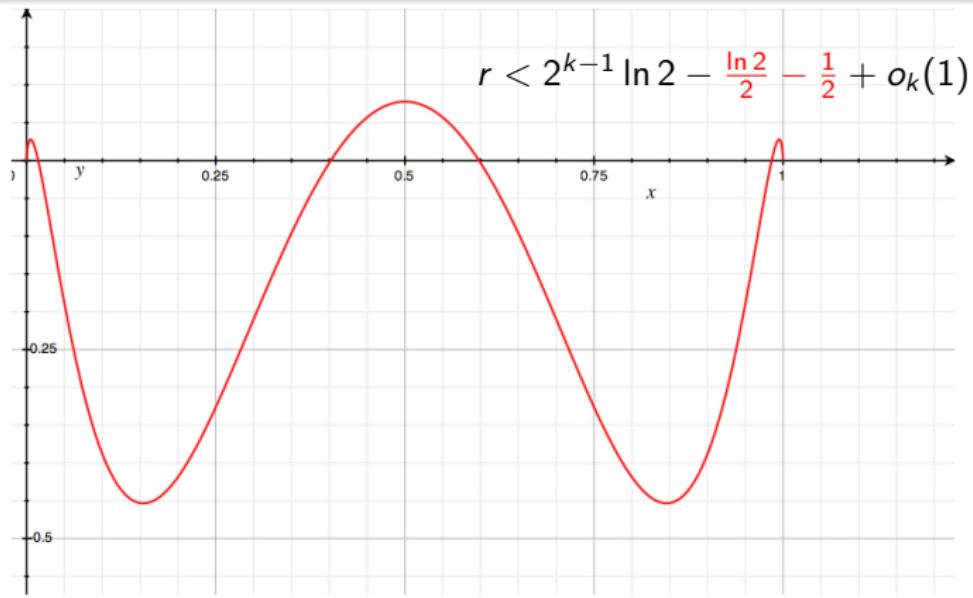
$$E(\alpha) = r \cdot \ln \left[1 - \frac{1 - \alpha^k - (1 - \alpha)^k}{2^{k-1} - 1} \right].$$

The second moment

- We have $\ln E[Z|\sigma] \sim \max_{0 \leq \alpha \leq 1} \ln E[Z(\alpha n)|\sigma]$.
- It's easy to plot $\alpha \mapsto \frac{1}{n} \ln E[Z(\alpha n)|\sigma]$.

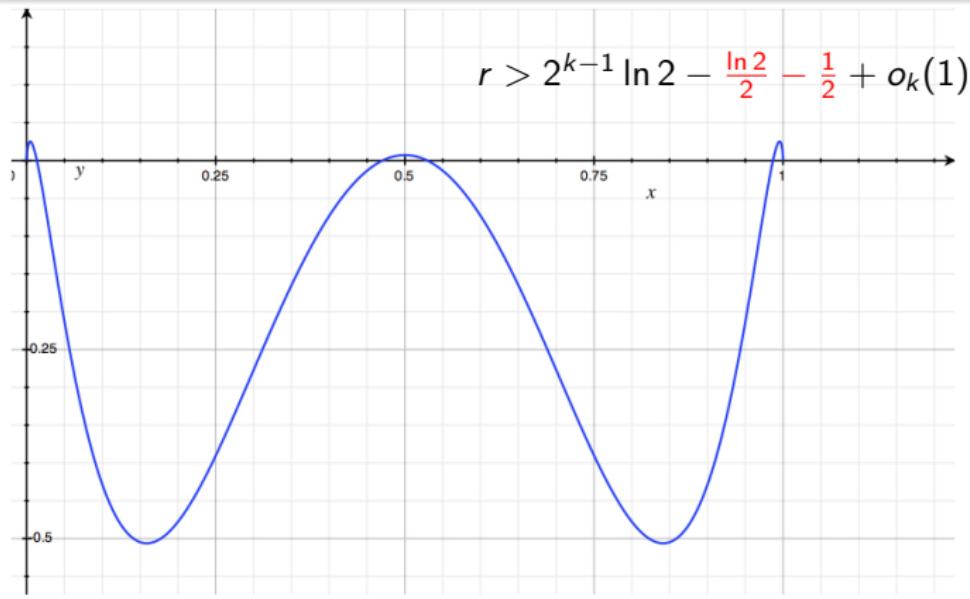
The second moment

- We have $\ln E[Z|\sigma] \sim \max_{0 \leq \alpha \leq 1} \ln E[Z(\alpha n)|\sigma]$.
- It's easy to plot $\alpha \mapsto \frac{1}{n} \ln E[Z(\alpha n)|\sigma]$.



