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Introduction

The theory of the ‘‘fine structure” of L is cssentiaily the attempt to
elucidate the way the constructible hierarchy grows by examining its
behavior at arbitrary levels. A typical question would be: At which
B2 a does a new L,-definable subset of a occur (ie. B (@) N Ly ¢
L, )? We find such questions both interesting and important in their
own right. Admittedly, however, the questions — and the methods used
to solve them — are somewhat remote from the normal concerns of the
set theorist. One might refer to ““micro set theory” in contradistinction
to the usual “macro set theory’. Happily, micro set theory turns out to
have nontrivial applications in macro set theory. These will be treated
in some detail in §3, 6 and in Silver’s note at the end of this paper (§ 7).

We have found it convenient to replace the usual L, hierarchy by a
new hierarchy J_ . We define J_,; not as the collection of definable sub-
sets of J, but as the closure of J_ U {J,} under a class of functions
which we call “rudimentary™, These are just the functions obtained by
omitting the recursion schema from the usual list of schemata for pri-
mitive recursive set functions. In a sense they form the smallest class of
functions R such that there is a smooth definability theory for transi-
tive domains closed under R. The main difference between the two hie-
rarchies is that J has rank wa rather than . However, the subsets of J,

* The typing of the manuscript was supported by Grant GP # - 27964,



230 ‘ R.B. Jens™n, Structure of constructible higrarchy

which are elements of J _,; are just the definable ones. J_,; is, so to
speak, the result of “stretching™ the collection of the definable subsets
of J, upwards w levels in rank without adding new ones. The exact cor-
respondence between the two hierarchies is given by:

Jo= Ly =0:L 4, =Vire M e

Thus J, = L, whenever wa = a.

§ 1 develops the theory of rudimentary functions.!® §2 defines the
hierarchy J, and develops its elementary properties — including the
basic lemmas on admissible ordinals. §3 proves the £, uniformisation
lemma: Every Z,(J,,) relation is uniformisable by a £,(J,,) function.

§4 extends the results of §3. § 5 uses the results of §4 to prove some
combinatorial principles in L. §6 then gives characterisations of weak
compactness in L. Specifically, it is shown that if V = L and n is regular,
then weak compactness is equivalent to each of the following:

(i) If A C nis stationary in . then 4 N £ is stationary in 3 for some
<.

(ii) The n Souslin Hypothesis.

(iii) Any of the partition properties

n- (M2, (r<y< ).

(The last is proved by showing that any Sousiin tree :an be partitioned
50 as to violate the principles (ii1); Martin showed this fory =3, r= 2.
The full theorem was proved by Soare). An appendix written by Jack
Silver (§ 7) uses a theorem of §5 to show that the gap-one form of the
two cardinals conjecture holds at singular cardinals in L. * His proof is
shorter and more elegant than my original one.

To my knowledge, the first to study the fine structure of L for its
own sake was Hilary Putman who, together with his pupil George Boolas,
first proved some of the results in §3. An account of their work can be
found in [1]. For a lucid account of the basic properties of L, the reader
is referred to [6]. For admissible ordinals (and the related theory of pri-
mitive recursive set functions), see [5]. The model theoretic lemmas used
in Silver’s note can be found in [3].

* For notes see p. 308
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The material in this paper first appeared in a sequence of handwritten
notes: “*SH = weak compactness in L, “The X, uniformisation lemma”,
*“A note on the two cardinals problem™. I am grateful to many people
who struggled through these notes and gave me the benefit of their
comments. I am particularly grateful to Silver and Solovay for several
fruitful discussions. My decpest thanks go to Joseph Rebholz who, in
addition to proofreading this paper, read it in manuscript form and made
invaluable comments.

§0. Preliminaries

Consider a first order language £ with the predicates = (identity),
€ (membership). We ad¢! other predicates as necessary. In addition to
the usual symbols of first order predicate logic, we suppose £ to con-
tain bounded quantifiers Ax € y, Vx € y (thus e.g. Ax € y ¢ means
the same as A x(x € y -~ ). We call a formula I (or 1) if it contains
no unbounded quantificrs. For n 2 1 we call ¢ a £,,(I1,)) formula if it
has the form: VX, Ax, VX . By, V(Ax; Vx, Axy . Xx, ¥),
where ¥ is Z,. We shall deal with structures of the form M =(IMl; =, €,
Ay, ... A4, where l3ilis a domain of sets and 4, ..., A, are relations
on M. Since the first two predicates are fixed, we shall generally write:
M=dMliA | .., 4,). Letn 2 0. By Z, (M)(T1,,(M)) we mean that set
of refations which are M-definable from arbitrary parameters in M by a
2, 1,) formula. If we wish to be specific about the parameters, we
write: R is T, (M) in the parameters py, .... p,, . > We set:

An::znn“n;gw: U 2"'

Form.n 20, Z,Z,, (M) denotes the set of relations R which are
Z,KIMEBy . ... B) for By, ..., B, which are Z,, (M) (similarly for
z.00,.Z,4,,. etc.). Obviously we have £,Z, = Z, . We often write
I,(Us4,, ..., 4,,) as an abbreviation for Z,((U; 4,, ..., 4,,)). We call
M=(U A,. .., A, amenable iif U is transitive and 4; n x € U for

x € U. We note the following absoluteness property of T, formulae:
If M' is a submodel of M, IM' is transitive, x € IM'l and p is a Z, for-
mula, then
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Fu wlx] > By olx] .

Wc- write M' <y M (n 2 0) to mean that M’ is a submodel of M and for
every &, formula wand all x € M we have

By olx] > By olx] .
Thus<2 is the usual elementary submodel relation. We write
miM >y MmM”EAﬂmmm%ﬂmwmwmmMmﬁMoMo
an M"<z M.If X C 1M1, we write X <y, ! M to mean M' <y % M, where
M’ is the result of restricting M to X. Forn 2 1, X < £, M is equivalent
te the condition: If A C Mis II,_; in parameters from X and 4 # 0,
thend N X+ 0. * i-'= "n is the satisfaction relation on M for £,, formulae,
rn(x) denotes the rank of the set x. ZF™ consists of all axioms of ZF set
theory except the power set axiom. uaf...) means the least ordinal a
such that ..

Now let 1M1 be closed under finite subsets (ie. x C IMIL. X< w>x €
IM1). We list some closure properties >f T, (M) and A, (M) (n 2 1.
Property 0.1. if Ryx is T, . s0 is V yRwx.

Proof. Let Ryx <= Vz Pz: x, where PisI1,_,. Then
Vy Ryx <> Vu(Q) A Vv euPrvx),

where Q is the £, condition
QY= VzyEulNx€ulx=zxvx=y).

If Pis T. we are done. Otherwise we use the equivalences
Q) > (Ax€uVySix,p)— VrQ») A

AAxeuVyerSx,yv)

to bring the bounded quantifiers successively inward.
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An immediate corollary of Property-0.1 is

Property 0.2. If Rgx, Ry x are £, then so are (Ryx v Rx) and
(Rpx A Ryx).

Hence

Property 0.3. A, relations are closed under all sentential operations
AV, 7).

We call a function f{x) £, iff the relationy = f(x)is T,,.

Property 0.4. If Rz ...z, and flx) (i = 1, ... m) are ,,, then so is
Rf(x).
Proof. Rf(x) <= V3 (AL, = = fi(x) A R3),

=1 =i
Property 0.5. 1f fis £, and dom(f) is 4,. then fis A,,.

Proof. v # f(X) +—> (x g dom{(N vVz (z=f(x) Ay # 2)).

§ 1. Rudimentary functions

Definition. We call a function £ V? = V rudimentary (rud) iff it is fini-
tely generated by the following schemata:

(@) flx) =x;,

L= xi\x,.

(©) S (%) = {x;. x}},

() f(x) = hig(x)),

(e) f(».x) = U, g, 8z, %)

Note. This is the usual list of schemata for primitive recursive set func-
tions, minus the recursion schema.

We list some elementary properties of rud functions:
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Property 1.1.

(@) f(x) = Ux; is rud.

(b) f(x) = x; U x; = U {x;, x; } is rud.

(c) f(x) = {x} is rud.

(d) f(x) = ¢x) is rud.

(e) If f(y, x) isrud, so is g(y, x) = f(z, )z € ¥) (since gy, x) =
U,e, {(f(z, %), ).

Definition. R C V" is rud iff there is ¢ rud function r : V? = V such that
R = {(x)l r(x) # 0}.

Property 1.2.

(a) € isrud, since y € x «— {y}\x + 0.

(b) If £, R are rud, then so is g(x) = f(x) if Rx, and g(x) = § if not.
[Proof: Let Rx «<— r{x) # 0. Then g(x) = U“@,(‘\.)f(x).]

Let xg be the characteristic function of R.

(c) R is rud <= xi is rud (proof by 2b).

Hence

()R isrud « TR is :ud.
[Proof: x—p (x) = I\ xg (x).]

(&) Letfi: VIS VR, C VP berud (i =1, ....m). Let R, 0 R;= @ for
i# jand U;R; = V" Then fis rud, where f(x) = f;(x) if Ry(x).
[Proof: Set fi(x) = f(x) if £ ;x and fi(x) = @ if not. Then f(x) =
UZ, fitx).]

(f) If Ryx isrud, sois f(y,x) =y r {zIRzx}.

[Proof: f(y, x) = U,e, h(z, x), where A(z, x) = {z} if Rzx and
h(z, x) = Qif not.}
(g) If Risrud and A x Vy Ryx, then so is f{y, x) = that 2z € v such
that Rzx if Vz € y Rzx and f(v, x) = @ if not.
[Proof: f(y,x)=U (¥ N {ziRzx}.]
(h) If Ryxis rud, thensois Vz € y Rzx.
() IfRxistud (i =1, .., m), thenso are VI, R;x andAZ, P;x.

Property 1.3. The following functions are rud:
@ ()} (i< n< w), where ({29, <., 2, ) =z; and ()F = @ other-
wise.
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[Proof: (x) = thatz € A(x) such that Vu € h(x) (x =) A u; = 2) if
such z exists and (x)} = § if not, where Ai(x) =Ux U Uixu ..uUx.]
(b) x(»), where x(») = the unique z € U?x such that (z, mexif

such z exists and x(») = 0 otherwise.
(¢) dom(x) = {z € UxIV v & Usx (v, 2) € x}.
@ mgx) = {zeUixiVre Uy, mex).
(&) x X y=U, o Ve, {Cu, M}
) x T y=xn (ng(x) X y).
() x"y =rnglx M y).
(h)x~! =A"(x 0 (rng(x) X domix))), where h(z) = ((z)% s (z)% I

Lemma 1.1, [f fis rud, then there is a p < w such that
A x () < max(rn(xy ), - mx, ) +p .

Proof. By induction on the defining schemata of f. The induction is
straightforward.

By Property 1.2 (h), (i), every &, relation is rud. We shall now prove
the converse; we shall in fact prove a much stronger theorem.

Definition. f: V* ~ V is simple iff whenever p(z, ) is a ) €-forniula,
then w(f(x), y) is equivalent (in V) to a £y €-formula ® (i.e. it has only
variables, bounded quantifiers and 71, A, €, =).

Note that simple functions are closed under composition. The simpli-
city of a function [ is equivalent to the conjunction of the two condi-
tions:

D xef(yis,.

(i) If Az is Z, then Ax € f(y)Ax is Iy,
for given these, we can prove by induction on Z,, formula p that o(f{x})
isZy.

Lemma 1.2. All rud functions are simple.

Proof. We verify by induction on the defining schemata of f that fis
simple, using (i), (il) and the closure of simple functions under compo-
sition.
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Note. Not all simple functions are rudimentary. For instance [ is simple,
where f(a) = a + w for & 2 w and fix) = § otherwise. ¢

It is often of interest to consider functions which are rud in a relation
A (more precisely: in the characteristic function of 4). Not every rela-
tion which is rud in 4 will be T in 4; for instance, {x.y} € 4 is not,
in general, Z in 4. However, we do have

Lemma 1.3. If fis (uniformly) rud in A, then f is (uniformiv) expressible
as a composition of rud functions and the function a(xY=A 0 x.

Proof. Let & be the collection of all compositions of rud functions
and a(x). It suffices to show

(*) Ifge @ andf(y,x) = U g(z,\ x)s theﬂf@ é )

6y

Let &, be the collection of all rud functions and &€,,,, the collection
of all functions of the form

fx)y=hyx, AN hy(x)....A0h, (x).

where hy € 4 and iy, ..., h,, € €, . Itis readily checked that
€=U, €, (by induction on n + m prove thatf& &,,g€ €, -
fg(x)€ €,,,,).

By induction ¢n n, we prove
(**)Ifge @, and f(¥,x)= U g(z.x), thenfe &.
ey
For n = 0 this is trivial. Now let 7 > 0 and let (**) hold forn — 1. Let
g€ €,. Then

gz, x)=hylz, x, A hy(z,%), ... AN I, (z,x)N,
where ko (S @0,;11:'.1 5] @"“‘l . Set

gz, %, u) = ho(z, %, u N hy (2, %), .yt O By (2, %)),
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theng € €, . Set
Troxo = U g xou).

Ry ) =U U hox) .

=1 z&€y
then /. € € by the induction hypothesis. But
oY= T0nx, A N (e, v,
which proves the lemma.

Definition. X is rudimentarily closed (rud closed) iff X is closed under
rud functions. M = (U, 4 is rud closed iff U is closed under functions
which are rud in A. The rudimentary closure of X is X U {f(x)Ix€ X A f
is rudimentary}.

As an immediate corollary of Lemma 1.3, we get

Corollary 1.4
(a). M =M, A is rud closed iff 1M1 s rud closed and M is amenable.
(LY. If fis rud in A, riev fis uniformly T((U. A 0 U) for all transi-
tive rud closed (U, 4 n ).

We now prove
Lemma 1.5. Let U be transitive. Then the rud closure of U is transitive.

Proof. Let V' = the rud closure of U. Let "(x) mean: C({x}) C V (where
C(z) is the transitive closure of ). By in..ction on the defining schemata
of f we show

A Q(x) =~ QUfx) .

=

But Q(x)} forx € U and V is the set of all f(x) such that fis rud and
xel.
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An immediate consequence of Lemma 1.2 is

Lemma 1.6. Let U be transitive and let V be the rud closure of U. Then
the restriction of any Zy(V) relation to U is T (V).

Definition. Let U be transitive. Set rud({/) = the rud closure of U U {U}.

Noting that B(U) n (Vv {UH =2, we get
Corollary 1.7. B(U) n rud(U) = Z , ().

Thus rud(U), while it has a higher rank than T, (1), really adds
nothing new. It is the result of “'stretching” X, (I), which has the un-
wieldy rank r(U) + 1, to length rn(¥) + . We shall define the J hie-
rarchy, exactly like the L, hierarchy, except that we take J ,; to be
rud(J,,) instead of T, (J ), as in the case of L.

The following characterisation of rud({)) may be more conceptual.
though, since we shall not need it, we do not prove it:

Let T = T(U) be the set of U-definable trees of finite length which
have one initial point, and all of whose endpoints have the form (x. 0).
For t-€ T, define a function g, on the nodes by setting

g,(x, ) =x for .ndpoints;
o,(y) = {0,(2)lz >, v} otherwise.
Set 6(#) = 6,(xy ), where xg is the initial point of *. Then

rud(D) = {o()it € TN} .

It may also be of interest, in this context, to note that a transitive domain
v is rud closed iff it satisfies the following axioms:

Al x\y, {x, ¥y}, Uxevr.

A2. fun Ax)lxewlewr.
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Here 4 is Ty and A(x) = {v14rx}. Again we omit the proof, since this
characterisation is not needed.

Call a family § of functions a basis iff every rud function can bs ob-
tained from §F by composition alone. We now prove that the rud func-
tions have a finite basis.

Lemma 1.8. Every rud function is a compositior of the following:

Fotv,v)={x,»},

Fiix.»)=x\y.

Fylx,y)y=x X1,

Fyxeom={n o, mlz@x Ao ery,
Faxon)={nr nlzex au.mer},
Fex,»)=Ux.

Fg(x, 3)= dom(x),

Fixopy=enx?,
Fgle,»)={x"{zHzer}.

Proof. Let € be the class of functions obtainable by composition from
Fy. ..., Fg. For each &-formula ¢ = p(xy, ..., x,, ), set

t )= DX Eun By o plxl}

BFTR

Lemma t.8.1. ¢ ¢ € & for everv €-formula o.
Proof. (a). Let (%) —+ x; € x; <)) Then 1, EEC.

Let £, (¥) = Fy(x. »). Define X" (x, ) by X' (x,y)=x X y:
X"(x,¥)=x X X" }(x, »). Then assuming (xy, ..., X,,), m > 2, is de-
fined inductively by (x,, ... X,,) = (x;,{x,, .., X,, W, we have

{xpsvnxpdxewa B, o 0lxl}

=X"oe FREVF 0 e nwly)) .
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b). If p;(x) (i = 1, ..., p) are such that ¢ " € &, and ¢ is any sentential
combination of the ¢;’s, thent, € &.

