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The paper studies the problem of maximizing the expected utility of
terminal wealth in the framework of a general incomplete semimartingale
model of a financial market. We show that the necessary and sufficient
condition on a utility function for the validity of several key assertions of
the theory to hold true is the requirement that the asymptotic elasticity of
the utility function is strictly less than 1.

1. Introduction. A basic problem of mathematical finance is the problem
of an economic agent who invests in a financial market so as to maximize the
expected utility of his terminal wealth. In the framework of a continuous-time
model the problem was studied for the first time by Merton in two seminal
papers, [27] and [28] (see also [29] as well as [32] for a treatment of the
discrete-time case). Using the methods of stochastic optimal control, Merton
derived a nonlinear partial differential equation (Bellman equation) for the
value function of the optimization problem. He also produced the closed-form
solution of this equation, when the utility function is a power function, the
logarithm or of the form 1− e−ηx for some positive η.

The Bellman equation of stochastic programming is based on the require-
ment of Markov state processes. The modern approach to the problem of ex-
pected utility maximization, which permits us to avoid the assumption of
Markov asset prices, is based on duality characterizations of portfolios pro-
vided by the set of martingale measures. For the case of a complete financial
market, where the set of martingale measures is a singleton, this “martin-
gale” methodology was developed by Pliska [30], Cox and Huang �4�5� and
Karatzas, Lehoczky and Shreve [22]. It was shown that the marginal utility
of the terminal wealth of the optimal portfolio is, up to a constant, equal to
the density of the martingale measure; this key result naturally extends the
classical Arrow–Debreu theory of an optimal investment derived in a one-step,
finite probability space model.

Considerably more difficult is the case of incomplete financial models. It was
studied in a discrete-time, finite probability space model by He and Pearson
[16] and in a continuous-time diffusion model by He and Pearson [17] and by
Karatzas, Lehoczky, Shreve and Xu [21]. The central idea here is to solve a
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dual variational problem and then to find the solution of the original problem
by convex duality, similarly to the case of a complete model. In a discrete-
time, finite probability space model the solution of the dual problem is always
a martingale measure. We shall see in Section 5 that this assertion is not true
in a general continuous time setting any more.

In this paper we consider the problem of expected utility maximization
in an incomplete market, where asset prices are semimartingales. A subtle
feature of this model is that the extension to the set of local martingales is
no longer sufficient; to have a solution to the dual variational problem one
should deal with a properly defined set of supermartingales. The basic goal of
the current paper is to study the expected utility maximization problem under
minimal assumptions on the model and on the utility function. Our model is
very general: we only assume that the value function of the utility maximiza-
tion problem is finite and that the set of martingale measures is not empty,
which is intimately related with the assumption that the market is arbitrage-
free. Depending on the assumptions on the asymptotic elasticity of the utility
function, we split the main result into two theorems: for Theorem 2.1 we do not
need any assumption; for Theorem 2.2 we must assume that the asymptotic
elasticity of the utility function is less than 1. We provide counterexamples,
which show that this assumption is minimal for the validity of Theorem 2.

The paper is organized as follows . In Section 2 we formulate the main
Theorems 2.1 and 2.2. These theorems are proved in Section 4, after studying
an abstract version of the problem of expected utility maximization in Sec-
tion 3. The counterexamples are collected in Section 5, and in Section 6 we
have assembled some basic facts on the notion of asymptotic elasticity. We are
indebted to an anonymous referee for a careful reading and pertinent remarks.

2. The formulation of the theorems. We consider a model of a security
market which consists of d + 1 assets, one bond and d stocks. We denote by
S = �Si�1≤i≤d the price process of the d stocks and suppose that the price of the
bond is constant. The latter assumption does not restrict the generality of the
model, because we always may choose the bond as numéraire (compare, e.g.,
[8]). The process S is assumed to be a semimartingale on a filtered probability
space ���� � ��t�0≤t≤T�P�. As usual in mathematical finance, we consider a
finite horizon T, but we remark that our results can also be extended to the
case of an infinite horizon.