The second moment

- We have $\ln E[Z|\sigma] \sim \max_{0 \leq \alpha \leq 1} \ln E[Z(\alpha n)|\sigma]$.
- It's easy to plot $\alpha \mapsto \frac{1}{n} \ln E[Z(\alpha n)|\sigma]$.



The solution space

Stat mech hypothesis

[Krzkala et al.: PNAS 2007]

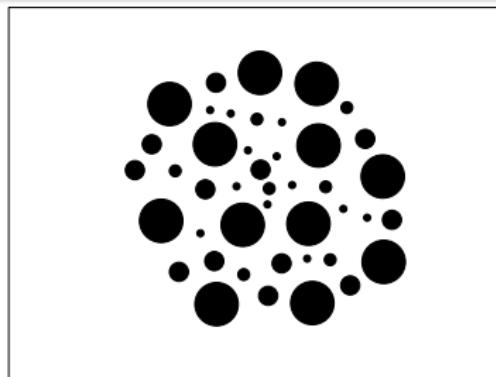
- Let $\mathcal{S}(\mathcal{H}) = \{\text{all 2-colourings of } \mathcal{H}\}.$
- At $r \sim 2^{k-1} \ln 2 - \ln 2$ the **shape** of $\mathcal{S}(\mathcal{H})$ changes.

The solution space

Stat mech hypothesis

[Krzkala et al.: PNAS 2007]

- Let $\mathcal{S}(\mathcal{H}) = \{\text{all 2-colourings of } \mathcal{H}\}$.
- At $r \sim 2^{k-1} \ln 2 - \ln 2$ the **shape** of $\mathcal{S}(\mathcal{H})$ changes.



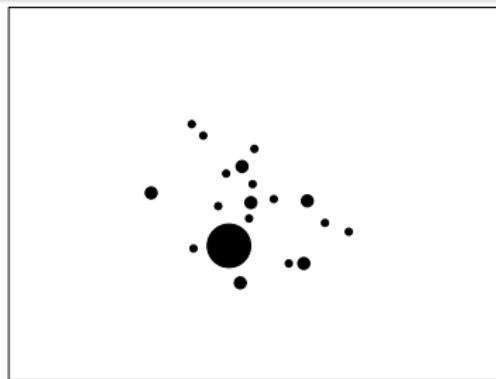
- For $r < 2^{k-1} \ln 2 - \ln 2 + o_k(1)$, the set **shatters** into tiny *clusters*.
- Each cluster size is *exponentially small*.

The solution space

Stat mech hypothesis

[Krzkala et al.: PNAS 2007]

- Let $\mathcal{S}(\mathcal{H}) = \{\text{all 2-colourings of } \mathcal{H}\}$.
- At $r \sim 2^{k-1} \ln 2 - \ln 2$ the **shape** of $\mathcal{S}(\mathcal{H})$ changes.



- For $r > 2^{k-1} \ln 2 - \ln 2 + o_k(1)$, the set **condenses**.
- A **bounded** number of clusters dominate.

The solution space

The “shape” of the clusters

- Clusters are characterised by **frozen vertices**.
- **Frozen vertices** govern the *cluster size*:

$$\frac{1}{n} \log_2 \{\text{cluster size}\} \sim 1 - \frac{\#\text{frozen}}{n}.$$

Rigorous work

- Achlioptas, Ricci-Tersenghi 2006.
- Achlioptas, ACO 2008.
- Molloy 2012

Second moment redux

Question

Why does the second moment *break* before condensation?



- In the plot of $\alpha \mapsto \frac{1}{n} \ln \mathbb{E}[Z(\alpha n) | \sigma] \dots$
- . . . think of the *max near 0* as the *expected* cluster size.
- Driven up by fluctuations in the number of *frozen vertices*.

Controlling the cluster size

[ACO, Zdeborová 2012]

- The second moment **breaks** because...
- ... *exceptional* formulas drive up the **expected** cluster size.

Second moment redux

Controlling the cluster size

[ACO, Zdeborová 2012]

- The second moment **breaks** because...
- ... *exceptional* formulas drive up the **expected** cluster size.
- **Remedy:** work with

$$Z_{good} = \#\text{colourings whose cluster size is } \leq E[Z].$$

- Then $E[Z_{good}] \sim E[Z]$ if $r \leq 2^{k-1} \ln 2 - \ln 2$.