It suffices to note that € contains
xX\y,xupy=U{x. v, x 0y =x\(x\y).
(c). Consider ¢(y, x). If t, €€, then Laygr Tyrg € €.
This follows from
tyy (1) = dom(Z, (:); £, (o) = ¥ \dom(x™ \7 (1)) .
(d). 1, € €, where p(x) — X; = x,.
By (a), (b); 1, € €, where
XV, %) = (Y Ex; > P EN)).
But then
Foplx] — aveUu kg oaxly, vl
Hence

)= W nr, (v Uw).

AVX

(e). 1, €&, where p(x) « x; €x; (J <.
Let
V(1 2,X) > (VEZAY=x; A Z=X))

then 7, € € by (a), (b), (d). But p(x) <= Vrz Y(», z, x), hence
t, € € by (c)
By (a), (e), (b), 1, € & for every quantifier free ¢. Now let
@) <> Q) vy .. @1, X(y, ), where x is quantifier free. 7, € & follows
by iterated use of (¢), which proves Lemma 1.8.1.
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Now set & * = the set of rud functions f{x) such that F€ & , where
Fan =f"u™ (ie. {zIVx € u f(x)=2z).

Lemma 1.8.2. If f€ € ¥, then the following functions are in ©
Faoy = iu™ e {ooxlix€u az=f(x))),
Gu={z. IxEu Az e fix)),
Hawy={z.y. )y, x€uaVrvey - €f(v,x)}.
Proof. Set C,(t) = v Uuw v ..U U" v (n < w). ltisa well known
fact that if p is a £; formula and 1 = n(p) is the number of quantifiers
in . then
Ax €u(Fp plx] — Fe,w olx]).
We use this to show F € €. Let (v, x) be a Z; formula meaning:
y=@a.
Let n = n(p). Then
Fay = ((f"a™yx ™y n ,C,(f"u™ v ).
The proof that G, H € € is entirely analogous.
Lemma 1.8.3. Every rud function is in €%,
Proof. We show that /'€ &€* by induction on the defining schemata ¢f f:
@) f(x)=x;. Then f"u™ =u = u\@u\u).

(b). f(x) = x\x;. Then frum{\yix. v € u}. Letp(z, x,y) «> z €x\y.
Set

Fao =1, u Uu)n UuX u?)
={z,x,mlx,yv€uazex\y}.

Then f"u™ = Fg(F(u), u?) .
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‘(c). f(x)= {x;, x;}. Then f"1 = {{x, y}Ix,y €u} =U u?.
(d). () = h(g(x)). Let

Gu)y=g/'u™ , Ha)=h'"'u™ |
I

G = U Gy, H@)=HGw),
i=1

Kw)=u" u G v Hw) .

By hypothesis, G, H, K € @ . Using Lemma 1.2, let ¢(», x) be an &-
formula equivalent to the formula

Vz; . Vz,z;=giX)A .. AZ,=g,(X)AY
=Zy, n Zy)) .
It is easily seen that
fu™ = Fg((L,(K@N] n [H@) X w™ ), o™y
(©). f(y,x)=U. ¢, gz, x) Let
Gu)={z.y,x)IVrErAaze€glv,X)AXEuUAYEU}.
Then f"u™*! = Fg(G(u), u™*!), which proves Lemma 1.8.3.
It remains only to show
Lemma 1.8.4. Lvery rud function isin & .
Proof. Let f(x) be rud. Define f by f(¢3)) = f(3) and f(v) = § otherwise.
Then fis rud; hence f€ € *.
Let F(u)=f"u. Hence F€ €. Set P(x) = {{x}}. Then P &€ € since P

is gotten by iterating . Then

U FP(x) = UF" {0} = U {7} =)
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Combining Lemma 1.8 with Lemma 1.3 we get:

semma 1.9, Every functior which is rud in A C V is a composition of
Tps o Fg and FA where FA(x, )= A N x.

These basic lemmas have a number of interesting consequences:

Corollary 1.10. There is a rud function s(u) such that v C s(u) and
U, s" () is the rud closure of u.

Proof. Set s(u) = u U UL F/'u?, which proves the corollary.
Definition. S(u0) = s(u U {u}).
Then u U {u} € S(u) and {or transitive « we have: U, " (1) = rud (u).

Corollary 1.11. There is a rud function W such that if r is a well ordering
of u, then Wir, u) is an end extension of r which well orders S(u).

The proof is left to the reader.
We can make geod use of Lemma 1.9 in proving

Lemma 1.12. &30 is uniformly (M) over transitive rud closed
M= M\ A

Proof. Consider a term language containing just variables and the func-
tion symbols f; (i = 0, ..., 9). f; is interpreted by F; (where Fg(x, y) =4¢
A N x). Let Q be the set of functions each of which maps a finite set of
variables into 1M1, Then @ is rudimentary (given a reasonable arithmeti-
sation). For any term ¢, let C(¢) be the set of its component terins (in-
cluding variables). We may suppose the function C to be A;. For terms
t and »r € Q we define

y=tv] > Vglp(C(t),g. v) A gt)=y),
where

(i, g, v) <> fun(g) A dom(g) = u
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AN x € u(x is variable (x € dom(¥) A g(x)=v(xN) A

> e

(A tﬂtl cu {x *":fi(tofl) - g(X) = F;‘(g(tﬁ)- g{rl ))))'

il

i=0

Thus ¢ is rudimentary. Hence #[v] is £, . We note now that there is a
recursive function ¢ mapping each X, formula ¢(x) onto a #(x) such
that ¢ <= ¢t = 1. Hence

z
Eal olv] < olp)r] = 1.
Thus k0 is 2, .

Corollary 1.13. #;” is uniformiy T, (M) over transitive rud closed
M=UMLAY (»2 1.

§2. The hierarchy J,
Definition. J, = 0:J_,; =-ud{, ) J, = U, J, forlimit A.

Lemma 2.1.
(a). J, is transitive.
(b;f). a<p-J, C g
(. mJ)=0nnl, =w-a.

i
The proofs are straightforward.
Now define an auxiliary hierarchy S, by

Sp=0. S =S(5). S,=U S,.

<A

It is easily seen that the S, hierarchy is cumulative and that

J,= U S,=S_,-

@
v W
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Lemma 2.2.<S | v < wa isuniformlv £, (J ).

Proof.
yES, = VA= a (N,

where
() = (fis a function A dom(NE0n A F(0)=0
AN @+ D e dom() (f(v+ 1) =S{f(»))

A AX & dom(f) (LIm(A) = f(\) = U f(v).

p< A

¢ is rudimentary, hence ;. Thus it suffices to show that the existence
quantifier can be restricted to J . That is, we must show:

(*) 5, €, for 1< wa,

where f, =(S, v < 7). We prove (*) by induction on a. Fora =0 it is
trivial. For Lim{a) the induction step is trivial. Nowleta =8+ 1. Then
S5 18 £1(Jy) since (*) holds for §: hence 5,5 € J,. But S, = S"(J,) €

W

J... The conclusion follows easily.

&

Corollary 2.3.¢J Ty < a) is uniformiy (1 ).

Proof. 1t is easily shown that the map<v. ) > wrv+n (< a,n < W) is
uniformly £,(J ). But I, =8 .

Definition. We define well orderings <, of S, by

<=0, <y =WKLLS)), & = UL, forlimit X
r<A

Then <, well orders S, and <, is an end extension of <, forv < 7.

By repeating the proof of Lemma 2.2, we get
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Lemma 2.4. (<, lv < wa) is uniformly T, ().

Set <y =<y and<; =U
well orders J .

acon <) - Then <y well orders J and <,

Corollary 2.5. < AN 18 < a)and u, are uniformiv X, (,), where
U tx)= {3y <Ja x}.

2.1. The condensation leinma
Lemma 2.6. Let X<s, Joo Then V X > 1.

Proof. X satisfies extensxenahtv since X<, J_. Hence there are unique

7. M such that m : X < M, where M is 1ran§mve 7 We claim that M = R
where 8= n"a . We prove this by induction on a.

Letithold for 7 < a. Since ¢tJ, v < o) is ;. we have vE X N
J,eX. ButifJ, € X, thean\J <y dpihenee ad ) =n"(X¥nJ )=
Jﬂ(u) by the mductxon hypothesic (emce w{v‘ = ¢"'(X N v). By definition
Jo =V, ., rud(J,). Set rudy (J,) = the rud closure of X n (J, U {J, 1.

We claim X = U oy, tudy (). To see this, we note that if v € X, then
there is a rud fsuch thatin ]

VeVxely=fQi,.
Hence v = f(J,, x) for some J, € Xand x € X N ], since X«*{'};‘ J,.
X is rud closed and each rud f has a £, definition: hence nf(x) =

f(m(x)) for rud f. Hence 7" "rudy(J,) = rud(n(J,)) for v € X N «. Hence

M=7"X= U rud(,,)= U rdd))=J.,

vEX O v

Now let X<v o and m: X< Js- Since <, <; are uniformly T, ().
we have:

p< 7> m(v)< w(r) and

X<y y e axy<y a(y}.
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By this we can conclude

(<SS .
To see this, suppose m(¥) > ». Let py € X be such that m(ry) = v. Then
vy < psince m(py) < m(»). But then n(vy) > v, and vy < v, so there is
v, € X such that »; < vy, w(¥y) > py ... etc. In this way we generate a
decreasing sequance » > vy > ... > », >. Contradiction! The same proof
works for <j.

2.2. T, uniformisation

Definition. A function r uniformises a relation R iff dom(r) = dom(R)
and

AX(V y Ryx «» Rrix)x) .

Definition. Let M = (1M1, A) be amenable. M is Z,, uniformisable iff
every X, relation is uniformisable by X, (M) function.

Lemma 2.7. . A)is uniformly £, uniformisable for amenable

U, A (More i;reciselv: Given any T, formula . there isa | formula
(a.zﬂ) . . . s . (JQ,A)

W such that is @ uniformising function for ¢ whenever

U, AYis amenable.)

Proof. We first show that T, relations can be uniformised.
Let Ryx be Z;. Define r(x) by:

r(x) = the least ¥ (in <)) such that Ryx .
Then:
rErx)— Ry AAx<; vIRzx.

Thus r has a (uniformly) X, definition since the function u(x) =
{vly <; x} is uniformly Z,.
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'Now let Ryx be Zyslet
Ryx «» V z Pzyx

where P is Z,. Let p(x) uniformise the X, relation {((z, ) XM Pzyw}.
Set: r(x) = (h(v)), Then r uniformises R.

Detinition. Let M = (1M1, 4) be amenable and let w C M. By a £,
Skolem function for M, we mean a £, () function /1 such thai
dom(h) C w X M and, whenever 4 C M is X, (M) in the parameter x,
then

VyAy - Vidhi x).

Definition. Let M be as above. We call /1 a nice T, Skolem function itf
his a Z, (M) function such that dom(#) C w X M and, for some p € M.
his Z, in the parameter p and whenever 4 € M is X, in the parameters
P, x, then

Vv Ay - Vida@ x).
The following are easily established:

(1). If his a Z,, Skolem function which is £, in no parameters. ther.
 is nice (take p = Q).

(2). If his a I, Skolem function which is =, in p, then Xt is a nice
Z, Skolem function, wherel(z X)) = A, (el p). Hence the existence
of a Skolem function guarantees the existence of a nice Skolem func-
tion.

(3). If &1 is a nice £, Skolem function. then Ax € M h"(wX {x})

Proof. Set X = h" (w X {x}). LetA be ¥, in parameters ¥, ..., »,, € X.
Then y; = h(j;, x), where h is X, in p. Hence 4 is X, in p, x. Hence
VyAy->Vye X Ay.



§ 2, The fiererchy 1, 249

(4). If 1 is a nice X, Skolem tunction and X’ C M is closed under or-
dered pairs, then /"' (w X X) <g, M. .
i
Pronf Set Y = (m X X). LetdbeX, ny, ..y, €Y Theny;=
i) where 2 is X, inp. Hence A is X, inp.(x . ..., X)), Hence

Vydy = Vidh(i,(xN = Vrye VY Ay

Lemma 2.8. There is a nice £y Skolem function h = h, 4 which is
uniformiv Z,(J_,, A) for amenable (J . A).

Proof. i=(3 4y isuniformly £, . A4) by Corollary 1.13. Let (p,,» be
a ru.umve enumcration of the formulae. Bv Lemma 2.7, there isan &
which uniformly uniformises (vr.i, Xl P“w’“ gilyv. x1 .

We shall refer to /1, , as the canonical £ Skolem function for
J,. A

A similar proof yields

Lemma 2.9. If (). AYis Z,, uniformisable. then there is a T, Skolem
Sunction for J, . 4> (n 2 1.

Lemma 2.10. There is¢ X, (1) map of wa onto J .

We first prove a sublemma.
Lamma 2.10.1. There isa T,({,) maﬁ of wa onto (wa)?.
Proof. Let <* be Godel's well ordering of On? — i.e. <* is obtained by
ordering the triples {max (¥, 7), v, 7) lexicographically. Let p:On -~ On?
b2 the monotone enumeration of <*. By induction on « we get

() (pTwa) is T,(,).

Set Q = {a! p(«) =<0, a)}. Then Q is closed, unbounded in On and is

the set of « such that (pla): a < a?.

We prove the lemma by induction on a. Let it hold for f<a.
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Case 1. Q(wa). Then p I we is T; and maps wa onto (wa)’.

Case 2. a =+ 1; 71 O(wa).

Then > 0, since otherswise Q(wa). Hence there isa £ (J, Ymap/:
a < B. But there is a Z, (J;) map of wB onto (¢>8)? by the induction
hypothesis. Hence by Lemma 2.7 there isa I, (1) function g which
maps (wB)* 1 — 1 into wp. Hence g € J,. Set: fv, oY = g(Ge) Jir)),
Then fis a £, (J,,) function which maps (wa)? | — 1 into wf. Clearly
mg(f) € J . since rng(f) = rng(g). Define /1 : we - (wa)® by

lw) ifvemglH)
h(v) =
(0.0 ifnot.

Then /i has the desired properties.

Case 3. Lim(a); 77 Q(wa).

Let p(wa) = (v, 7). Then p Pais Ty {J Yand maps wa | - 1 onto
v={zlz<*w,n}el,. Lety <asuch thatv. 7 < wy. Then p Mwa
maps into (wy)z. As above, there is a g € J which maps (Y 1 -1
into wy. Set f(Ku. k) = ggp(e), gpik N for i k < wa. Then fis )
and maps (wa)? 1 — lontou=g"(g"r)? 1. Define it by

ftuy itvew
hw) = [
(0.0 1 not.

Then / has the desired propertier.

Proof of Lemma 2.10. Let /: wa <% (wa)® be I, U4, in the para-
meter p. Let p be the least p {in <;) for which such an f exists. Define
7O, 7V by: () = (2@ £ (). We can define maps £, wa -2 (wa)?
by: fo = id T wa: £y ) = GO £, @0, Then £, is T, ) inp. Let
ht be the cannonical T, Skolem function for J . Set

X=n"(wX (waX {7} .

We claim that X <y J,. For this it suffices to show that X is closed
under ordered pairs. Let ¥y, ..., v, € X;»; = h(;, v, 0)). Let (1) =
Wy 5oy o> Then {(¥y, vy, }is Z; in7. po Hence (v, .. v ) € X
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We now claim that V' =J_. To see this, let 7: X « ] 5 Then () =v
for ¥ < wa: hence 8= a. Hence #(f) = £, since £ C (wa)® X we. But
then a(p) = p, since p was the least p in which fis £, (and #(f) is T,
in 7{ »), where 7( 2 < p). Hence

mh(d, o) = A e p)) for p < wa .

Hencer P X =id X0 XY= .
It remains only to show that X is the image of a £; function defined
on wa. Let

yEhd.ox)— Vo Hzivy
where i is . Define /72 (wa)’ ~ J_ by

N YUVzeS Hiovovok p) (hence v < w)
e, r. k)=
Qif not.

Then 7" (we ) = h"'(w X (wa X {P}N = X: hence :’7-1'3 L wa 22, I,

2.3, Admissible ordinals

Although the concept of admissible ordinal will rarely appear expli-
citly in the next sections. many of the methods and results are motivated
by admissibility theory. Thus. to aid the reader’s orientation, we give a
brief account of this theory.

Definition. Lot M = M1, A) be amenable. M is admissible iff M is a
model for the following axioms:
(.0 {x.y},Uxe V.
QL AxVyex . )= AuVrAxeuVyero, y) wherepis Z;.
3.z n {rle(y)} € V where g is X,.
1t is easily seen that (2) holds when ¢ is replaced by a Z,| formula.
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Moreover, we have the A; Aussonderungs principle: If 8 C M is A
and x € M, then x N B € M. By these two principles, the image of any
x € M under any X, function which is defined on all of x is an element
of M. Using this, we see that M is closed under rudimentary functions and
that, in fact, the £, functions are closed under the schemat: for rud
functions (translating the last two schemata as

f(x) = hglx),

O, x)= U glz.x).