A (self-financing) portfolio � is defined as a pair �x�H�, where the constant
x is the initial value of the portfolio and H = �Hi�i≤d is a predictable S-
integrable process specifying the amount of each asset held in the portfolio.
The value process X = �Xt�0≤t≤T of such a portfolio � is given by

�2�1� Xt =X0 +
∫ t

0
Hu dSu� 0 ≤ t ≤ T�

For x ∈ R+, we denote by ��x� the family of wealth processes with nonneg-
ative capital at any instant, that is, Xt ≥ 0 for all t ∈ �0�T�, and with initial
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value X0 equal to x,

��x� = {
X ≥ 0� X is defined by (2.1) with X0 = x

}
�

Definition 2.1. A probability measure Q ∼ P is called an equivalent local
martingale measure if any X ∈ ��1� is a local martingale under Q.

If the process S is bounded (resp. locally bounded), then under an equivalent
local martingale measureQ (in the sense of the above definition) the process S
is a martingale (resp. a local martingale) and vice versa. If S fails to be locally
bounded, the situation is more complicated. We refer to [10], Proposition 4.7,
for a discussion of this case and the notion of sigma-martingales.

The family of equivalent local martingale measures will be denoted by
� e�S� or shortly by � . We assume throughout that

�2�2� � = ��
This condition is intimately related to the absence of arbitrage opportunities

on the security market. See [7], [10] for a precise statement and references.
We also consider an economic agent in our model which has a utility func-

tion U� �0�∞� → R for wealth. For a given initial capital x > 0, the goal of
the agent is to maximize the expected value from terminal wealth E�U�XT��.
The value function of this problem is denoted by

�2�3� u�x� = sup
X∈��x�

E�U�XT���

Hereafter we will assume, similary as in [21], that the function U is strictly
increasing, strictly concave, continuously differentiable and satisfies the Inada
conditions

�2�4�
U′�0� = lim

x→0
U′�x� = ∞�

U′�∞� = lim
x→∞U

′�x� = 0�

In the present paper we only consider utility functions defined on R+, that
is, taking the value −∞ on �−∞�0�; the treatment of utility functions which
assume finite values on all of R , such as the exponential utilityU�x� = 1−eηx,
requires somewhat different arguments.

To exclude the trivial case we shall assume throughout the paper that

�2�5� u�x� = sup
X∈��x�

E
[
U�XT�

]
<∞ for some x > 0�

Intuitively speaking, the value function u�x� can also be considered as a kind
of utility function, namely the expected utility of the agent at time T, provided
that he or she starts with an initial endowment x ∈ R+ and invests optimally
in the assets, modeled by S = �St�0≤t≤T, during the time interval �0�T�.

It is rather obvious that u�x� is strictly increasing and concave. A basic
theme of the present paper will be to investigate under which conditions u
also satisfies the other requirements of a utility function.
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A. Questions of a “qualitative” nature.

1. Is the value function u�x� again a utility function satisfying the assump-
tions (2.4), that is, increasing, strictly concave, continuously differentiable
and satisfying u′�0� = ∞� u′�∞� = 0?

2. Does the optimal solution X̂ ∈ ��x� in (2.3) exist?

Not too surprisingly, the answer to the second question is “no” in general.
Maybe more surprisingly, the answer to the first question is also negative and
the two questions will turn out to be intimately related. The key concept to
answer the above questions is the following regularity condition on the utility
function U.

Definition 2.2. A utility function U�x� has asymptotic elasticity strictly
less than 1, if

AE�U� = lim sup
x→∞

xU′�x�
U�x� < 1�

To the best of our knowledge, the notion of the asymptotic elasticity of a
utility function has not been defined in the literature previously.