Second moment redux

Controlling the cluster size

[ACO, Zdeborová 2012]

- The second moment **breaks** because...
- ... *exceptional* formulas drive up the **expected** cluster size.
- **Remedy:** work with

$$Z_{\text{good}} = \#\text{colourings whose cluster size is } \leq E[Z].$$

- Then $E[Z_{\text{good}}] \sim E[Z]$ if $r \leq 2^{k-1} \ln 2 - \ln 2$.
- We have

$$E[Z_{\text{good}}^2] \leq C \cdot E[Z_{\text{good}}]^2$$

for any

$$r \leq 2^{k-1} \ln 2 - \ln 2 = \text{predicted } \textcolor{green}{\text{condensation}} \text{ point.}$$

Corollary

[ACO, Zdeborová 2012]

- For $r \leq 2^{k-1} \ln 2 - \text{ln 2} + o_k(1)$ we have

$$\mathbb{E}[\ln Z] \sim \ln \mathbb{E}[Z] = \ln 2 + r \cdot \ln(1 - 2^{1-k}).$$

Second moment redux

Corollary

[ACO, Zdeborová 2012]

- For $r \leq 2^{k-1} \ln 2 - \text{ln 2} + o_k(1)$ we have

$$\mathbb{E}[\ln Z] \sim \ln \mathbb{E}[Z] = \ln 2 + r \cdot \ln(1 - 2^{1-k}).$$

- There is **shattering**...
- ... and the **cluster size** of a random 2-colouring is w.h.p.

$$\frac{1}{n} \log_2 \{\text{cluster size}\} \sim \exp\left(-\frac{kr}{2^{k-1} - 1}\right).$$

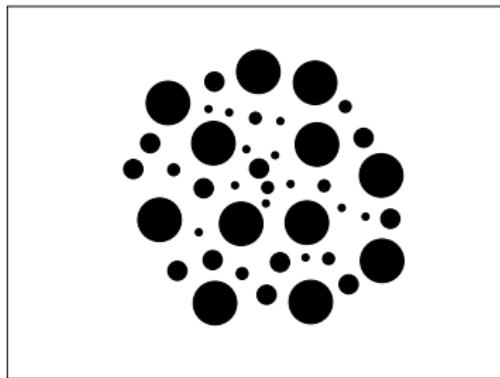
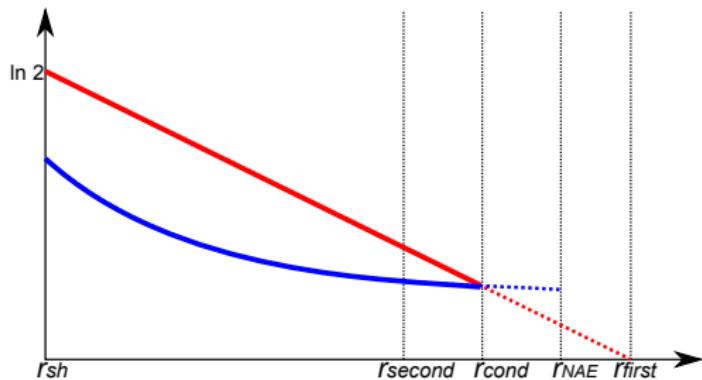
The entropy crisis

A phase transition

[ACO, Zdeborová 2012]

Let's plot the functions

$$r \mapsto \frac{1}{n} E[\ln Z] \quad \text{and} \quad r \mapsto \frac{1}{n} E[\ln \{\text{cluster size}\}].$$

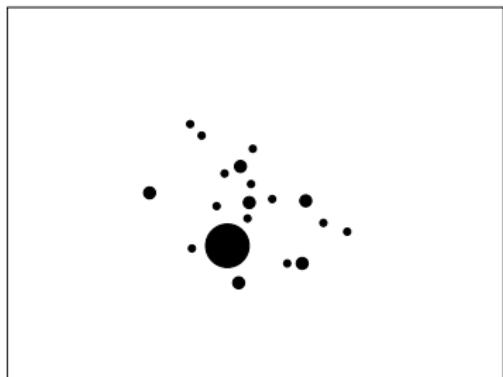
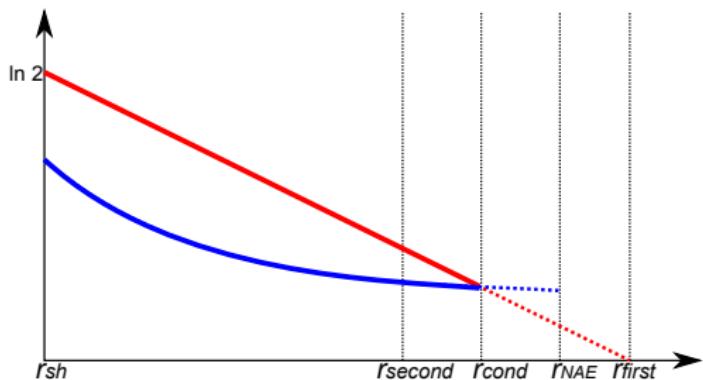


Into the condensation phase

Targeting small clusters

[ACO, Panagiotou 2012]

- Idea: count solutions in *small clusters only*.
- These (supposedly) remain abundant and *well-separated*.