€y

We also have: If Rzx is 2, thensois Az € y Rzx (let Rzx «— Vw Pwix:
thenAz€y Vw Pwzx «= VuAz € y Vw € u Pwzx). The I, functions
are also closed under the following recursion principle:

Let R be well founded such that {v| yRx} € M for all x € M and the
function r(x) = {v1 yRx}is Z,. Letg(y,x. u) be a £, function. Then
there is a unique X, function f'such that f(y.x) = g(v.x, (f(z. XN zR¥).

Procf. f has the following T, definition:

U= f(r. ) — Vs(v S dom(s) A s(¥)=u A (s, X)) .
where

(s, x) — s is a function A R"'dom(s) C dom(s)

AAzedom(s) (D =gz.x.s T R{z}N.

-

v PO
w©

<1

The adequacy of this definition :s shown in the usual way. using the T,
replacement axiom.

Definition. wa is an admissible ordinal ilf J, is admissible.
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Note. An easy application of the recursion theorem shows that, if « is
admissible, then eithera = w ora = w-a.

Lemma 2.11. wa is admissible if) there is no T () map of a ¥ < we
onro an unbounded subset of wa.

Proof. (=) is trivial. i

{+). Assume that «a is not admissible. We show that some y < wa
is mapped onto an unbounded subset of wa. Fora =+ 1, this is triv-
ial, for w maps cofinally into w8+ w by the map n = w8 + 1. Let a be
a limit ordinal. Let R be a £, relation and let w € J | be such that
AxeuVyRxy.butnotAx€uVy€:zRyy forz€J . Letu € Jy,
y<a Letfe 3 such that £ oy M, i (this exists by Lemma 2.10).

Define ¢ : wy = wa by
g=pr VyeSs, Rf(oy.
Then g is £ and range of g is unbounded in wa.

Definition. Af = (M1, A) is strongly admissibie iff M is admissible and
(M, B) is amenable for all T, (M) relations B. It is easily seen that M is
strongly admissible iff it satisfies the axioms (1), (3) and

(M AuVrAxeu(Vypx) = Vyerplx.y)forZyp.

lmitating the proot of Lemma 2.11. we get

Lemma 2.12. wa is strongly admissible iff there is no (1) function
which maps some subscts of a y < wa onto an unbounded subset of
wa.

The following Lemmn {due to Kripke and Platek) is somewhat deeper
than the previous two.

Lemma 2.13. The following conditions are equivalent:
(). wa is strongly admissible.
(i) (3. A) is amenable for every A € T, ().
(iii). There is no (1) function which maps a subset of a v < wa
onto ], .
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Proof. (i) — (ii) is trivial.

(ii) ~ (iii) follows by supposing (iii) false and using a diagonal argu-
ment to produce a u C «y such thatuw € T, (J NJ,.

(iii) = (i). Suppose wa not to be strongly admlsmble. We wish to con-
struct a £; map from a subset of a v < wa onto wa. Ifa =g+ 1, this
follows by the methads of Lemma 2.10. Now let Lim(a). Let fbe Z, 1150
such that f: ¢ = woe, where v < o 1 € wy. and rang&u 1 is unbounded in
wa. Let fbe £, in the parameter p. Suppose p € J (we can insure this
by choosing vy sufficiently large). Let A=/, be the canonical £, Skolem
funciton for J,. Consider X = h'(wX 1) Then X<y I, Let
T X < Is Tnen w Ml =id ], . But Ehen 7=1id P X, since whi{i,x) ™
h(n(D), 1r(v)) h(i. x). Hence X =1,. But X is closed under f'since fis &
in p € X. Since range(f) is unbounded in wa and X is transitive. we
conclude: wo C X. Hence $=a. X =J,. By Lemma 10 thereisage 1
such that, g : w'y 2, wX 1, Set: fw) = hg(r). Then fis T and
Fru™2, X =1, . whereuC w'y.

Note. Strongly admissible « are also cailed non projectiple since there is
no T, projection of a subset of a ¥ < wa onto wa.
A fairly slight modification of the proot of Lemma 2.13 gives

Lemma 2.14. The following conditions are equivalent:
(i). wa is admissible.
(). J ., Adis amenable forall A € A (J ).
(ii). Thele is no T,J ) nan of a ¥y < wa onto wa.

Proof. (i) — (i) foliows by the A, Aussonderungs principle.

(ii) - (iii) follows as before.

(iii) = (i). Assume that wa is not admissible. We wish to construct a
1y = waly < wa). As before, we may assume Lim{a). By Lewmmz
11 letf: 7> wa be £, with range unbounded in wa. Let 7 < wy.
v<a.As before, we form X = A"(w X J,) and show: X' =] . Define a
maph: w X 7X J, = 3, as follows: Let} =h(i.x)«— V:z H{-.‘ EE SR
where H is Z,. Set

VifVz € S HZ v i XY A v E Sy,
hii,v. x) =
Oifnot.
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Then A"(w X 7 X {xP =1"(e X {x}) since range f is unbounded in wa.
Hence h"'{w X 7X J.),) =X=1J, Letgel_ , g: wy-“—rﬁ?—» wX TX Jy.
Set: f=l-g Then 7 : wy 22 J

o

Some of the resuits in § 3 can be regarded as a generalization of
Lemmas 2.13 and 2.14. (Note that Lemma 14 is also due to Kripke and
Platek).

2.4. The relationship between J and L

Set def(X) =R () N rud(X) for transitive X, As we have seen def{iX)

is the set of all ¥ ¢ X which are (X, €)-definable from parameters in X.
In its usual version, the constructible hierarchy L, is defined by

Lo=0. L, =defil,). Ly= U L, forlimit\.

v< N

ot

Wesetl=U
L

ac On Ly« It is obvious that there are many « for which
o =J,. For our purposes it will suffice to prove

Lemma 2.15. /f wa is admissible, thenJ =1, .
Proof. Fora = 1 we have: J; = L = the hereditarily finite sets. Now
leta > 1 (henee a = wa). Let M be admissible such that o & M. Since
the function S(x) is rud. (S, i v < a) is X (M) by the recursion theorem.
Hence J, = U, S, C M. Since we M. rud)=U, ., S"(x)is £, (M)
hence so is det(x) and (L, v < a). Hence L, =U, . L, C M. Since J, is
admissible, it follows immediately that L, € J . Toshow J , C L, we
must prove that L is admissible. Letx € L, and let R be (L) such
that AvexVzRyz. Wenmustfindu €L suchthat AyexVze
uRyz. Since<L,lv JZa)isZ,(J,). thensois: Rywv— (vEx AV:zE
L, Ryz). By the admissibility of J  there is 7 < « such that
AvexVv<rtRiv.HenceL,€Ll and AyexVzel Ryz

Note. If we wished, we could prove the following equations, which estab-
lish the precise level-by-level correspondence of L, and J ;:
(D L = Vey Yy, (Hence L, =, for wa =a.)

() T, (L )= B, N, Uy ) forn 2 L
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§3. The Z,, uniformisation theorem and the X, projectum
In this section we shall prove
Theorem 3.1.J, is £, uniformisable (a = 0. n 2 1),

Some of the concepts and lemmas used in proving the theorem turn
out to be of independent interest. One concept which is of central im-
portance in the theory of the fine structure is that of the £, projectum:

Definition. The T, projectum of a is the largest p < a such that {J o
is amenable for all 4 € T, (J a2 0. « 2 0). We denote the T, projec-
tum by p?.

Note that p; =« and pf 2 1 fora. n 2 1. We give some examples of
o’

(D). LetJ, be a ZF~ model. Then g = a forn < .

(2). LetJ_ be a ZF~ model. all of whose elements are definable in
the parameter a. Then all elements of J_,, are I in the parameter a.
Let 2 =h_,, be the canonical £, Skolem function for J ;. Then
h'(wX {a}) =14 Set: gt)=hi. ). Thengisa X, function which
maps a subset of w onto J_ ;. Seta = {i € dom(g)li & g(N}. Then
aC wanda € T, (J 4 Ny - ot follows that pl,; = 1.

(3). Let ], be a ZF~ model. It follows fairly easily thatJ_ is X, uni-
formisable for n < w. Hence there is a I, nice Skolem function /. Let
X=h"(wX {OP. Letw: X - 5. Then ,o% =f for k < n. However
pg = 1 by the above argument. since ' =ahr! is a nice X, Skclem
function for J; and &' ""w X {0} =1,

Let us note that wp} is always strongly admissible by Lemma 2.13.
The reason for introducing the T, projectun is this: J may be “soft”
with respect to predicates in X, (J,). That is, we may find X, subsets
of elements of J, which are not themselves elements of J,, oreven X,
functions which project a subset of an element onto the whole of J .
Thus, we try to isolate the part of J, which remains “hard” with respect
to Z,J,)- Jp,, is one explication of this notion. There are at least two

o

L -

others which seem reasonable, however: If we set: y? = the least y < &
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such that there is a new £, (J ) subset of wy (i.e. the leas: v < « such
that R (wy) N £, (J ) ¢ J_ ) 8% = the least § < a such that there isa
¥, (1,) tunction which maps a subset of w4 onto ! . Then either of
J « 4, n might teasibly be comidmd the “hard core™ of J . It is ap-
pm:nt that p" < y" < §" forn = 1. (To see 4" < §', usc the diagonal
argunent of v cample (2)). 1t turns out that. in fact, cquality holds.
This is the content of e following theorem.

Theorem 3.2. There is a £,(J ) function which maps a subset of
w-plonto), m2 1)

We shall prove Theorems 3.1 and 3.2 simultaneously (it seems, in
faci, hardiv possible to prove one without the other). However, if one
assumes T uniformisability. one can give a direct prootf of y" = §".

Lemma 3.1, Lern 2 1. Ler I be T, uniformisable. Let vy be the least
v < o such that § (wy) N w,,(J Y& X, Then rhere isa T, ) function
which maps a subset of wyonto 1. :

Proof. Since I is T, uniformisable, there is a £, Skolem function. Let
p be the least p (in <; ) such that some £,, Skolem functionis T, in
the parameter p. Let h be a £, Skolem function which is X, in p. Let
a C wybeanew I subset of wY- Letg = the least g (in< 1, ) such that
a is ¥, in the parameter q. Setlx(z, XY= e, pyg)). Then' h is a nice
X, Skolem function. Set X' = h”(wx ] ,)- Since there isa £, (J,) map
wy T WX J,. then hegisa 4.,”(] ) function whach maps a sub-

t of wvy onto X. Tims‘ it sufﬂces to prove X =1

Clearly, X< J,. Letm: X <—-—*J Thenw?l deT,smceJ
is transitive and j C X.Butthena=n"ais I, (J ) in n(q), since @ is
Z,0)ing. Hem.e "= q, since otherwise a € J‘M Ci,. Thu uis
I,0.)in 'rr(q)‘ but g is the least such and 7(q) <; ¢; hence ¢ = n(g).
W =xhn ! isa X, Skolem function for J, whichis T, in m(p). But p
is 1 the !east such and m(P < Sy P hence p = n(p) and W= h Hence
whin~t =T, since 7t is z,4, )in ¢, ¢). But then wh(i,x) = R, x) for
i<wx€l . Hencer tX=idMXand X =] .°

We now introduce a more general notion of X, projectum by
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Definition. Let (J,, A) be amenable. By the £, projectam of J,. 4> we
mean the largest p < a such that J,,B)is amenable forall 8C J, such
thatBe Z,(J,,A) (n = 0). We denote this projectum by p¥f

Note. In our proofs we shall actually only make use of péﬁ, .
Note. As before, wp? ; is strongly admissible for n 2 1.

Lemma 3.2. Let (J , A) be amenable. Let p = polm-q. ifBc J‘D is
2,0, A) thenZy(J,,B)C Z,(J,, A)

Proof. We consider two cases.
Case 1. There isa Z; (J, A) map of some vy < wp cotinally into wu.
Let g be the map. Let Bx «— V 2z Brx. where B is 3 SoalJ,. A) Set:

B'w,x)—>Vz€eS,,, Bzx
Then B' is A; (J,,, A) and B is rudimentary in B' and the parameter v.
since Bx <> Vv <y B'(w.x). Hence 2,(J,,. B) C ,(Jp, B') and it suf-
fices to show that £ (Jp, BHcl, (Ja,A) where Bis 4,(J,, A).

For this it is enough to show that Z,(J,. BYC T,(J,, A). Butif R is
Zy(,, B), then R is rudimentary in B (and some parameter p € J o )
Hence by § 1, Lemma 3. it is enough to show that the function b{u) =
Bnuis Z,(J,,A). But this fur.ction is in fact I, (J ,, A), since

y=b)«—> Ax(XEv«—=XEuA Bx).

L F]

I,
Case 2. Case 1 fails.
By the method of Lemma 2.11, we have

(MIfHisZy(J,,A)andu €] . then

AxceuVyHxy«—=VryAxeuVryenrfivy,
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By (*) it follows that, if Rzx is £, (J,. A), then so is R vx. where
Ryx—(ve], AAzepRx).

We want to show that T ,(Jp\ B)C T,(,. A). As before, it suffices to
show that D(J B)C ¥y, . A). Precisely as before, this reduces to
showing that the function b(u) =B N uis £,(),. 4). But this function
is in fact &, A 1, since

yE=b)«>Axey(x€uAB)YAAXEUBx > xE ).
o, , .

a~

)
I 1,
As an easy corollary of Lemma 3.2, we get

Corollary 3.3. Let (I, A be amenable. p = pl ;. Suppose that there is
a Z,(J,. A) function which maps a subset of wp onto 1. Then there is
aBe XU, A)ysuch that B c ), and

2,43,.=RJ )N Z, U, 4)
forn 21,

Proof. Let /' 1 -2%% J_ be £,(J,, A) in the parameter p, where
u C wp. Let(g; ,} be a recursive enumeration of the formulae. Set

B= {U,oli<waxel, a t=(“}am w;lx, pl}

z,3,.BC E,,,d,,4) follows by Lemma 3.2. To see the opposite
direction, we note thatevery x € ] is ,(J, 4) definable in p and
some ¥ < wp. Hence if Rx is £, (J,, A), then the relation {(x)Ix €

J o A Rx} is rudimentary in B and some parameter v < wp. Now let
Rx be Z,,,(J,, A) (n 2 1). Suppose, for the sake of argument, that n
is even (for # odd the proof is entirely similar). We then have

Rx PR V}:l A}x’z s A}",,Pyx >
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where P is £, (J,, A). Let P be defined by

~

Prx < (3, x € Jp A Pi(z)x) .

Then P is rudimentary in B and some » < wp. Hence P is AU, B).
Similarly, D = dom(f)is &, J,. B). Butifx € ], then

po

Rx<—V:zy;€DAz,€D .. Vz, .€DA:, €D Pax .

S—

,d,.8)

The following concept will be useful in proving Theorems 3.1 and 3.2
and will also play a large role in §4.

Definition. By a I, master code for J,, we meanaset 4 € X (J,) such
e N - A1 5 - 3
that. settingp = pg. A CJ, and

i (‘;p A= ig(jp) N ZpamUy)
form2 1, a2 0.

The following lemma es*ablishes Theorem 3.1 and 3.2, among other
things.

Lemma 3.4. Let a. n 2 0. Let p = pl. Then
(). 1, is X, uniformisable.
(i1). Thereisa Z,(1) function which maps a subset of wp onto wa.
(). racl, isL,J )\ then Tyd, DI, U

(iv). « has a £, master code.

(Theorem 2 follows from (ii) since by Lemma 2.10 there isa T, (J )
map of wa onto J,.)

Proof. Suppose not. Let o be the least a tor which the theorem fails.
Then a > 0. Let # be the least n for which the theorem fails at «. Then
7> 0, since (ii), (iii) and (iv) are trivial for » = 0 and (i) holds by Lem-
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ma 7. Letn=m+ 1. Let o= o} andlet A be a £, master code. We
first prove (ii). Let 8 be the least § € a such that some ¥, 3{,) function
S maps a subset of wd onto J . We claim that

(h.8= p" .

If § < pf, there would be, by the usual diagonal argument, a £, (J)

setBC ) such that (Jp,,. B) is not amenable. So suppose § > p. Then
o

8 > 1, since « > 0. It follows that 6 is a limit ordinal, sinceif § =+ + 1,
there is a £, map g of wy onto wd: but /- g would then be a Z,,(J )
map of a subset of wy onto J . Since 5§ > p]} thereisa T, (J ) set
B ¢ J, such that (J5. B> is not amenable. Hence there is some 7 < §
such that BN € J . But then (BN J )€ J \J; . since 7 < 8 and by
Lemma 3.1, 8 is the least ordinal such that £, (J Yy BUHE T,

But this means that B N ], isJ; definable for some § such that
8 <8< a. Let § be the "east such and let r be the least r such that
B, is £,0,) Then pf <7< 8 < < a. Hence. by the induction
hvpo(hcsls. therc is & T,{J;) function g which maps a subset of wr onto
J;. But then f*gisa £, dJ ) function which maps a subset of wr onto
J,- Contradiction!

We now prove (iii) and (iv):

)3 B dpitBci,  BeX, ().