We refer to Section 6 below for equivalent reformulations of this concept,
related notions which have been investigated previously in the literature [21]
and its relation to the �2-condition in the theory of Orlicz spaces. For the
moment we only note that many popular utility functions like U�x� = ln�x�
or U�x� = xα/α, for α < 1, have asymptotic elasticity strictly less than one.
On the other hand, a function U�x� equaling x/ ln�x�, for x sufficiently large,
is an example of a utility function with AE�U� = 1.

One of the main results of this paper (Theorem 2.2) asserts that for a utility
function U the condition AE�U� < 1 is necessary and sufficient for a positive
answer to both questions (1) and (2) above [if we allow S = �St�0≤t≤T to vary
over all financial markets satisfying the above requirements]. In fact, for ques-
tion (1) we can prove a stronger result: either U�x� satisfies AE�U� < 1, in
which case AE�u� < 1 too, and, in fact, AE�u�+ ≤ AE�U�+; or AE�U� = 1� in
which case there exists a continuous R-valued process S = �St�0≤t≤T inducing
a complete market, such that u�x� fails to be strictly concave and to satisfy
AE�u� < 1 in a rather striking way: u�x� is a straight line with slope 1, for
x ≥ x0. Economically speaking the marginal utility of the value function u�x�
is eventually constant to 1 (while the marginal utility of the original utility
function U�x� decreases to zero, for x → ∞). We shall discuss the economic
interpretation of this surprising phenomenon in more detail in Note 5.2 below.

We now turn to more quantitative aspects.

B. Questions of a “quantitative” nature.

1. How may we calculate the value function u�x�?
2. How may we calculate the optimal solution X̂ ∈ ��x� in (2.3), provided this

solution exists?
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A well-known tool (compare [2], [21] and the references given therein) to
answer these questions is the passage to the conjugate function,

�2�6� V�y� = sup
x>0

[
U�x� − xy]� y > 0�

The function V�y� is the Legendre-transform of the function −U�−x� (see,
e.g., [31]). It is well known (see, e.g., [31]) that if U�x� satisfies the hypotheses
stated in (2.4) above, then V�y� is a continuously differentiable, decreasing,
strictly convex function satisfying V′�0� = −∞� V′�∞� = 0� V�0� = U�∞��
V�∞� = U�0� and the following bidual relation:

U�x� = inf
y>0

[
V�y� + xy]� x > 0�

We also note that the derivative of U�x� is the inverse function of the neg-
ative of the derivative of V�y� which, following [21], we also denote by I,

�2�7� I �= −V′ = �U′�−1�

The Legendre transform is very useful in answering Question B above (com-
pare [2], [30]). We first illustrate this in the case of a complete market, which
is technically easier to handle, so suppose that there is a unique equivalent
local martingale measure Q for the process S. We then find that the function

�2�8� v�y� = E
[
V

(
y
dQ

dP

)]
is the conjugate function of u�x�, which provides a satisfactory answer to the
first part of Question B. We resume the situation of a complete market, which
to a large extent is well known, in the subsequent theorem.

Theorem 2.0 (Complete case). Assume that (2.2), (2.4) and (2.5) hold true
and, in addition, that � = �Q�. Then:

(i) u�x� < ∞, for all x > 0, and v�y� < ∞, for y > 0 sufficiently large.
Letting y0 = inf�y� v�y� <∞�, the function v�y� is continuously differentiable
and strictly convex on �y0�∞�. Defining x0 = limy↘y0

�−v′�y��� the function
u is continuously differentiable on �0�∞� and strictly concave on �0� x0�. The
value functions u and v are conjugate;

v�y� = sup
x≥0

[
u�x� − xy]� y > 0�

u�x� = inf
y≥0

[
v�y� + xy]� x > 0�

The functions u′ and v′ satisfy

u′�0� = lim
x→0

u′�x� = ∞� v′�∞� = lim
y→∞v

′�y� = 0�



ASYMPTOTIC ELASTICITY 909

(ii) If x < x0, then the optimal solution X̂�x� ∈ ��x� is given by

X̂T�x� = I
(
y
dQ

dP

)
�

for y < y0, where x and y are related via y = u′�x� [equivalently x = −v′�y�]
and X̂�x� is a uniformly integrable martingale under Q.