Targeting small clusters

[ACO, Panagiotou 2012]

- According to the physicists,

$$\frac{1}{n} \log_2 \{\text{cluster size}\} \sim 1 - \frac{\#\text{frozen vertices}}{n}.$$

- Key parameter:* #frozen vertices.

Targeting small clusters

[ACO, Panagiotou 2012]

- According to the physicists,

$$\frac{1}{n} \log_2 \{\text{cluster size}\} \sim 1 - \frac{\#\text{frozen vertices}}{n}.$$

- Key parameter:* #frozen vertices.
- Proxy:* v is **blocked** in σ if flipping v leaves an edge monochromatic.

Targeting small clusters

[ACO, Panagiotou 2012]

- According to the physicists,

$$\frac{1}{n} \log_2 \{\text{cluster size}\} \sim 1 - \frac{\#\text{frozen vertices}}{n}.$$

- Key parameter:* #frozen vertices.
- Proxy:* v is **blocked** in σ if flipping v leaves an edge monochromatic.
- Let $Z_\gamma = \#\text{colourings with } \gamma n \text{ blocked vertices.}$

Targeting small clusters

[ACO, Panagiotou 2012]

- According to the physicists,

$$\frac{1}{n} \log_2 \{\text{cluster size}\} \sim 1 - \frac{\#\text{frozen vertices}}{n}.$$

- Key parameter:* #frozen vertices.
- Proxy:* v is **blocked** in σ if flipping v leaves an edge monochromatic.
- Let $Z_\gamma = \#\text{colourings with } \gamma n \text{ blocked vertices.}$
- The **second moment analysis** for Z_γ succeeds so long as

$$\frac{1}{n} \ln \{\text{cluster size}\} \sim (1 - \gamma) \ln 2 \leq \frac{1}{n} \ln \mathbb{E}[Z_\gamma].$$

- Optimising over γ gives the threshold.

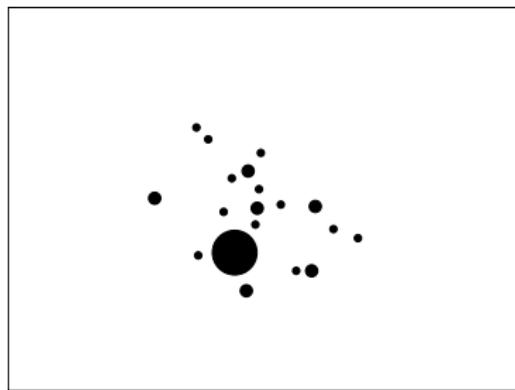
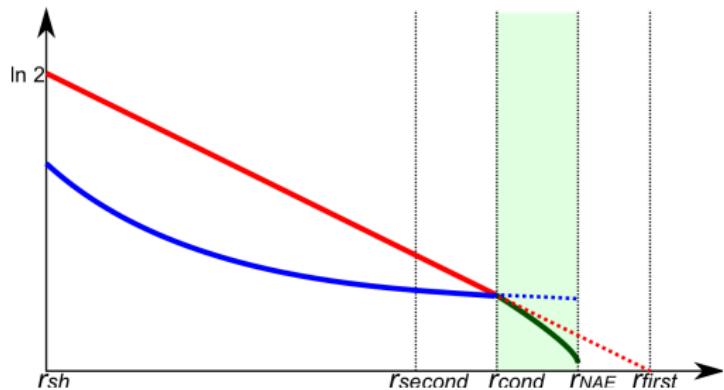
Into the condensation phase

Corollary

[ACO, Panagiotou 2012]

Approximate expressions for...

- ... the *partition function* $\frac{1}{n}E[\ln Z]$,
- ... the *number of clusters* (“complexity”).



Conclusion

- **Main contributions:**

- first *improvement* over the “vanilla” 2nd moment from [AM02],
- first rigorous proof of a *condensation transition* in this kind of model,
- pinned down the *2-colouring threshold* up to $o_k(1)$.

- **Techniques:**

- physics-inspired second moment argument,
- exploiting the solution space geometry,
- differential equation, cores, ...

- **Open problems:**

- *exact* threshold for any k ?
- extension to graph coloring?