Since p=p2 and A isa X, master code and B € P Js)n Z,d).
we have B e T (J . A
Moreover, 8 = p} , . This follows ‘rom the fact that § = p} < p and by
(iv). for £ < p. B < J,, we have

Be X d,. )it Be X, J)).
By Lemma 3.2 it follows that
Xl("é N B} C 53(39. ;’4 ) C EN"I(JQ‘) .
(3). J, has a master code.
Smuefxs a £, (J,) map of subset of w8 onto J_ then f' = f l‘ 1y
isaX;(J,.4) map of subset of wé ontoJ . Moreover &= p E Hence

the wndmom of Corollary 3.3 are mimled and we can Londude that
thereisa Z,(J, . A)set BC J; such that (3. 8)=RUJ;HINEZ,,; (J,.4)
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forr2 1. ButthenB€ Z,(J,)and Z,(J5,B)=R{J; )N Z,,,J,) for
r2 1. Hence B is a Z, master code.

We now prove (i). Let B be a X, master code. (J;. B) is £, unifor-
misable by Lemma 2.7. We use this to prove the X ,,, uniformisability
of J,. Let Ryx be Z,,,(J,). Set

Ryx <> (r.x € J;, A RF(VS()) .

Then R is £, (J; , B). Let ¥ be a £, uniformisacion of R. Since fis T,,
and J, is Z, uniformisable, there is a £,,(J,) function f which unifor-
mises 1. Then r = frf uniformises R and is £,,,; (3,).

Our earlicr proof of the X, uniformisation iemma was based on what
might be called the “weak projectum’ rather than the projectum and
was therefore more complicated. However, the earlier proof also vielded
more information, which we shall now prove separately.

Definition. The weak Z, projectum of « is the greatest n < o such that
(J,, A} is amenable for every A, (J ) setd CJ . (n, @ 2 0). We denote
the weak X, projectum by 5.

Note. As an example of a case in which the weak projectum does not

equal the projectum, consiuer the first admissible « > w. Then ni =@
I =

Py = w.

We shall prove
Theorem 3.3. There is a £,(J,) function which maps v onto 3 _(n21).
We begin by proving the following analogue of Lemina 3.1.

Lemma 3.5. Let n 2 1. Let y be the least v < a such that $(J )N
A,03,) ¢ 1,. Then there is a Z,(1,) function which meps wy onto J .

Proof. Let n=m + 1. Clearly p" < v < p™ . Since a I, function maps
a subset of wp™ onto J, then a £, function maps wp™ onto J,. Hence
it suffices to show that a £, functions maps oy onto wp™ . We first show
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(*). There is a £,,(J ) function g which maps wvy onto an unbounded
subset of wp™ .

Let 4 be a Z,, master code fora. Let & C J, such that

be A, U N),. Thenbe€ 4, (Jn”‘ ,A). Since u Z, (J,) function maps
wy onto J, , we may assume b C wy. Let b be defined by

vEb—VyByv,
ve@hb—VyByv,
where By, B, are EG(Jp,,, .A). Then Av <~y Vy(Byyv v B, yv), however,
there is no 7 < wp™ such that Av < yVy e S (Byyv v By yp), since
otherwise h € ] n by the rudimentary closure of <me . A). Define g by
g =urVy &S (Byyw vB 3.
Then g has the desired properties. This proves (¥).
Since p" < v, there is a £,/ (J,) function f which maps a subset of
wYy onto wp™ . But then fis T, (me . 4). Let f be defined by
T=f(@) > V) Fyry,
where F is ED(me . A). Define a map /2 (wy)? = wp™ by

k if VyeS§

g(,))F, VKT ,

fw.n=:
(0 if not .

Thenfis £, ,,.A4) and / maps (wy)? onto wp™ . Let i be a Z, (JY)
map of wy onfo (wy)?. Thenf =fhisa ;) map of wy onto wy™.

Theorem 3.3 now follows by
Lemma 3.6. Let vy be as in Lemma 3.5. Then v =17,

Proof. Suppose not. Then there isan 4 € A, (J, ) such that (J,, 4) is not
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amenable. Hence v > 1. Buty # § + |, since otherwise there isa £,(J,)
map of wp onto w7y, hence by Lemma 3.5 there would be a £,(J,) map
of wp onto J,. Hence v is a limit ordinal. But then there issome 7 < ¥y
such thatA N J, & J,,. However, A nj €] ,sincer<vy. ThenA N,
is J; definable for some § such that y < § < a. By Theorem 3.2 there is
aJ; definable map f: wr %% J, . Hence f€ J_ . But, since § > v,
Lemma 3.5 would give usa X, (J ) map of wr onto J,. Contradiction!

Note. Theorems 3.2 and 3.3 may be viewed as generalisations of Lemmas
2.13 and 2.14, which are due to Kripke and Platek. They may also be
regarded as sharper versions of a still earlier theorem of Putnam, to wit:

If B(p)N L,y € L., then L ,, contains a well ordering of p of type
a(p= w).

Putnam proved the theorem for the case p = w. but his proof carries
over mutatis mutandis.

§4. Standard codes

In §3, we proved that each « has a £, master code:ie.asetAZ] ,
pﬁ

such that4 € Z,(J )and $,J ,,. )= RJ )N X, 0 ) forh 2 1.
In this section we pick canonical master codes A4}, which we call stan-
dard codes. We show that the standard codes, in a reasonable sense, are
preserved under condensation arguments. This will enable us to do things
in a more uniform way than if we had only the results of §3 at cur dis-
posal. For instance the X, uniformisation lemma proved in § 3 suffers
from a serious deficiency vis-a-vis the X, uniformisation iemma proved
in §2 (Lemma 2.7): J is not uniformly X, uniformisable forn> 1.
However, the results of this section will enable us, in many contexts, to
replace I, uniformisation over J, by £, uniformisation over (Jﬁ,, LAD
&

— and we know that amenable (J,, 4) are £, uniformisable in a uniform

way.

Definition. We define standard codes Aj and standard parameters p§ as
follows (n,a = 0) :
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M.u=0:4%=pl =0.
Q.n=m+1:p) =theleastpe me {(in< ,pm) such that every

x€l o is X, (me . A7) definable from parametersin {p}uJ ,;
I

Al= {U i< wAxE L o lx.ptl}

(an A’”)

where ¢;(i < w) is a recursive enumeration of the formulae.

It is easily established that A} isa X, master code for J .
We now state our main theorem.

Theorem 4.1. Letn. m2 0.a2 . Let UB .A) be amenable and let

o ey AN
P ~m pa
Then
(a). There is a unique @ a = psuch that p= pi’. and 4 = A"
(b). There is a unique 7oT degined on J_ such that for all i< n,

il i
{ o
?2“_!‘& L

and

@13 A, A~ ;A
ol [ @ Zmrn-7)
[+ & Gl

Definition. If a, P are as in (a), (b), we call J N 3, the canonical ex-
tension of (3 oHLeQ ns A", Before starnrg the proof of our theo-
rem. we note some facts about the relation (J_ LA D zg Yoo 4

(1). Let (X, > s ¢ (X, A), where X. X are transitive and (X, A) is
rud closed. Let fbe rud in A and let f be rud in A by the same rud defi-
nition. Then #fix) = f(n(x)).

Proof. Clearly, n(x 0 4) = n(x) N A. Moreover, if g is any rud function,
then mg(x} = g(m(x)), since the relation y = gix) is . The conclusion
follows by Lemma 1.3.
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.11 5 zg Jos thenn(S,) =S _, forv < wa.
Proof. Letv < wa. Theny =S, « Vf(y = f(») A (M, where ¢ is a
certain 2, formula (see Lemma 2.2). If ¥ = S, then there is f & JE such
that

I Ey=5e)a e,
Eut the above formula is £, so

Jo E@(3) = (@(MNE@) A o(a(f) .
so there is f € J , such that

Jo E7()=f(a(0) A o() . ie. m(S,) = Swey -

3). If(J& Ay I g Yar4) cofinally (i.e. sup 7" wa = wa). then
D N N )
Proof. Let V y (¥, m{x)) holds in Gy where ¢ s Zy. Then for some
v < wa,

Vye S,,M e(r, m{ix)

holds in <], 4). But this statement is Ty hence Vy € S, ¢(». x) holds
in(J_, A).
Q

. If d., A) is amenable and 1 s I, cofinally, then there is a
unique 4 C J, such that <J_. 4> * xg (Far A% (g 4) is then amen-
able.

Proof. Setd =U,. 5z 7(4 N S,). Then A is the unique A € J, such
thatm(A N S,)=A NS, forv < wa. To see that (J_, 4) is amenable,
letx€J,,xC S, P<wa). Thenxnd=xndns,, €l . By the
same argument, if v € J, then m(x N A) = n(x) N 4. Now let @ be 2,

and let & - elx]. Letu e J;? be transitive such that x € u. Then
S, A ¥

[ - Al
T o vlx1, hence B ) 4z L7(X)] where m(u) is transitive
R u

and m(x) € m(u)). Hence F, 3 elr(x)].
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Betore beginning the proof of our theorem, we generalise the defini-
tions of p%, A" p?:

Definition. Let ¢J g B> be amenable. Suppose that some p < § satisfies
the conditions:

(2). There isa X, (J,;. B) map of a subset of J | onto J;.

M. ifd e ‘E(J Y0 E 5, B), then (J LAY 1\ amenable

Thenpis uniquely determined and we set pé.a =p. Pé.s = the least
p (in <, ) such that every x € Jﬁ is T, definable in parameters from

3, u{p}.
13.5 ={i,xNi<wAaxe I, A F:‘tﬁ‘8> e;[x.pl} .
Thus pj. pg. A} are definable by

pP=p. pP=4a"=9.

n+l oo 13 R |
= P “?’pn’Au ,

LY p Pt

(Rl RS |
A A oM

A

We prove the theorem by induction on n. For n = Q it is trivial. Now
let > 0 and suppose it to hold forn — 1. Set (J;. BY =(J o A,

Setp = pf;“"l . Clearly it is enough to prove
(i). There is a unique (J .B)such that p = pég and 4 = Aég

(ii). There is a unique 7 O 7 such that 7( p ) =p and
S RN}

We begin by pmvmg the exastence part of (i) and (ii). Set p = o7,
A=A Definep < p by wp =SUP, 5 M(V). Setd =4 N J . Then

10 FO” D RLESIN A A) cofinally. Set X = the set of all x € Jg whxch are
O 0 »
Z; g, B) in parameters from rng(m) U {p}.

Lemma4.1. X N J; = mg(r).
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Proof. Let y € X n J... Then for some x € rng(r) and some I, formula
@;, ¥ is the vnique y Such that Fy_g @il(r.x) pl. Hence p is the uni-
que y € J. such that ;f(i, (v, x)}.%ut g A €, sy A): hence

y € mg(n. ’ b

Now let J_ be the transitivisation of X and set 7 : (J_, B) <

X, X0 B)."ThenJ_, B £ | (3. B). Since (71 1.3 : 1 =
-~ i [ ]
Xn J,‘; = mg(n), we have ¢ ”; = 1.

Lemma4.2.<J_.B) -~ . (1. B.
8 *mel B
Proof. For m = 0 the assertion is proven. Assume 7 > 0. We must show:

(*).Ifyel;is Z,,,,J;, B) in parameters from mg(r) U {p}. then
relX.
Let y be defined by the condition

(D "':uﬁ,m ey, x, p),

where p is Z,, ;. Let /i be the canonical Skolem function for <J,. 8}
and set A<, xN = hi (x.p)). Taen "', = J; and I "mg(m) = X.
Hence it suffices to show that the condition

) P%,B,M(z).x,p)

is satisfied by somez € XN J . Letp=Vz Az, ..V, ¥, wherey
is £, if m is even and I, if m is odd. Then we must show that the con-
dition

XK=z, Fay8> Y1), ). x. pl
e p )

m ta
[ o 4

is satisfied by some z € J, N X. But (3) is Slervly T, (J. 4) in the
parameters x. Sincex € X N J, < . J, . 4>, we conclude that (3) is
satisfied by somez€ X n 1.

Obviously p € X. Setp =71 {p).
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Lemma 4.3. 4 = {(i, '\'Mi(,w AXE 15 A i--‘\‘;;j) elx.pl} .

Proof. We have

M AU, x) e AU XN

and

(] B Pl Pl By gm0 pl
3

Since the right-hand sides ot (1) and (2) are equivalent, so are the lefi.
} PR
Lemma 4.4.p Pig:

Proof. ( ). By the construction of J_,everyx € ) isZ,()_, B)in
parameters from J_ U {p}. Hence if "7 is the canonical =, Skolem
function for ¢ 15 . “B>. we have

I, =F"(wx I_ X {p}).
8 )

() LetCe RAHN £, , B). We must show that<J_, O is
amenable. Every x éJJ?. is £,(J_.B)in parameters from 12y {r}.
hense so is C. By Lemma 4.3 it ‘fiollows that Cis rud in 4. “Hence
(J; , ) is amenable.

LemmadS5.p=pl 4=4!

! .
8B ¥}

Proof. By Lemma 4.3 it suffices to show p = pé 5 - Now p satisfies the
condition:

(*YEachx €. is 2, ;. B) in parameters fror Jov {r}.

We must show that p is the least such in <;. Suppose not. Let p' <; p
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satisfy (*). Then p =h(i, (x, p") for some xXe€ .L But then

p = h(i, (m(x), rr(p »), where n(x) € J, and ﬂ(p )< 1 P Buz then every
x € J; would be Z,(J,, B) in parameters fromJ, v {=(®"} and we
w ould have p >; 7’ ) 2y p} - Contradiction!

This establishes the existence part of (i) and (ii). It remains only to
prove uniqueness.

Lemma 4.6. There is at most one (J . B) such that p = pé. 5 and
A=A4;, )

Proof. Let“ﬁ;’ B, have the property (i = 0. 1). Setp; = '”3%‘3:" Then

(1) “:Uﬁﬂ‘Bﬂ) \P[-’onl - l=:(_)]13!_15'1) \9[.\'\!71]

for £, formulae ¢ and x € I..., since

F‘-‘(‘};i,gi, ¢ [x), o] — AL X0
Let h; be the canonical Skolem tunct:on for J;.. B;) and set
T, ((],A)) = h(j,<x, p;). Then ' = h ".L By (i} we have
) Tig (x) € B (1) < ?s, aWem (.
B b0) = T} > By =Ty ()
Bohg(x) <> BRI, (x).
forx.y € J.. Thus we may define an isomorphism o :(J, P By <>
(J‘3 By by 0’10(\) ”1 (x). But ¢ is an €-isomocphism; hence

1dI‘J

Lemma 4.7. There is at most one T O n such that <L B) BN € (Jﬁ. B
and T(p)=p.
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Proof. Let 3,\ have the property (i = 0, 1). Let & be the canonical £,
Skolem function “or (JF , B). Then

Tl X, ) =1 HG. X P) =R, 7(x), p)

forx € J. . Hencemy =m,.

§5. Combinatoriai principles in L

In this section we use the results of §4 to derive some combinatoriai
principles from the assumption V = L. These principles enables us to
carry out inductions which would otherwise break down. In §6 and 7
we shall make use of them to settle some classical problems of set theo-
ry and model theory on the assumption V= L.

Definition. Let a be a limit ordinal. 4 C « is Mahlo (stationary) in a iff
A4 N C# @ forevery C C a which is closed and unbounded in a.

Theorem 5.1. Assume V = L. Then there is a class E of limit ordinals
and a sequence C, defined on singular limit ordinals \ such that

() E N kisMahlo in k for all regular x > w;

(i) C, is closed, unbounded in X;

(i) if vy < Nis a limit poini of C,, then vy is singular, v € E and
C’_f =yn G,

(Hence, in particular, there is a class £ such that £ N x is Mahlo in all
regular x Fut no singular k.)
We begin the proof of Theorem 3.1 by defining the set £.

Definition. F is the set of limit ordinals « such that for some > «
() 1;isaZF~ model,
(ii) « is the largest cardinal in J;,
{iii) « is regular in JS .
(iv) for some p € Jg, J; is the smallest X < J; such that p € X and
o N X is transitive.
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Note: ZF~ = ZF without the power set axiom.
Lemma S.1. If x is regular, then E N k is Mahlo in k.

Proof. Let C C « be closed and unbounded in k. We claim that
CnE+#Q. Let U the sma!lest U< .! «suchthatCe Vande n Uis
transitive. Let #~!: U/ < J;. Then ), -~ ey Jo.Leta=n U ltis
clear thatw MY =id 1], smce I, c: U. Moreover ifYeUand X€),.
then #-1(X) = Xn J,.sinceJ, = vn I,.. In particular. 7~ (k) = a:
a~1(C) = C N a. Since E N k is I .~definable, we have

EnkelU and 7Y Enk)=FNna.

By the definition of U, J; is the smallest {7 <J; such that Cna € U/
and a N U’ is transitive. Henw e E. ButCn az is unbounded in a.
since 7{C N a) = C is unbounded in k. Hence a € (., since Cis closed.

We now define the sequence C,_ . We consider several cases, all but one
of which are trivial.