(iii) For 0 < x < x0 and y > y0 we have

u′�x� = E
[
X̂T�x�U′�X̂T�x��

x

]
� v′�y� = E

[
dQ

dP
V′

(
y
dQ

dP

)]
�

The above theorem dealing with the complete case will essentially be a
corollary of the subsequent two theorems on the incomplete case, that is, the
case when � is not necessarily reduced to a singleton �Q�. In this more
general setting, we dualize the optimization problem (2.3); we define the family
� �y� of nonnegative semimartingales Y with Y0 = y and such that, for any
X ∈ ��1�, the product XY is a supermartingale,

� �y� = {
Y ≥ 0� Y0 = y and XY = �XtYt�0≤t≤T is a supermartingale,

for all X ∈ ��1�}�
In particular, as ��1� contains the process X ≡ 1, any Y ∈ � �y� is a su-
permartingale. Note that the set � �1� contains the density processes of the
equivalent local martingale measures Q ∈� e�S�.

We now define the value function of the dual problem by

�2�9� v�y� = inf
Y∈� �y�

E�V�YT���

We shall show in Lemma 4.3 below that in the case of a complete market
the functions v�y� defined in (2.8) and (2.9) coincide, that is, (2.9) extends (2.8)
to the case of not necessarily complete markets.

The functions u and−v, defined in (2.3) and (2.9), clearly are concave. Hence
we may define u′ and v′ as the right-continuous versions of the derivatives of u
and v. Similarly as in Definition 2.2 we define the asymptotic elasticity AE�u�
of the value function u by

AE�u� = lim sup
x→∞

xu′�x�
u�x� �

The following theorems are the principal results of the paper.

Theorem 2.1 (Incomplete case, general utility function U). Assume that
(2.2), (2.4) and (2.5) hold true. Then:

(i) u�x� <∞, for all x > 0, and there exists y0 > 0 such that v�y� is finitely
valued for y > y0. The value functions u and v are conjugate,

v�y� = sup
x>0

[
u�x� − xy]� y > 0�

u�x� = inf
y>0

[
v�y� + xy]� x > 0�



910 D. KRAMKOV AND W. SCHACHERMAYER

The function u is continuously differentiable on �0�∞� and the function v is
strictly convex on �v <∞�.
The functions u′ and v′ satisfy

u′�0� = lim
x→0

u′�x� = ∞� v′�∞� = lim
y→∞v

′�y� = 0�

(ii) If v�y� < ∞, then the optimal solution Ŷ�y� ∈ � �y� to (2.9) exists and
is unique.

Theorem 2.2 (Incomplete case, AE�U� < 1). We now assume in addition
to the conditions of Theorem 2.1 that the asymptotic elasticity of U is strictly
less than one. Then in addition to the assertions of Theorem 2.1 we have:

(i) v�y� < ∞, for all y > 0. The value functions u and v are continuously
differentiable on �0�∞� and the functions u′ and −v′ are strictly decreasing
and satisfy

u′�∞� = lim
x→∞u

′�x� = 0� −v′�0� = lim
y→0

−v′�y� = ∞�

The asymptotic elasticity AE�u� of u also is less then 1 and, more precisely,

AE�u�+ ≤ AE�U�+ < 1�

where x+ denotes max�x�0�.
(ii) The optimal solution X̂�x� ∈ ��x� to (2.3) exists and is unique. If Ŷ�y� ∈

� �y� is the optimal solution to (2.9), where y = u′�x�, we have the dual relation

X̂T�x� = I
(
ŶT�y�

)
� ŶT�y� = U′

(
X̂T�x�

)
�

Moreover, the process X̂�x�Ŷ�y� is a uniformly integrable martingale on �0�T�.
(iii) We have the following relations between u′� v′ and X̂� Ŷ� respectively,

u′�x� = E
[
X̂T�x�U′�X̂T�x��

x

]
� v′�y� = E

[
Ŷ�y�V′�Ŷ�y��

y

]
�

(iv)

v�y� = inf
Q∈�

E

[
V

(
y
dQ

dP

)]
�

where dQ/dP denotes the Radon–Nikodym derivative of Q with respect to P
on ����T�.