Case 1. a < w, . Let C, be any unbounded subset of order type w.
Let s : On? « On be Godel's pairing function and let © = {vl(s M7) :
2 > p}.

Case 2a. @ > ; and s"a? ¢ «. Let vy be the maximal ¥ < a such that
s"y? C 4. Then E 0 (a\y) = A, since € F > s"'8% € f. Set C, =a\y.

Case 2b.a > w; ands"a’ & ¢ ~and Q N ais bounded in a. Let y be
the maximal y < « such that s”"y? € . Then there is a Z,d,) map fof
w onto an unbounded subset of o (E.g. define f by f(O) =+, f(n+ 1) =
sup s"'f(n)?. Since s is uniformly definable in terms of < 3. fis easily
seen to be T, (J,) in the parameter y.) Set C, = mg(/N.

Note. If cases (1) and (2) fail. then wa = a.
Befcre considering the next case, we have the definitions:

Definition. « is regular in § iff § 2 « and thereisno T | {J ) mapping of
a v < a cofinally into « (i.e. onto an unbouaded subset of a.)
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Definition. a is ¥, regular in §iff 3 2 « and there isno £, , (1) function
mapping a subset of some v < a ccfinally into a.

We set (for singular &) 8 = B(a) = uB = « such that « is not regular in
B n=n{a)=nun 2 1 such that a is not L, regular in fla).

Case 3. n = 1 and j 15 a successor ordinal, Then « is w-cofinal and we
again take C_ as being of order type . We show that « is w-cofinal as
follows:

Letf:u~abeX (J;)wherey<a,uCyand f"'v is unbounded in
«. Let

T=fWy+—= V2 270,
where [7is £,,. Let § = § + 1. Define f} (i< w)by
T=fi{{(N—VzeSs$ Fzrv .

wh+i

Then f; is J; definable, since f; € J; and f; € J; . Set o; = sup f;""y. Then
o; < @, since « is regular in §, but SUp a; = sup "y =a.

Before proceeding to the last case, we note that each o € £ falls
under case 3. This follows from

Lemma 5.2. If « € E and B is as in the definition of E. Then a Is not
regularin §+ 1

Proof. Let p € J; be such that J; is the smallest X < J; such thatpe S
and & N X is transitive. Let i be tise canonical £, Skolem function for
Jga - Let

y=h(i,x)«> Vz Hzyix where His Z,.

Define k; (j < w) by

PEREX) > P XES 4 A VZES 4 Heyix .
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Then &; € Jg, 5 moreover <h,~"f <wisZJgn)- Define a,. X; (i< w) by
ey =w, X;=h"(wX (J“i X {pM.
1 79} = O’xi (QX =df Sup(a N JY)) .

By induction on i, we get «; < a, using the facts: h; N J s 1s 1; definable;
a is regular in J;; there is a function in J; which maps «; onto . J"‘i'
Clearly, {¢;l i < w? is Z{ (J44 ). Thus it suffices to show thata =«
where a = sup;«;

Now @ = ay, where X = U, X,;. But X = &""(w X (J X {p})); hence
X<y Jpu-SetY=XNnJ;,. ThenY <J,.pe€ Yanda=an Y is tran-
sitive. Hence Y=1I. Hence a=a.

We turn now to the most difficult case.

Case 4. Cases 13 {ail. Let{i Bla), # = n{a). Set p = pla) = p5 -1
A=A)=A7"".
Then pj < @ < p, since o is T, | regular but not ¥, regular in §.
Set

=p(a) = the least p (in < 3 } such that every x €],
Z,d,,4)in parameters from a U {r}.

(Note that p <, pf but not necessarily p§ < p.)
Let h be the canonical T, Skolem function for (J oo ). Set

i, x) = hi, (x, pY)
Then 7 is a nice % Skolem function for <Jp ,AYand 73”(«: X a)= Jp.
Lemma 5.3. There isa v < a such that e 0 " (w X v) is unbounded in a.
Proof. Thereisar<aanda Z;(J,, 4) function f such that f"'r is un-
bounded in «. We may assume that r < pj (since thereisa 2, (J o)

function mappmg a subset of pi, onto a). Let jbe 2 in the parameter
q. Then g = h(tQ, vy ) for some iy < w, ¥ < a. Lets: On <> On? be
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Godels pair enumeration. Let
Q=) v},
Since cases 1 and 2 fail, we have @ > w; and Q N « is unbounded in &
Pick vE @ such that y5 < I < 7. ¥ < a. It suffices to show that
F'7C R"(wX 7). Let X =" (w X ). Since g € X and 7 C X, it suffices
to show X<\«1 (J,, A} Since h"(w X X) C X, it suffices to show that
Xis closed under ordered pairs. This follows by y€ 0 . Letxy,x; € X,
h(},,n,)(: 0, 1ij;<ew,m <y Lets, =(ng,m}- Since sl pis
E (J,, A) in no parameters, ng, 7y are I, m nand x,, x; are ¥, inp,
Hence {xg,x)= h(] n) for some j < 0.
Now let # have the (uniform) definition
y=h(i,x)« Vz Hzyix ,
where H is Z,. For 7 < p, set

v= h?(i’ X) <> v, x € J‘r AVzeE JT HZ}’ix .

Then A, is the canonical £; Skolem function for amenable<J_. 4 N J ).
We define amap g : 4 - o« where 4 C o by

R, v) if T, v < o,
glwr +=
undefined otherwise .
Then g is SI(JP,A) inp,a(ifa<p)and
r=gvy—Vz Gz, 7,0,
where

Gz, ) —rv<anrT<waA Hz rv/w), {Iv/wl,p)) .

G isuniformly Z,(J,,.A N J,) in p and a (if a < p) for 7 < p such that
J,,An)pisamenableandpel,, a<r (if e < p).
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Note that " wr =a n ;5"(w X 7) for 7 < p. Set y = the least v such
that sup gy =a. Then ¢y < & by Lemma 5.3. Obviously v is a limit
ordinal. Since sup g"7 > 1 for y < 7 < a, there is a maximal x < & such
that sup g"'x < k. But then x < y. This k is fixed for the rest of the
proof. We have k < vy < « and

*) supg'r>1r for k<1< @ .

Lemma 5.4. 1fX<31 (T, A\ k€ X, p € Xand a0 X is transitive. then
anNX=a.

Proof. Since & N X is transitive we have ay SgesuplanN X)=an X,
gC alis Z1U,,4).50g"ay Can Xandsupg”ay < ay. Suppose
@N X+ a Thena N X Z « and since a N X is transitive, ay < a.
KEan X;s0k<ay.Then by (*), sup g"ay > ay. Contradiction!

We turn now to the definition of €. We shall first define three func-
tions &, /, m from a limit ordinal # < Y into v. a, p. respectively. such

that

sup k(»)=+vy. sup l¥)=a, sup m=p.
v 8 IR PR

& will be monotone and /. i wil. be normal. & maps into dom(g) in such
a way that gk is monotone and g*(») > k(»). I will be defined in such a
way that l(») < gk(v) < I(v + 1). C, will then be defined as a closed co-
final subset of {i(p)Iv < 9} .

We define k, /, m by the following simultaneous recursion:

(a). k(v) = the l2ast € dom(g)\« such that
D r>k(fori< v,
(i) g(r)> v,
(i) m(v) € 71"'(0.3 X g(v)) .

Using (*) it is easily seen that g(k(v)) > k(»).

(0). m(0) =max(k + lL,urpe J.)sm(@ + 1) = the least n < p such that
1) m(v), k(v), gk < 71,
(i) Vz e 1, Gz, gk(v}, k(») .
(iii) m() € h,(w X gk() X {p}) .
(v)y4n me € Jn .

.
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m{A)=sup m{r) if sup m(r) < p tor limit A.
v A v A

©.lp)=ay ifay <a.where
¥ p
Xy =ty "wX I, X {ph) .

n = max{k + 1, sup gk{1)) .
<y

Thus &, /, m are all defined on the ordinal 8 < v, where 8 = dum(k) N
dom{l) n dom(m), It is clear that () < gk(WY < (¥ + D) and th. t m() €
X, for e < w. Itis also easily seen that [ is normal. To see that 8 is a limit
ordinal, we must show that /(v + 1) is defined, where I(») is. But

I(U + )= sup (a N ]1,,1(y+1) ”(OJ X Jn(vﬂ) X {p}) .

where n(v + 1) = g(k(). h,4yy € 1, and there is an f € J, which maps
n{r + 1) onto w X e X {p}. Hence thereisan f & J, mapping

n(r + 1) unboundedly into I{(r + 1). But n(v + 1) < a and « is regular
inallr< g. Hence I{y + 1) < a.

Lemma §.5.
(). sup k() =1,
r< 8
(i), sup mp) = p.
v 8
(iid. sup () = a.
<8

Proof. 1t suffices to prove (iii). (i) theu follows since sup g''r = «, where
T =sup, ., k(»), hence 7 = v. (ii) follows since otherwise, letting
T =SUp, . ¢ M(¥), where 7 < p.a Nk, "(w X 1) is unbounded in o; but
h; € J, and there is an f€ J, mapping v onto J_; hence a would fail to
be regular in some n < p.

Proof of (iii): Suppose not. Let @ =sup, ., {¥) < «. Then
sup, < o (¥} < p. since otherwise a = U ey =(a N U,X,), and letting
X=U,X,6 we have

X=h"(wX U, X (P =hwX J.).
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Then by Lemma 5.4, we have a = @, sincea=a N X, k< &, p € X and
X<y, (J,,A4). Contradiction!

But then sup, ., k() 2 v since otherwise &(8), m(8), I{6) would be
defined. Let 7 = the least T € dom(g)\« such that g(7) > a. Then there is
a least » < 0 such that &(») > 7. But &(v) = the least 7’ € dom{g)\k such
that
(**) 7" > k(1) forc< v and g(7v') > i(v), and m(») € 1" (w X g(t")).

But then 7 2 k(v), since 7 satisfies (¥*). Contiadiction!

As a corollary of the proof of Lemma 5.5 we obtain

Lemma 5.6. et A < @ be G limit ordinal. Let T =sup, ., k(v). Then
7> kand I(\) = sup g"'1 (hence I[N > 72 Q).

Proof, Suppose not, Let n << r such that g{n) > (7). Let » be the least
v < 7 such that k(») > 7. As before we get k(») < 7. Contradiction!

Forv < 6 let g, be related tc Ay, ,, as g is related to A i.e.
T=g (0 r1<v)AaV:ze Jm{,,)G(z, T. 1) .

Then g, is uniformly £, (s 4 N dpngpy) inp, 1) GE iw) < m@)).
Let k, be defined from g, as k is defined from g; i.e.

k, =max {iKlk SHv) A supglk <k}
Preparatory to defining C,, we prove
Lemma 5.7. k, = k for sufficiently large v.
Proof. v<7-g,C g, S U, 45, =g Thensupg,"v<supg'x <«
Sox < k. Similarly < 7> k <k, S k. Let k < § < a. Then
U, osupg,”$ =sup g§ > & So there is v, < @ such that forallv > v,

sup g, ¢ > §;i.e. K, < & Since there is no infinite desending sequence of
ordinals, it follows that k, = k for all » > some v;.
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We are now ready to define €. We define a normal function ¢:6 — 6
(8 < ) such that sup '8 = 6 and then set C, = I't"8. 1(u) is defined
recursively as follows:

Case 1, 1= 0. 1(0) = the least » such that

(v k, =xforr2vp.

() a€ X, ifa<p,

(i) I(») > wy .

For ¢ > 0 we consider two cases.

Case 2.n=1. Let s : On? «> On be Gadel's pairing function. Set

t{t+ 1) = the least » > 1(¢) such that ' (Ir(1))* C I(») ,

HN) = sup (1) ifsup (1) < 8 for limit X .
3\ <A

t(u+ 1) is always defined, since §"'2? € a.
Case 3.n> !.Setp*=pf 3, A*=A4"2 p*=pi-! Let h* be the
canonical ¥, Skolem function for (J ot A®). Set

#{t+ 1) = the least » > #(¢) such that
SO C I A T, N R (0 X Xy X {P*HC X, ,

(A} = sup #{1) if sup (1) < @ for limit A .
<A <A

We must show that 7(¢ + 1) is defined. Let v = #(¢). Let
Y=J, 0 h*"(wX X, X {p*}). We must show that ¥ C Y, for some
£ < 0. Since Y ¢ 1 it suffices to show that ¥ C J_ for some 7 < a, for
it l(¥) 2 7, we then have X C J_ C Xy, .

X, = Ry (@ X I X {p}) for some 7 < «. &, € Iz and J; contains
a function mapping n onto (w X J,, X {p}). Hence J; contains a func-
tion mapping n onto w X X, X {p*}. Hence thereisa X, _, (Jﬁ) func-
tion f mapping a subset of 7 onto Y. Since @ is X, _; regular, the func-
tion f'(») = ur f(v) € J, is bounded in . Hence Y C J_ for some 7 < «.
Set: C, ={lt(»)iv< 5} . C, is obviously closed znd unbounded in «. As
an immediate coroliary of the definition of C we have
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Lemma 5.8. Let a < a be a limit point of C,. Then @ > w, and

s"a? = «, where s is Godels pairing function. Moreover, suppose that
n> 1and a =UN). Let j be a function EI(J + o AY m parameters froin
X, U {p*} which maps a bounded subset of & into o. Then [ is bounded
ina.

For the rest of the proof let « < & be a fixed limit point of C,. We
must show a ¢ £ A C; =a N C,. Leta =I(Q). Set

T A0 XY= d D

Then (J_ A 5 < (J , A Let JB. SN J; be the canonical extension
of(JB, A>-»(¥ LA Thenp pg“- A= 4" 1 and n(p?- l)"p"' )
Let % be the canumcal Skolem function on (.L . Thenhi=n NS
and has the canonical X, definition:

y=h{i.x)«=V:e 3;; H(y, i x),
where H=n"1(#). Setp =a~L(p).

Lemma 5.9. § = (), n = n(a). p = p(x): moreover, if g. k are defined
from « as g, k were define i from a. then g = &> K=K.

Proof. Set p = the least p' {in <;) such that every x € J is X, (JA A
in parameters froma U {p'}.

(. p =p.

(D). B'(w X J; X {ph= JE‘ But a is closed under Gbdels pairing
function, whenc,e it easily follows hat 35 =" (wX aX {p}) (cf. the
proof of Lemma 5.3). Thuseachx ¢ J_ is T, in parameters from
«vip}. B
B ,:). Since p € JB . there is a v < « and i < w such that
p =i1(i, v, p"). Hence p = h(i, (v, 7(p'N). Hence eachx € ] is
Z,{,,A) in parameters from a U {n(p"}. Hence n(pY 2 pand p' 2 p.

D@ﬁne g in terms of &, a, p as g was defined from &, «, p. It is imme-
diate that

). g' =g,.

Defining k' from g’ as k was defined from g we then get
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(©). ¥ =k, =k
Thuas it remams only to shew that 8 = B(a). 7 = n(a). for we then- have
p =pl)g =g Kk =k

). B=B(a).

). Setn =sup, ., k(»). Then n < o« since @ = sup, ., gk(») =
sup g''n and n > x. Hence ¢’ maps a subset of n unboundedly into a.
Butg'is £,(J., A), hence £, (J.).

(). If not, i.e., if > Bla), tf\en ;8 > a and there isan f € J‘3 which
maps some 7 < & unboundedly into «. 7 Ma=id I @ and dom (f) it
bounded in «. So ?r( Y=7r. But the statcment “*fis a function, dem ()=
7 < « and range f is unbounded in «,” is SD But then the same state-
ment must ho!d with onlv « replaced by 7(e). Contradiction since
w(a) 2 a> a. (Actually (@) = a).

(e). n=nla)

(). The proot of the () part of (d) showed that there is a E,,(J )
function mapping a bounded subset of a unboundedly into a.

(). Forn =1 this is trivial. Let # > 1. We must show that x is Z,,_,
reg,uiar in B LetfbeaX, ;¢ Jg ) function mapping a bounded subset
of a into . Set

E*=p53* A4 =A43" 2,E*=;>§*“1r*=7rﬁjz*
Then(JB,.E’I*> LN 5 <J ..A*)and T¥(p*)=p*. fis L, (L*,A ) in
p*and somex € J.. Letf have the same E, definition over (J o A*)
in the parameters p*, #(x). Since f C JOE and 7 I J& =id ! J&_, we have:
fcf. Letu=dom()). Since v is ,_,J;) and bounded in p we have:
uel 5 Since « is boundad in a. we have n{x) = u. The statements **f is
a function™ and “dom(/) C u™ are I, (L LA¥)inp*, x,u. Hence f' is
a function and dom(f") < u. Hence f=f". Thus fis £, (J » ,A4%) in
p*, m(x). Since n(x) € X, , and the domain of fis bounded in a, we con-
clude by Lemma 5.8 that fis bounded in a. This proves Lemma 5.9.

Lemma 5.10. « falls under case 4 in the definition of C..