The proofs of the above theorems will be given in Section 4 below.
As Examples 5.2 and 5.3 in Section 5 will show, the requirementAE�U� < 1

is the minimal condition on the utility function U which implies any of the
assertions (i), (ii), (iii) or (iv) of Theorem 2.2.
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As mentioned in the introduction, it is crucial for Theorems 2.1 and 2.2 to
hold true in the present gererality to consider the classes � �y� of supermartin-
gales and we shall see in Example 5.1′ below that, in general, � �1� cannot be
replaced by the smaller class of � loc of local martingales considered in [21],

� loc = {
Y strictly positive local martingale,
s.t. �XtYt�t is a local martingale for any X ∈ ��1�}�

Note, however, that we obtain from the obvious inclusions � ⊆ � loc ⊆ � �1�
in the setting of Theorem 2.2(iv) that

v�y� = inf
Y∈�

E�V�yY�� = inf
Y∈� loc

E�V�yY���

where we identify a measure Q ∈ � with its Radon–Nikodym derivate Y =
dQ/dP.

Let us also point out that it follows from the uniqueness of the solution to
2.9 [established in Theorem 2.1(ii)] that in the case Ŷ ∈ � (resp. Ŷ ∈ � loc)
(see Examples 5.1 and 5.1′ below) there is no solution to the problem

inf
Y∈�

E�V�yY�� (resp. inf
Y∈� loc

E�V�yY���

Let us now comment on the economic interpretation of assertions (ii) and (iv)
of Theorem 2.2; we start by observing that Theorem 2.1(ii) states that the
infimum Ŷ�y� to the optimization problem (2.9) exists and is unique (even
without any assumption on the asymptotic elasticity of U). If we are lucky
and, for fixed y > 0, the random variable ŶT�y�/y is the density of a proba-
bility measure Q̂, that is, dQ̂/dP = ŶT�y�/y, then clearly Q̂ is an equivalent
local martingale measure, that is, Q̂ ∈� e�S�, and we may use Q̂ as a pricing
rule for derivative securities via the expectation operator EQ̂�·�. This choice of
an equivalent martingale measure, which allows a nice economic interpreta-
tion as “pricing by the marginal rate of substitution,” has been proposed and
investigated by Davis [6].

However, even for a “nice” utility function such as U�x� = ln�x� and for
a “nice,” that is, continuous, process �St�0≤t≤T it may happen that we fail
to be lucky: in Section 5 we shall give an example (see 5.1) satisfying the
assumptions of Theorem 2.2 such that Ŷ�y� is a local martingale but fails to be
uniformly integrable, that is, E�ŶT�y�/y� < 1. Hence, defining the measure Q̂
by dQ̂/dP = ŶT�y�/y� we only obtain a measure with total mass less than 1.
At first glance the pricing operator EQ̂�·� induced by Q̂ seems completely
useless; for example, if we apply it to the bond Bt ≡ 1, we obtain a price
EQ̂�1� = E�Ŷ�y�/y� < 1, which seems to imply arbitrage opportunities.

But assertion (ii) of Theorem 2.2 still contains a positive message: the
optimal investment process X̂�x�, where x = −v′�y�, is such that �X̂t�x� ·
Ŷt�y��0≤t≤T is a uniformly integrable martingale.