Proof. We must show that cases 13 fail. Cases 1 and 2 fail by Lemma
5.8 and the fact that ;(E NQ)=an Q.Incase 3,n=1and B is a suc-
cessor ordinal. But if n = 1, then B = p. p = sup, ., 7~ (m()) is a limit
ordinal.
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Since each a € F falls under case 3, we conclude
Corollary 5.11. a ¢ E.

It remains only to prove
Lemma 5.12. C. =an C,.

Proof. Define k, I, m from « as k, I, in are defined from a. Using Lem.na
5.9, we prove by induction on » < A that k(») = k(v), I[v) = Kv),

am(v) = m(v). The induction is straightforward. For limit 7 < A. we must
use m(r) € X, to show that

mm(r) = w(sup m(¥))
v< 1

= the least n € X, such thatn > m(v) forev< 7
=m(r).

Now define 7 from a as ¢ was defined from a. Let A = #(X). By induction
on v < X we prove that 7(¥) = t(¥). For v = 0, this follows by the fact
that k = k and #(a) = a. For n = 1 the rest of the induction is trivial.
Forn > 1 we use the hr%(J_ A® AN < (J +. A% and

T*(p*) = p* to show that z(v + D=1+ Dif r(v) = t(p). Thus
T=1t Aand 7=¢ 1 \. Hence

C =TFX=1'N=anC, .
&

5.1. The principle O,

Let k be any infinite cardinal. Consider the statement:

(o,) There is a sequence C, defined on limit ordinals < «* such that
(i) C, isclosed, unbounded in Al
{ii) 1f cf(M) < k, then {’ <K
(iii) if + is a limit point ot G, . then C‘,} =y NG,
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Note. It follows that if ¢f()) = &, then C, has order type «.

@, is not provable in ZF + GCH, for Solovay has shown that
ZF + GCH + 710, is consistent relative to ZF + “there is a Mahlo car-
dinal”.
A somewhat weaker version of 7 is:
(0¥} There is a sequence C, det 1ed on limit ordinals < k" such that
() C, isclosed, unbounded in A;
(ii) €, has order type cf(A);
(i) if 7 < k* then {C, N 71 A<k} has cardinality < «".
If 2% = «". then O} is equivalent to the proposition: There is a special
Aronszajn tree on k. Hence 0} follows from ZF + GCH for regular «.
For singular x the problem is stili open.

Theorem 5.2. Assume V = L. Ler k be any infinite cardinal. Then 0,
holds. In fact, there is a set E C k" and a sequence C, (Lim(A), A < k")
such that

(i) EisMahlo in k"

(1) €, is closed. unbounded in \:

(i) if of(\) < &, then C, < k2

(V) if vy is @ limit point of Cy then y & Eand C, =y N Cy.

Proof. Let S = the set of all limit ordinals « such that
@r<a<k
(0 « is closed under Godel's pairing function;
(¢) each » < o has cardinality € k in ] (i.e. some f& ], maps k onto
»).
Then S is closed, unbounded in k*.

Lemma 5.13. There is a set E C S and a sequence ‘C‘}\()\ € 8) such that
(i) E is Mahlo in k";
ity C, is closed, unbounded in \;
(iii) C,, has order type < k:
(VY if v is a limit point of C, . theav€ S, v ¢ E, C,=vnC,.

Proof. Set £ = E n S, where £ is the class defined in the proof of Theo-
em 3.1. Since £ n & is Mahlo in «*, E is also Mahlo in k*. Now let
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a € S and let C,, be defined as in the proof of Theorem 5.1. If cases 1,
2b or 3 in the definition of C,, apply, set C, = C,. (Case 2a does not
apply since & € S.) It remains to consider case 4. Let § = f{«) and
n =n(a). Then p;} = k for since « is not X, regular in f and eachr < «
has cardinality < x in J,, there must bea =, (J;) subset of k. not in 5.
Now the C,, constructed in Theorem 5.1 has order type v for some
¥ < o, whereas in the present situation we wish to have the order type
of C, < k. We construct C, by modifying the construction of Co in
Theorem 5.1. Proceed as in Theorem 5.1, case 4, but redefine p, /7, g,
k, 1, m as follows (but first replace the “free variable™ k occurring in the
proof of Theorem 5.1 by some other symbol, say u, to avoid coniusion):
Let p = p(e) = the <;-least p € J, such that FwXx (kX {p}n=1],.
Then p = pg . Define & by h(i, x) = h(i, (x, p)). Define g from a subset of
x onto a by

TG vy if Mv)€a.
glwv+i)=
undefined otherwise .

Define k,1, m on 0 < k as {ollows:

k(v) = the least € dom(g) su:h that g(r) > /() and #(») has cardinality
Skinlg,y;
m(0) = max(x + L, ur(p € 1,));
m(y + 1) = the least 7 < p such that
®» m@), gk(¥) < 7,
(i) Vz € J G(z,8(k(), k(»)),
(i) i), m) € b, "w X (kX {PIN.
()ANT,, €y
m(\} = sup, ., m(v) if sup, . L) < p for lim(A):
v)= ay = sup (a N X,) where

X, = Ry (X (X {P})) .

The rest of the proof of Theorem 5.1 may be followed almost verbatim,
although some of the apparatus developed there is not needed in the
present situation, and the remaining lemmas are somewhat more easily
proved.
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Lemma 5.14. Let E I)eas in Lemma 5.13. There is a sequence
G\ (A € ) such that
() C, is closed, unbounded in \;
() G, <kifcf)< k3
(i) if = < Nis a limit point of Cy, theny ¢ E. .y € S, C,=ynC,.

Proof. If « is regular, we may set: C, = C,. Now let k be singular and
let cf(k) = 8. Let (8,1 v < §) be a normal function such that sup, 3,
k. Let (y, 1 v < ) bz the monotone enumeration of C,,. Define C, as
follows.

Case 1.6, < < 6, forsomep. Set €, ={y1t>5,}

Case 2.0 =sup {8,135, < 0}.Set C *{75 i6,,< 6}.
The C_’s clearly have the desired properties.

Now let 3 be the set ol halt open intervals [ = [7,. 7, ) such that
7) € Sand 7y is the least 7 such that [7,7 )N S=0. Then (k"\S) =
Uy 1. Note that, since § is closed, 7 is never a limit ordinal.

Lemma 5.18. Ler 1 € 3. Then there is a sequence C {\(Lim Ay AeED
such that

(1) ! s closed, zmbmmded in \;

(i) if cT(A) < &, then (" <

G if vy < Nis a limit pomt oj C theny & ILand (‘4 =y C{\.

Proof. Let A, (¢ < ) enumerate monotonically the limit ordinals of
Tu {sup(N}. Let &, be the set of functions € =(C, 1 v < \) satisfying
(i)(iii). By induction on ¢ we prove

(") € # 0andforeachr < . if Ce€ &, then thereis C' € € such
that C ¢ C.

For =0 the as:ertim is trivial. Let it hold for . We car then extend
Ce € toC € g, oy setting C = N1 \A,. Now assume Lim(n),
1< q < 8,C€ €. Letp=cf(n) ané let (n,1» < p) be 2 normal func-
tion such that ’?o =cand n, =sup, . ,7n, =n. Define a sequence

¢ € €, such that P cclc..cev .. asfollows:
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=c;cMeg,  suchthat o
For limit 7 let C* =U,, . (¥ and extend C* to (7 by setting

C,:?T = D‘n,’ r<1}.

Then C* € € and C* D C. This proves (*).
By (*) there isa C€ &;. But then €7 = Cl A, has the desired proper-
ties. This proves Lemma 5.15.

The theorem follows by Lemma 5.14. Lemma 5.15 and the fact that
E C §. Let (G, 1A € 8) be the sequence given by Lemma 5.14. We can
extend this to a sequence defined on all limit ordinals < «* by setting

¢, =Cl for \el€j3 .

This sequence has the desired properties. This completes the proof of
Theorem 5.2.

Remarks. {1). By combining the proof of Theorem 5.1 with the methods
of Theorem 6.1, we could prove: There is a class £ and a sequence
detined on accessible X such that

(1) E is Mahlo in inacce:sible k:

(ii) C, is closed, unh~aded in A:

(ifi) if y < Ais a limit point of C . theny ¢ Eand C, =y N (.
Similarly for “inaccessible limit of inaccessibles™, “*Mahlo”, “hyper
Mahlo” etc. However, there is a limit of this process: there is no E such
that £ N k is Mahlio in x iff « is weakly compact.

(2). We can prove a version of Theorem 3.1 under the assumption
V=L[4],4 € On. In this version C, would be defined on all X such
that A is singular in L{4 n A] and whenever k is regular in L[4 N k],

E n x would be Mahlo in k in the model L{A N x}. The proof is virtual-
ly the same, but some reworking of §3 and §4 is required.

(3). Similarly, ve can weaken the premiss of Theorem 5.2 to:
V=L[A] foran A € k" such that « < «" has cardinality € x in L[4 nal.
In particular, if «* not Mahlo in L, then 0_ holds. Hence Solovay’s refa-
tive consistency result is the best possible.
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36. Weakly compact cardinals in L

Each of the following conditions is known to characterize weakly
compact cardinals x:

(a) k is 11} indescribable:

{b) x is strongly inaccessibie and there is no k-Aronszajn tree;

() k= (k).

In this section we show that, if V = L, then apparently weaker forms
of each of these conditions suffice to character..e weak compactness.

We start with (a). A consequence of H1 indescribability is:

() If £ ¢ x is Mahlo in k, then £ N § is Mahlo in B for some g < k.

The assertion *) characterises weak compactness for regular k in L. In
fact we shall prove

Theorem 6.1. Assume V = L. Let & > w be regular but not weakly
compact. There is an E C k and a sequence C, (Lim(\), A < k) such that
M EisManlo in k.
(i) C, is closed, unbounded in A,
(iii) if y < Nis a limit point of C,, then y ¢ Eand C, =y n C,.

Proof. We may assume that x is inaccessible since the theorem has been
proved for successor cardinals (Theorem 5.2). Since k is not weakly
compact. itis [1} describable, Hence there is a set B C k and a first or-
der formula ¢ (with predicates €, B. D) such that

ADc k&, ¢lD, B} .

LY

but

vDc§g t==,3 TNelD.BnB] forf<xk.

We make use of B,y in defining a Mahlo set E C .

Definition. £ = the set of limit cardinals & < k such that for some
8> a:
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(i) « isregularinf;

(ii) « is the largest cardinal in Jﬁ:

(iii) J is a model of ZF—;

(iv) For some p € J;, J; = the smallest X < J; such thatp € X and
a N X is transitive;

i Bna€l;and ADeR ()N ] t=,m elD.Bnal.

Note that £ C E, where £ is the class defined in Theorem 5.1.
Lemma 6.1. E is Mahlo in k.
Proof. Exactly like Lemma 5.1.

We wish to define C, (Lim()\), A < k) such that £. 7, satisty (i)(iii)
of Theorem 6.1. Since each a € E is a limit cardirz:. we can dispose
quickly of the case that X is not a limit cardinal. There is ther, a maxi
mal 7 < X such that 7 = 0 or 7 is a limit cardinal. Set , = \\r.

We now define a set Q of limit cardinals < k (containing all regular
ones) on which C, can be defined in a fairly simple fashion. We will
have @ N E = Q. The definition will give us: If A € Q and « 1s a limit
point of C,, theny € Q and C, =y N C,. Afterwards we shall make
use of §5 in defining C‘T,\ on the remaining limit cardinals A ¢ Q. We
begin with

Definition. Q' is the set of limit cardinals @ such that for some 8> a:
(i) «isregularin g;
(i) Bnae JB;
(iff) there is a D € B (@) N J; such that k. elD. Bnal.

Lemma 6.2. Q' N E=0.

Proof. Let a € F and let §> « be as in the definition of £. Then no
B' < B satisfies (iii). But « is not regular in 8 + 1 by Lemma 5.2. Hence
no B' > @ satisfies (i).

We define Q as a subsct of Q :
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Definition. Q is the set of @ € Q' such that, letting 8 be the least § > «
to satisfy ()-(iii), we have :

(iviifpe J;, thereisan X < US such that p € X, o N X is transitive
ande N X< a.

We note that, if @ € @'\ Q. ti.:n there is precisely one § > o satisfying
(i)~(iii). This follows frem

Lemma 6.3. Let o € Q'\Q and let B > « be the least § to satisfy (i)-(iii)
in the definition of Q'. Then o is rot T -regularin g+ 1.

Proof. Let p be the least counterexample to (iv) such that B N «, « are
Jg-definable in the parameter p. Let X be the smaliest X <J; such that
p € X and o N X is transitive, then a C X. it suffices to show X =J,
for we may then repeat the proof of Lemma 5.2. Let 7: X < ), then
7t a=1id Mo nia) =a; hence m(B N a) = (B N a). Hence § satisfies (i)-
(iii). Hence 8 = 3. But then n(p) = p by the minimality of p. Since
every x € X is Jg-definable in parameters from « U {p}, we conclude:
at X=idl X,

We now define C, forA e Q.

Definition. Let « € Q. Let 8 be the least g to satisfy (i)<(ii1) in the defi-
nition of Q. Define a sequence X, <] 3 by
X, = the smaliest X <] s such that a N X is transitiveand o, BN a €
X
X,4 = the smallest X < J; such that « N X is transitive and a, @,
B na € X where o, = sup(a N X)),
Xy, =U, X, ifan U, ., X, <a forlimit A,

Then X, is defined for » < n = n,, where 7 is a limit ordinal, and
X, < X,<J;whezv<r<n Seta, =ay andC, = {e,lv<n,}.
Clearly C, is closed and unbounded in o. We must prove

Lemma 6.4. Let a € Q. Let o < « be a limit point of C,. Then o € Q
and C. =a N C,.
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Proof. We first prove a € Q. Leta =@, . Let w1 : X, < J; . Then

TT:JB— 3z, Jgpo ma)=a, wBNa)=BNa.
Hence «, § satisfy (i)<(iii) and § is the least one to do so. We must show
that ¢« satisfies (iv). Let p € j“:?’ . Then n(p) € X, tor some v < A. Set
X=n"'(X,).Thenpe X, X <I..an X =q,<a.

We now prove C& =anC,. DefineX ,a, (v< n) froma, B as X,
o, were defined from a, 8. It is easily seen that n=Aand X, = a(X,)
for » < \. Hence a, = "‘_Xp =ay =a,.

We turn now to the definition of C, forA ¢ Q. Lete€x\Q be a
limit cardinal. Then « is singular. (If « were regular, (i)iv) in the defi-
nition of Q would be satisfied with § =q"). Let C, be as in Theorem 5.1
Let C be the set of limit cardinals n < a such that n is a limit point of
C,. Then C is closed, but may be bounded in a.

We consnder four cases.

Case 1. C, is bounded in a. Then a is w-cofinal and we let C, be an
unbounded set of order type w.

« cannot satisfy cases 1, 2 in the definition of C,, since « is a limit
cardinal. If case 3 in the definition of C, applies, then « falls under case
1 above, since C_ has no limit points. Thus, in particular, case 1 takes
care of ¢ € E (by Lemma 5.2) and « € Q'\Q (by Lemma 6.3).

Now let C be unbounded in a. We shall define (‘ as a closed cofinal
subset of C We note that « satisfies case 4 in the deﬁmtmn of C,.
Hence each ne C satisfies case 4 and we have: C NE=C,NnE=@.

Let $=f(a), n = n(a) be asin §5. Letie, lv < 0) be the monomne
enumeration ofC Set 8, = B(,) (the § of §S fora =a,). By §5 we
have n(a,) = n. Moreover there are maps (w of §5) such that

™ .
— y Jg and 7w, Me,=idlaq,

Ifa=6 thena, =6,;ifa < g, thene, < §, and 7 (a,) = a. Set
=a7t-q, ° forv < 7. Then
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and Jz 7w, (0S < r < 8) is a directed system whose direct limit is Jgs
7, (v < 8). Jﬁx 7,, (¥ < \) is the direct limit opr T, WS TSN for
hmxt A. Since o & @', we have three more cases to Lonslder

(Na=

(Na<pand Bnael, forsome § < B, but forall § < B, if

DeBnl. t!un t=l elD.Bnal:

(4)a<Band80a¢J for6<6

Case 2.a =§. Set( C Ife a=ay is a limit point, then a, =8,
and case 2 applies. Hence CE C_ =anC,.

Case 3.a< fiBNnacl; forsome5<ﬁ if D& Rla)yn J; for
8 <8, then?ﬁ wlD.Bnal.
Let § be the least § such that B N a € J, . Let p, be the least » such
thatd, Bnaew, ", .10 Set G, = {r,xvlv0 Sv<f}).Ifa=a, isa
limit point of ( , then

Boa=n'Brnarel |
) (6)

where 77! (8) < B,. We use J; 2, x,_, s to conclude that case 3
applies to «. Hence C& = {a,lvy < »< \} oz nC,.

Case 4. a< 3;Bnagl; for§ <B.1f§< B, and BN a, € J;, then
7, (BN a,)# BN a; for some 7> p; since otherwise we should have
Bha=U,, 1, BNne)=n(BNa)e J*’u(‘” where 7,(8) < 8. Define
a normal function (» | ¢t < ) by

zO-
y = the least > v, suchthatfo8<B Bﬂa EJ{S ,
then =, (Bhoz )+ BNa,

v, =supp, ii supy <0 forlimitA.
<A <A

SetC, = {a h< d}. Leta = @, be a limit point of C,,. Then case 4
holds for o, since otherwise BN a € J; forsome § < B . But then
Bra= m, (Bna)forsome¢<x Hencefr (Bma,) Bna
Contrad;cnon' ‘

I< follows readily that C, = {a,le<A}= anC,.

Yy’
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6.1. Souslin’s hypothesis in L

The usual characterisation of weakly compact cardina’s in terms of

trees can be sharpened considerably if we assume V = L,

" First the relevant definitions. By a free we mean a partiilly ordered
set T=(T, <) such that for any point x € T, the set of predecessors
{vly < x} is well ordered by <. Thus every x € 7 has a rank |x! defined
as the order type of {vl v < x}. The length 1X1 of a set X ¢ T is defined
by IX1=1lub {ix) Ix € X} . By a branch we mean a b € T which is closed
under < and well ordered by <. By an antichain we mean a set of mutual
ly incomparable points in 7.

Definition. Let x be a regular cardinal. We call a tree T x-normal iff
(i) T has just one initial point;
(ii) every non-maximal peint has = 2 immediate successors:
(iii) each x € T has successors at arbitrarily high levels o < {71
(iv) a branch of limit length has at most on: immediate successor;
(v) foralla {13! Iy1=a} has cardinality < k.

It follows easily that, if 7 is x-normal. then {71 < k.

By a k-Aronszajn tree we mean a hormal tree of length k which has
no branch of length «. By the “x-Aronszajn hypothesis™ (AH, ) let us
mean the statement: There is no k-Aronszajn tree. [t is provable in ZFC
that k is weakly compact iff  is strongly inaccessible and AH, . If we
assume GCH, this can be improved to: « is regular and AH, .

By a Souslin tree we mean a k-normal tree of length x which has no
antichain of cardinality k.

The k-Souslin hypothesis (SH, ) says that there is no k-Souslin tree.
(Note. SH, is equivalent to: Every linear ordering whose intervals satisfy
the k-antichain condition has a dense subset of cardinality < k).

Clearly, every Souslin tree is Aronszajn and hence AH, - SH, . The
converse is known not to be provable for k = w, , even with GCH. How-
ever, if V.= L, we get: AH, «— SH_ «> « is weakly compact for reguiar
K, as the following theorem shows:

Theorem 6.2. Assume V = L. Let k > w be regular but not weakly com-
pact. Then there is a k-Souslin tree.
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In the proof of Theorem 6.2 we will make use of a further combina-
torial property of L:
Let A € x. Consider the following principle.

(O, (AN There is a sequence §_ (a € A) such that S C « and for each
X ¢k theset {al X na =S5, }is Malilo ir «.

9, (A) clearly implies that A is Mahlo in k.

Lemma 6.5. Assume V = L. Let & be regular. Then O, {A) holds for
every Mahlo set 4 C k.

Proof. Assume (w.l.o.g.) that A4 contains only limit ordinals. Define a
sequence (3, . C,) (e € 4) by induction on « as follows.

(S, €= theleast pair (5. O tin <} such that § C «, C is closed, un-
boundedinaand Are C Snr=§,.

If no such pair exists, set
(Se - Cr=10.0.

We claim that the sequence (S, | « € 4) fulfills O, (4). Suppose not.
Then there is an § € k and a closed. unbounded C C « such that

Aa € C Sna# S, Let(S O be the least such pair (in <y).

Define a sequence of elementary submodels X, < J . (v < k) as follows.

Xp = the smatlest X <J .suchthat4 € Yandk N X is
transitive;

X,4; = the smallest X <J . such that X, U {X,} C X and
Kk N X is transitive;

Xy = U, ., X, for limit A.
Sete, =&k N X, Then (&, v < k) is a normal function. Since 4 is

Mahlo, there is an « = o, such that ¢ € 4. Now let 7 : X <> J;. Then
ablJ, =id 1 J  and &(7) = a. Now
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«S,,Cplv<iy, (S,O)e X,

since these are J + definable from A. It is casily seen that
(S, CRlv <) =(S,.Criv<a),
(S, CH=SNa,CNad.

Since 71 : Jg >z 1+, we conclude that (SN a, €N a) = the least pair
(S, CH(@in]J 8) such thdt S’ C a, C' is closed and unbounded in o and
ANreC' s n'r#:S Hence(Sna, Cna)=(S,.C,). But a € C, since
CnN aisunbounded ina. Hencea € Cand SN a = S‘ Contradiction!
This completes the proof of Lemma 6.5

We are now ready to prove Theorem 6.2. Let £, G, (Lim(A), A < k)
be as in Theorem 6.1. Let S, (« € E) be the sequence given by O, (E).
We wish to construct a Scuslin tree T. The points of 7 will be ordinals
< k. We shall construct T in stages T, (1 < a < k). T, is to be the res-
triction of 7T to points of rank < «. Hence T will be a normal tree of
length @ and T; will be an end extension of T, for > a. We define 7,
by induction on a as follows.

Case l.a=1.T, = {0}.
Case 2. T, is defined. Define 7,, by appointing two immediate
successors for each maximal point of 74,

Case 3. Lim(a) and T, is defined forv < a.Set I, =U_ . T,.
The remaining case is the crucial one:

Case 4. Lim(ar) and T, is defined. We must detin2 7, . For each
x € T, we first select a branch b, of length o through T, . b, is defined
as follows:

Let v,(» < ) be the monotone enumeration of C,. Let » = », be the
least v such that 1x1< ,. We define a sequence p, = pX(v S v < A of
points in T, as iollows.

p; = the least ordinal v such that iyl= 1. and vZxinT,

P4 = the least ordinal ¥ such that Ivi=1y,,, and ¥y > p, i
T

a
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for limit n:

P, = the unique v such that vl = Yy andy>p,w<ninl,
if such » exists: otherwise undefined.

If any p is undefined, then T, is undefined. Otherwise we set

‘{vi\lm <plinT,}.

lt a € E, we form '.2"‘M by appointing an immediate successor to
each . If « € E but §, is not a maximal antichain in T, we do the
same. If « € £ and S is a maximal antichain in 7, we appoint an im-
mediate successor only to b, such thatVze S x<zinT,.

Itis clear that 7,; is a normal tree of length «. We must prove that
T, is defined for a < k. In cases 1--3 this is trivial. In case 4 we must
show that p,, = py is defined for » < » < \. The nontrivial case is p,,
(Lim(n)). Since y, is a limit point of C,, then Y, EEand C, =
Yo O Co = {7,1¥ < n}. 1t follows that 1f we defme X< n) from Yo
as py was defined from a. then p;f =p3. Butb, ={yIVo <y <plin
T%} has a successor in T, by case 4. since v, € E. Hence p, is defined.

SetT=U_. T,.Tisclearly a normal tree of length k. We must
prove that T is Souslin. Let X C T be a maximal antichain in 7. Let A
be the set of limit @ < k such that « N X is a maximal antichain in 7.
A is easily seen to be closed and unbounded in x. Hence there is

a €A N Esuch that §, = X N a by ¢, (E). By the construction of T,
we then have:

Every x € T of level « lies above an element of X N . Hence X N is a
maximal antichain in 7. Hence X = X N a has cardinality < k. This

proves Theorem 6.2,
6.2, Partition properties in L

Definition. Let [X]1" denote the collection of all n element subsets of
X{(n < w). Let a partition A=(A 1t€ D of [X]" be given. Let 7 be a
cardinal. Wecall Y € X -i“i:omogeneous with respect to A iff { V']"

U, A, forsome s such that 5 < 7.

ey
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Definition. Let «, 8, y, 7 be cardinals such that r < y < k. We write
K= (8)),

to mean that every partition of [x]" ¥ partﬁ has ar homogeneous set of
cardmahty 8. Clcarly K- (6) implies k' -~ (&' ) cforn' S ks,

8 <8,y <y, <7 1tis known that, for x > w K - (105 lmph%
weak compactness and weak compactness implies k — (K),r forn < w,
v < k. If we assume V = L we can sharpen this result by showing that,
for regular «, each of the principles x - (:c)f,, (r < y < &) implies weak
compactness.

Theorem 6.3. Assume V = L. Let g be regular but not weakly compact,
Then k (K),%, forr<y<«k.

Theorem 6.3 is an immediate corollary of Theorem 6.2 and the fol-
lowing lemma.

Lemma 6.6. Assume ZFC. Let SH, fail. Then k + (x),%., Jorr< y< k.

Proof. Let T be a Souslin trec.. We may suppose (without loss of general-
ity) that each point of T has 2 y many immediate successors. Let S(x)
be the set of immediate successors of x. For each x € T partition
[S(x)]? into disjoint nonempty sets AY(1 €< y). We now define a
partition (i< y)of T.

If ¥4, ¥y € T are comparable, put {¥4,¥,} € 4,. Otherwise iet x be
the greatest common prede.essor of vy, v, . Then there are unique
x; € S(.X) such that x; S vy in 7. Put {vy. 31} € 4;if {xg. x;} € AT If
K-> (K) held. there would be a set X C T of cardinadty x and an
sCry ot c.drdmahty 7 such that [X]? ¢ U, 4;. We derive a contradic-
tion as follows.

Case 1. 0 ¢ s. Then X is an antichain of cardinality x.

Case 2.0€s. Set Y={yiVxe Xy <xinT}. Then |¥]?C Ui
But for each x € Y, some immediate successor of x isnotin Y. Let Z be
the set of z ¢ ¥ such that 2 immediately succeeds an element of ¥. Then
Z is an antichain of cardinality k.
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Note. Lemmz:. 6.6 was first proved by Tony Martin for the case y = 3,
7= 2, The general case is due to Soare.

Remarks. (1Y, Theorem 6.1 can be proved under the following weaker
assumption, V = L{A] for an A C k such that for some I1} statement p

ADcCk 'E:LKM} elD. 4],
but forf< «
VD e R LA np] ‘:Lﬁl-‘i ap 1elD.ANBL.
(D). Lemma 6.3 can be proved under the assumption
VAcCk V=L0LI4].

{3). A weaker form of Theorem 6.1 can be used in the proof of Theo-
rem 6.2:(iii) can be replaced by (iii)": {# N C, | A < x} has cardinality
< K for g <k.

This form of Theorem 1 holds trivially for successors of regular car-
dinals v such that 2¥ = " It also holds irivially for e.g. the first Mahlo
cardinal,

(4). With a slight modification of the proot ¢f Lemma 6.6 one can
sharpen the conclusion to: There is a partition 4, (v < k) of {k]? such
that if X C & has cardinality x, then A »{X1% N A, # 0. This is the
version proved by Soare.

§7. The one-gap two-cardinal conjecture holds in L
by Jack SILVER

Let 0, be this combinatorial proposition: There is a sequence (C, 1 a
is a limit ordinal < k™) such that each C, is a closed, cofinal subset of a:
if cf(a) < k, then C, has cardinality less than k; and finally,if fis a
limit point of C,, then Gy =3N C, .

In §3, Jensen has established that ©, holds in L for all cardinals «
(and indeecd holds under somewhat weaker hypotheses). It is the burden
of this note to show that:
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#) If (YA < k) (2* = %" and o holds. k singular, then (W, wq) ~
(', 1) 1!

The expression (A%, A) = (", k) means that any countable first-order
theory having a model of type (A", A}, i.e. a model whose universe has
cardinality A* and in which the unar: predicate U denotes a set of car-
dinality A, also has a model of type (x°, k). Vaught {7] has shown that,
for any infinite cardinal A, (A", ) ~» {w, wy), and Chang { 2], assum-
ing the GCH, has shown that whenever 7 is a regular cardinal,

(wy, wpy) = (7", 7). The GCH being a consequence ot the axiom of con-
structibility, ihe above considerations reveal that () together with
Jensen’s proof of the combinatorial principles from the axion of con-
structibility fill in what is needed to see that the full one-gap conjecture,
(¥ infinite k, X) (A", A) = (k'. k), is indeed a consequence of the
axiom of constructibility, only the singular case having been problema-
tical. It is still not known whether the full one-gap conjecture may fail
in a model where the GCH holds, the solution very possibly awaiting
further progress on the singular cardinals problem of set theory. On the
other hand, Mitchell (Ph.D. dissertation. Univ. of Calif., Berkeley. 1970)
has found a non-GCH model in which the onc-gap conjecture fails for
very low regular cardinals. It should also be noted that. by a more diffi-
cult argument, Jensen has shown that {¥X < g)(2* = X\*) can be weake-
ned to (VA< k)2 S k) in (#)

Before getting down to bu:iness it is instructive and perhaps even
useful to see that O, can be reformulated in the followiag manner:
There is a sequence (S : a is a limit erdinal < k") such that (i) each S
is a closed subset of a, and if cf(«) exceeds w. a closed cofinal subset of
a; (i) if cf(a) < «, then the cardinality of §_ is less than k: (il if €S, .
then N S, =5;. To derive this new formulation from the original one.
simply take S, to consist of all limit points of C, other than a itself. As
for the other direction, define C, by induction on a, taking C, to be
the union of .1l C, as 8 ranges over S, together with, if sup S, < a. the
greatest element of §, and an w-sequence above it converging to a.
Noting that ‘€ S, is a partial ordering, we can obtain a still more re-
fined formulation.

The model-theoretic arguments here are modelled on those of
C.C. Chang which appear in his well-known paper on the two candinal
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problem | 2]. Let us digress for a mnoment to summarize that work
brieflv, Assume the GCH, or at least enough of it to make the follow-
ing arguments work. Let £ be a countable first-order language with
equality having a unary predicate symbol U. It 9% is an L-structure. the
type of ¥ is defined to be that ordered pair of cardinals whose first
component is the cardinality of tae universe of W and whose second com-
ponent is the cardinality of the set denoted by U in . Suppose that B is
an Lestructure having type (@, «op ). and that x is a regular infinite car-
dinal. There is no loss of generality in supposing that L has a binary pre-
dicate svmbol £ which denotes in 8 an extensional relation such that,
whenever H is a finite subset of U™ | there is an element of U whose
*E-members’ are precisely the elements of H. (Let T, be the first-order
theory involving U, E, and equality which expresses the properties in
the last sentenee.) To incorporate the finite set structure into the origi-
nal structure is one of the key devices due to Chang. A key femma of
Chang states that it s o < @) is an clementary tower of U-saturated
structures, cach a model of 7 and each having cardinality «, and

< k. and UM is the same for all a. then the union of the structures is
itselt’ U-siturated (the notion of U-saturadness is to be defined later).

We seck a structure of type (k. k) elementarily equivalent to 8. This
is to be chtained by forming o elementary tower of height k* of satu-
rated structures. each having power k, each elementarily equivalent to
&, and all having the same U. (it being understood that inclusion in the
tower is proper, the union must have cardinality k%) To form this tow-
or inductively. one need only show that any U-saturated structure ele-
mentarily equivalent to B has a proper U-saturated elementary extension
with the same U. (Chang’s lemma mentioned at the end of the last para-
graph takes care of the limit stage in the construction.) Let 8 be such a
structure. If U is not itself (fully) saturated. then ¥ can be extended
(properly) to a saturated elementary extension without changing U. On
the other hand. if % is itself saturated, then, as had been known for some
time, ¥, being elementarily equivalent to a ‘two-cardinal’ model 8, has
a proper saturated elementary extension with the same U. This will be
seen below for special models. using the same proof.

Where. then, does the above proof break down it k is assumed to be
singular instead of regular? There will not in general be a saturated mod-
¢l of power k elementarily equivalent to ¥ (the number of subsets of
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cardinality cf(k) being greater than k), in view of which the above con-
struction cannot be started. Suppose we replace ‘saturated’ everywhere
by ‘special’ (a special model being the union of a certain kind of elemen-
tary tower of saturated maodels, to be defined below). All of the above
steps go through except the needed analogue of Chang’s lemma conceer-
ning unions of {/-saturated structures. To remedy this difficulty, we
need to associate to each special model in our tower a ranking of its
elements (which simply tells us how to write the model as a union of
saturated elementary submodels) as we go along. the choice of the rank-
ing being critical, and to make use of Jensen's combinatorial principles
O, in assigning the ranking at limit stages. Thus it is not known whether,
in the absence of that combinatorial principles, an argument of this
kind (or indeed any other proof of the desired two-cardinal result) can
be carried out.

We commence the proof of {(#). Suppose k is singular, the GCH holds
teneath k, and O holds. Let 7 be the cofinality of k. and suppose that
G(a), & < 7. is a strictly increasing sequence of regular cardinals conver-
ging from below to k. G(0) =0, G(1) > w. As before, let L be a coun-
table first-order language with equality having a unary predicate symbol
U.

Definition 7.1. Saturar:d and special models. Rankings.