This implies that, by taking �X̂t�x��0≤t≤T as numéraire (instead of the orig-
inal numéraire Bt ≡ 1), we may remedy the above deficiency of Q̂ (we refer to
[8] for related results on this well known “change of numéraire” technique).
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Let us go through the argument in a more formal way: first note that it follows
from Theorem 2.2(ii) that X̂T�x� is strictly positive. Hence we may consider
the R

d+2-valued semimartingale S̃ = �1�1/X̂�x�� S1/X̂�x�� � � � � Sd/X̂�x��� in
other words, we consider the process �X̂�x��1� S1� � � � � Sd� expressed in units
of the process X̂�x�. The process Z̃t = X̂t�x�Ŷt�y�/xy is the density process
of a true probability measure Q̃, where dQ̃/dP = X̂T�x�ŶT�y�/xy. The cru-
cial observation is that Q̃ is an equivalent local martingale measure for the
R
d+2-valued process S̃ (see [8]). Hence by expressing the stock price process
S not in terms of the original bond but rather in terms of the new numéraire
X̂�x�, in other words by passing from S to S̃, we have exhibited an equiva-
lent martingale measure Q̃ for the process S̃ such that the pricing operator
EQ̃�·� makes perfect sense. The above observed fact, that for the original bond
Bt ≡ 1, which becomes the process 1/X̂t�x� under the numéraire X̂�x�, we get

EQ̃
[
1/X̂T�x�

] = E[
ŶT�y�/xy

]
< 1/x = 1/X̂0�x�

now may be interpreted that the original bond simply is a silly investment
from the point of view of an investor using X̂ as numéraire, but this fact does
not permit any arbitrage opportunities if we use EQ̃�·� as a pricing operator
for derivative securities.

Summing up, under the assumptions of Theorem 2.2 the optimization prob-
lem (2.9) leads to a consistent pricing rule EQ̃�·�, provided we are ready to
change the numéraire from Bt ≡ 1 to X̂t�x�.

Another positive message of Theorem 2.2 in this context is assertion (iv):
although it may happen that ŶT�y�/y does not induce an element Q̂ ∈� e�S�
(without changing the numéraire) we know at least that ŶT�y�/y may be ap-
proximated by dQ/dP, whereQ ranges in � e�S�. We shall see in Example 5.3
below that this assertion, too, breaks down as soon as we drop the assumption
AE�U� < 1.

3. The abstract version of the theorems. We fix the notation

� �x� = {
g ∈ L0

+���� �P�� 0 ≤ g ≤XT� for some X ∈ ��x�}�(3.1)

� �y� = {
h ∈ L0

+���� �P�� 0 ≤ h ≤ YT� for some Y ∈ � �y�}�(3.2)

In other words, we pass from the sets of processes ��x��� �y� to the sets
� �x��� �y� of random variables dominated by the final outcomes XT� YT,
respectively. We simply write � � � � �� � for � �1�� � �1�� ��1�� � �1� and
observe that

�3�3� � �x� = x� = �xg� g ∈ � � for x > 0�

and the analogous relations for � �y�� ��x� and � �y�.
The duality relation between � and � (or equivalently between � and � )

is a basic theme in mathematical finance (see, e.g., �1�7�18�21�24�). In the
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previous work in the literature, mainly the duality between � and the Radon–
Nikodym densities dQ/dP of equivalent martingale measures (resp. local mar-
tingale measures) Q was considered which, in the case of a bounded process
S (resp. a locally bounded process S), form a subset �̃ of the set � consid-
ered here. The novel feature of the present approach is that we have chosen
the definition of the processes Y in � in such a way to get a perfect bipolar
relation between the sets � and � . This is the content of Proposition 3.1.

Recall that a subset � of L0
+���� �P� is called solid, if 0 ≤ f ≤ g and g ∈ �

implies that f ∈ � .