(7.1.D) fcard 4 = A and A= (A4, UY, ... yis an L structure, then ¥ is
said to be U-sarurated if the following condition hoids: whenever S is a
set of unary formulas (i.e. having only the free variable x) with parame-
ters from A such that card S < A and 5 is finitely satisfiable in U (e
any finite subset of § is simultaneously satisfied by some element of
UY in the structure W), then there is some element of U™ which simui-
taneously satisfies all formulas of S in 3.

(7.1.2) For the definition of * N is saturated” simply replace U ¥ every-
where in 7.1.1 by 4.

(7.1.3) An L-structure ¥ (of cardinality x) is said to be {/special if
it is the union of some ascending elementary tower (¥, :a < 7) where
each ¥, is a U-saturated structure of power Gla). A mapping
r iUt — 7 is said to be a Usranking of W HY there oxists such an elemen-
tary tower for which (vx € [UN(r(x) = the least o such that x € I 4 D

(7.1.4) ‘Special’ and ‘ranking are defined in an analogous way (one
simply omits all references to IN.
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Definition 7.2. If A=A, U ¥ ) is an L-structure, type s defined to
be (card 4, card U 9‘),

Lemma 7.3. Saturated and special models.

(7.3.1) If Nis a regular uncountable cardinal less than k. then any L-
structure of cardinality < X has a saturated elementary extension of
cardinality \.

(7.3.2) If T is a theory in L having infinite models, then T has a satu-
rated model in each uncountable regular cardinality less than x, and has
a special model (of cardinality k).

(7.3.3) If Wand W' are special models with rankings r and ¥’ respec-
tively, then there exists an isomorphism fof W oato W which sends r
into ', ie. (VX € DI = 100D, Also, if W is special with renking
r'and Wis U-special with U-runking r, then there exists an elementary
monomorphism 1 of YW into W' such that the range of [ includes U * and
(YN = ).

Remarks on the proof of Lemuma 7.3. The first part of (7.2.1), ‘enabling
us inductively to form a tower of the required type. directly gives (7.3.2).
To do the first part of (7.3.3). let A, and A, be the repres:ntations of
Aand AW’ respectively given by r and r'. Define inductively an ascending
chain of isomorphisms.f,, . f, being an isomorphism between 9, and %,
in each case. This is possible owing to a basic property of saturated mod-
els, that an elementary map of cardinality < \ between suasets of two
elementarily equivalent saturated models of cardinality N\ :an be ex-
tended to an isomorphism between the models. Finally le. f be the
union of all the /. To do the second part of (7.3.3), imitate the argu-
ment just completed, making use instead of the following principle: If

& is U-saturated. €' is fully saturated, € and &' are elementarily equi-
valent and have the same cardinality, and /1 is an elementary (i.e. satis-
faction preserving) map of a substructure of € having cardinality less
than that of € onto a substructure of €, then /1 can be extended to an
elementary monomorphism of £ into &' whose range includes U €
This principle can be established by meaus of a Cantor back-and-forth
argument, using the U-saturatedness of & to get a preimage for each
member of U ¥,
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Lemma 7.4. If A is a U-special model with U-ranking r and 2 is elenen-
tary equivalent to a model B of type (w; . wy). then W has a proper
elementary extension N’ having a ranking r’ which extends r. and such
that U = UY

Proof. By a short argument from the second part of (7.3.3), we obtain

a special extension having the same {7 and having a ranking extending
the given ranking (by a replacement argument, onc can assume that fin
(7.3.3) is the identity). Call the special extension A* and let 7¥ be a
ranking of it extending r. We now claim that there is a special proper
elementary extension %' of ¥* having a ranking r’ which extends r¥,
This can be argued as follows: Let B’ be the universe of a countable ele-
mentary substructure of ® which includes UY . Take (8,. .... B}) to be
a special structure (of cardinality k) with ranking s which is elementary
equivalent to the structure (8, B") obtained by adding in B’ an addition-
al unary relation. Clearly B} is a proper subset of 8, (the corresponding
assertion having been true for the 8%) and the structure (8. ... 8)) na-
turally splits into two structure, namely . obtained simply by remov-
ing the unary relation B} .and @}. the result of cutting ¥, down to the
universe B . Since reducts and relativized reducts of saturated structures
are saturated, both B; and ) are special, with s and s1 B} as rankings.
Moreover, each is elementarily equivalent to €. By Lemma 7.3.3, we
may identify ®* with ®) and r* with si8}. Then ®; and s give the
desired proper special ¢ xiension with extension ranking, it being clear
from UV c B’ that ¥, and B have the same U.

Lemma 7.5. (Chang [1].) Assume E is a binary predicate symbol in L.
Let Ty be that theory in L whose models are precisely those structure U
in which E Yis an extensional relation, and, for each finite subset H of
U™ there is an element x € U Y whose EX extension (i.e. v EMvahvis
precisely H. Then. for any regular cardinal X\, if (3 :a < £ is an ele-
mentary tower of U-saturaired models of Ty of power A, §< A U, inde-
pendent of a, the urion of this elementary tower is itself U-saturated.

For the reader’s convenience. we outline the proof. We are given a
set S of unary formulas, § being finitely satisfiable by elements of U in
the union and having power < X and having as parameters elaments of
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the union. For cach & < g, let §, consist of all formulas of § whose para-
meters are in ¥, Since W is U-saturated. there is an element z in U®
{hereafter called U since it is independent of o) which simultaneously
satisfies all formulas of §. Again since ¥_ is U-saturated. there is an
element w, € U/ whose £ extension contains all z_ for e € 7', and all the
clements of whose £ extension simultaneously satisty S, and are in /.
Clearly the extensions of the various w, form a collection having the
finite intersection property, any finite number of them having some z,
(chosen far enough out) in their intersection. Hence, since ¥ is U-
saturated. there is some element ¢ in the extension of every w, . This
element  simultaneousiv satisfies S.

Definition 7.6. Suppose r and v’ are U-rankings of U-special 9, %, res-
pectively.

(7.6.1) We write (.1 CC (U, ¥ if ¥ is an elementary substructure
of %' and r' extends r. and U¥ = U™

(7.6.2) We write (4, 7) <1 (') if, whenever v € DL H(x) <y >
P yoand y < AR s F O =) ang UV = UM and U = 11U
Finally., we write (3, #) C . (U, #) if there exists y such that
QUL YC, (Y.,

We propose now to complete the prootf of the principal theorem.
Recall that we are assuming that the GCH holds beneath «, which is a
singular cardinal of cofinality 7, G(a) being a strictly increasing sequence
of regular cardinals beginning with 0 and a cardinal greater than  which
tends from below to k as @ tends to 7. Further we are assuming the com-
binaterial principle ©, of Jensen which, in the formulation we intend to
use, asserts that there is a sequence (S, : a is a limit ordinal < k™) such
that each 5, is a closed subset of «, indeed closed cofinal if w < cffa),
that each S has cardinality less than x (since k is singular, the case k
itself doesn’t arise), and finally, such that a coherence condition holds:
ifgeS,. then §5 =8N S, . Under these assumptions, we wish to esta-
blish the two-cardinal proposition

(Q)i by QG) s (K‘g K) .
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L is a countable first-order language with equality, having a unary
predicaic symboi U. We are given an L-structure 9 of type {(wy . wy)
and we seek an elementarily equivalent structure of type (k°. k). There
is no loss of generality in assuming that L has a binary predicate symbol
E and that B is a model of the theory 7 defined in the statement of
Lemma 7.5 (since any structure can be augmented to be a model of 7).

It is our plan to form a sequence (N, .7, ) 1a < k") such that the W's
form a strictly increasing elementary tower of models elementarily equi-
valent to B and have the same U (1.e. U™ is independent of a). such
that each %, has cardinality «, that each ¥, is U-special and 7, is a U-
ranking of ¥, and finally, such that the following three conditions are
fulfilled:

(i) ifa<B then (A .r ) C: (W r5) 8

(i) if @ € S5, then (%,.r,) CC (Y. rg):

(iii) if « is the G(a') th 2lement of S;lic.a€S;anda N S, has order
type G(a")), then for all x € 19,) —~ A 1 rzdx) is at least o'

One must remember that, for any o’ < 7. there are exactly G(a') ele-
ments of rank < o’ in the structure. Condition (iii) is designed to insure
that, at certain limit stages. we do not have too many elements of rank
<a'

We move to the induction step in the definition of the promised se-
quence. (The case a = 0 obiviously presents ae difficulties, since (7.3.2)
gives us the existence ¢{ a special model.) Suppose that the sequence
(A, r,) o < ag) satisfies all of the above conditions. including ()-(iii).
fora, § < agy and fora’ < 7. We wish to define oy and r, o' Three cases
arise.

Case 1. ay is a successor ordinal, say ay =« + 1. We use Lemma 7.4
to find %, and r,_such thatr, isa U-renking of U, 0 which is a proper
elementary extension of A, and (A, 7,) CCT (g Ty )- It is quite easy
to check that all the above conditions hold for a < ey + 1 (n0 new cases
of (ii) and (iii) arising, for example).

Case 2. ap is a timit ordinal and S, is cofinal in oy . We take ¥, o 10
be the union of all the preceding % s, which is the same as U{3_ a &
Saghs and 1o = Wr, :a €S, }. Note that the latter equation does de-
fine a function by condition (ii) for & and 8 less than g and by the co-
herence of the S ’s, which latter implies thatif a < B are in §, , then
a € Sg. What does require scrutiny is the claim that 7, is a U-rankin= of
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9, . In the first place, we want to see that {x :7 (\) < a'} has cardl—
nality exactly G(e") for every o’ < 7. This is a stralght -forward conse-
quence of condition (iil) above, which guarantees that only the first
G(a") terms in the sequence (A, (a € 5 0} give us elements having rank
less than o', Hence, it remaim only to show that the set of elements
having rank less than o forms a saturated clementary submodel of 0!
But this can be represented in the following way as an increasing umon
of length & = min (G(a'). order type S, ) of saturated structures each of
cardinality G(a). forming an elementary tower ot elementary substruc-
tures of ¥, and having the same U throughout (all of which means
that Lemma 7.5 is applicable):

U {ve i <a'}.
B s

Case 3. ag is a limit ordinal but §, is not cofinal in o . Hence, as
was specified in the formulation of 17, being used, «y has cofinality w.
Let 85 be the least upper hound of S, (which owing to the closure of
the latter set. is a membr: of §_ ) and let §; be a strictly increasing w-
sequence of ordinals beginning with §; which converges from below to
g . Further let o’ be the least ordinal such that G(a') exceeds the order
type of S, o We now adopt the

Convenrion. We write %3 for (3, 7,).

It is possible to find a strictly increasing sequence of ordinals g, less
than 7 and (if i > 0) greater than &’ such that ¢, = 0 and, for each i,
\}I* c, - A g‘m . The possibility of forming such a sequence follows
from the observation that if the relation C; holds between two struc-
tures and ¢’ is an ordinal between ¢ and 7, then the relation C o also
olds. Of course we are also using the inductive assumption that C:
holds between any two structures — or rather structures with rankins
thus far defined and recalling the definition of C: given in Definition
7.6,

‘As before, we take ¥, to be the union of all the preceding %, ’s,
which is the same as the countable union U ¥, . It remains to define the

rank function r, - {which we also refer to as the aq-rank function). If
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xX€ m%l, define i(x) to be the least j such that x € w{ﬁii. We set

rao(x) = max (Pygy), Tgx)(X)) -

We claim that if g; <@ < ¢,y then {x € 19, l r, (\) < @} is the same
as{x € l‘)(B g, (x) < ¢} and hence is {or, mon, preuqn!\ determines)
a saturated ‘model of cardinality G(g). Two considerations establish this
euqality: (1) By definition, no new elements of ay-rank < ¢ appear af-
ter structure A, 83 ; (2) Since the relation <, _holds between any pair of
structures from the list 91* s A > an element once havirg had rank
< ¢ in one of the earlier structures, retains rank < ¢ in ¥z, though the
exact rank may change. On the other hand, if ¢ exceeds all of the ¢;,
then we can apply Lemma 7.5 since the set of elements having ay-rank
less than y is just the union over / of the elements having §;-rank less
than v, an increasing union (since the property of having rank less than
o is preserved by all of the relevant extensions) in which I/ remains the
same throughout.

That %5 CC Y §0 (and more generally, as a consequence of the tran-
sitivity of CC and induction assumptions, that ¥ < %} for all
« € S, ) is immediate from the definition of ,_. Thu: condition (i)
remains valid for all ordinals < ay + 1. Condition (iii) -emains true be-
cause it was true for the case 8 = f8,, because S, a0 S U {By} . and by
the stipulation that p; for i non-zero be greater than w hat we called &',
which is not quite the same as any o' figuring explicitlv in the statement
of (ii1). To check that condition (i) remains valid, it will suffice to see
that ‘2(* 1ux foralli (C: being a transitive relation) In fact,
Az C QI * ag can be seen from cons:dering these two cases: (a) if i(x) =
i then by ((feﬁmtlon the ay-rank of x is the same as the §;-rank: (b) if
i(x) =j < i but the §;-rank of x is at least p;, then, since 9!‘;_ C ®; AF 8 the
B;-rank of x is also at least ¢; and is in fact equal to the B-rank of x.
Hence the ay-rank of x equals its ﬁ;-rank equals its 8;-rank, as desired.

Thus we are able to form a sequence (9, r,) 1 a < k") satisfying the
conditions (i)-(iii). Let % = U {9, :a < &"}. 19! has cardinality k" be-
cause the structures % form a strictly increasing tower (and because
each structure has power ). Since the relation C: ol:tains between any
two (Y, ), U remains fixed throughout, whence U has cardinality
k. %, being the union of an elementiary tower of structutes each elemen-
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tarily equivalent to R L is itself elementarily equivalent to 8,9, then, is
1 model of type (k7. k) elementarily equivalent to @ . completing the
proof.

Before concluding, let me digiess for a moment to answer this ques-
tion of Vaught: Does the transter result (A", \) = (k'. «) still hold. under
the above hypotheses on k. if the language is allowed to have ¥ many
symbols? 1t does in virtue of the following fact: If every structure of
type (A’ A) having countable similarity type (i.e. appropriate for a coun-
table language) is elementarily equivalent to some structure of type
(x", k) having a universal elementary substructure of cardinality x, '?
then every structure of type (X, ) appropriate for a language of cardi-
nality « is elementarily equivalent to some structure of type (k, k). The
hypothesis certainly holds under our above assumptions on k (that the
GCH hold beneath « and 2, hold) because the model ¥, though special
and hence universal, is indeed an elementary submodel of the final mod-
el

We now sketch the proof of the above “fact’. Suppose ¥ is a structure
of type (A’. A) whose language has power k. An easy argument shows
that, for present purposes. we may replace 8 by a structure having
countable many relations and « distinguished elements: Let u,, o < x,
be a one-to-one list of elements from 1Bl and let R, . o < x, list all the
relations in the structure ¥ . If R is #-ary, set

Ryu,zy oz, it Ryry ..z,
for every sequence of z's in 1'B1. For brevity, then, we simply assume
that B itself has countably many relations and k distinguished elements.
Let ¥’ be the structure obtained by deleting the distinguished elements
from B, i.e. B’ is the reduct of B to the similarity type corresponding
to all of the relations and none of the distinguished elements in 8. By
hypothesis, there is a structure U’ of type (k. k) elementarily equivalent
to B’ which has a universal elementary submodel of cardinality k, say
A*, A being universal, if B is an elementary submodel of B’ of power
« which contains all the distinguished elements of B, then there is an
elementary embedding of B" into 9*, call the elementary embedding
f. We propose to expand 9’ to a structure 3 which shall be elementarily
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equivalent to . We must sp :cify a denotation for each of the individual
constants. If the individual constant ¢ denotes u in ¥, let ¢ denote f(1)
in . Using the fact that f'is an elementary embedding, it is easy to check
that % is indeed elementarily equivalent to 8.

Notes

! This has been independently worked out by Gandy in {4},

For another elegant treatment (of the case o) see the final section of [2].

3 There are analogous definitions for the case W 1=}, When the context permits, we frequens
tly write I, instead of £,(M), etc,

By Property 0.1 we can replace IT,,_y by ¥ _," if M is closed under finite subsets.

So in particular. every simple function is “'O

6 So there are functions fsuch that fis = Zq. ie. R, defined by R{y, x) iff ¥ = fix), is Ly rela-
non hence R is rud, but fis not rud, and xR is rud.

Also m(y) = {n(z)!z €¥ N X}and = is the identity on transitive subsets of X.

Rebholz noted that the above proof caa be shortened, since after showing that @ = «, note
that f= aohs sgis £,(J ) in the parameters n(p), n(¢) and maps a subset of wy onto J g= Jo
(Also m is £,(J ) in the parameters =(p). niq). 2. q.)

(1r . wv)(x) 1r (m, ().

Then vy = the leaet vsuch that § N a,, & JB

# was first proved by Jensen, using a more Ydifficult argument,

Eqmvalently, the (x', k) model is x-universal, i.e. every elementarily equivalen structure of
power « can be elementarily embeddcd into it.

1t
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