Proposition 3.1. Suppose that the R
d-valued semimartingale S satisfies

(2.2). Then the sets � �� defined in (3.1) and (3.2) have the following properties:

(i) � and � are subsets of L0
+���� �P� which are convex, solid and closed

in the topology of convergence in measure.
(ii)

g ∈ � iff E�gh� ≤ 1 for all h ∈ � and

h ∈ � iff E�gh� ≤ 1 for all g ∈ � .

(iii) � is a bounded subset of L0���� �P� and contains the constant func-
tion �.

The proof of Proposition 3.1 is postponed to Section 4 and presently we only
note that the crucial assertion is the “bipolar” relation given by (ii). Also note
that (ii) and (iii) imply that � is contained in the unit ball of L1���� �P�, a
fact which will frequently be used in the sequel.

For the remainder of this section we only shall assume that � and � are
two subsets of L0

+���� �P� verifying the assertions of Proposition 3.1 [and
not necessarily defined by (3.1) and (3.2) above]. Again we denote by � �x� and
� �y� the sets x� and y� . We shall reformulate Theorems 2.1 and 2.2 in this
“abstract setting” and prove them only using the properties of � and � listed
in Proposition 3.1.

Let U = U�x� and V = V�y� be the functions defined in Section 2 and con-
sider the following optimization problems, which are the “abstract versions”
of (2.3) and (2.9):

u�x� = sup
g∈� �x�

E�U�g���(3.4)

v�y� = inf
h∈� �y�

E�V�h���(3.5)

If � �x� and � �y� are defined by (3.1) and (3.2), the two above value func-
tions coincide with the ones defined in (2.3) and (2.9). As in (2.5) we assume
throughout this section that

�3�6� u�x� <∞ for some x > 0�
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Again the value functions u and −v clearly are concave. We denote by u′

and v′ the right-continuous versions of the derivatives of u and v. We now can
state the “abstract version” of Theorem 2.1.

Theorem 3.1. Assume that the sets � and � satisfy the assertions of Propo-
sition 3.1. Assume also that the utility function U satisfies (2.4) and that (3.6)
holds true. Then:

(i) u�x� <∞, for all x > 0 and there exists y0 > 0 such that v�y� is finitely
valued for y > y0. The value functions u and v are conjugate,

v�y� = sup
x>0

[
u�x� − xy]� y > 0�(3.6)

u�x� = inf
y>0

[
v�y� + xy]� x > 0�(3.7)

The function u is continuously differentiable on �0�∞� and the function v is
strictly convex on �v <∞�.
The functions u′ and −v′ satisfy

u′�0� = lim
x→0

u′�x� = ∞� v′�∞� = lim
y→∞v

′�y� = 0�

(ii) If v�y� <∞, then the optimal solution ĥ�y� ∈ � �y� to (3.5) exists and is
unique.

The proof of Theorem 3.1 will be broken into several lemmas. We will often
use the following simple result; see, for example, [7], Lemma A1.1 as well as
Lemma 4.2 below for a more sophisticated version of this result.

Lemma 3.1. Let �fn�n≥1 be a sequence of nonnegative random variables.
Then there is a sequence gn ∈ conv�fn� fn+1� � � ��, n ≥ 1, which converges
almost surely to a variable g with values in �0�∞�.

Let us denote by V+ and V− the positive and negative parts of the function
V defined in (2.6).

Lemma 3.2. Under the assumptions of Theorem 3.1, for any y > 0, the
family �V−�h��h∈� �y� is uniformly integrable, and if �hn�n≥1 is a sequence in
� �y� which converges almost surely to a random variable h, then h ∈ � �y�
and

�3�9� lim inf
n→∞ E

[
V�hn�] ≥ E�V�h���

Proof. Assume that V�∞� < 0 (otherwise there is nothing to prove). Let
φ� �−V�0��−V�∞�� → �0�∞� denote the inverse of −V. The function φ is
strictly increasing,

E
[
φ�V−�h��] ≤ [

Eφ�−V�h��]+φ�0�
= E�h� +φ�0� ≤ y+φ�0� ∀h ∈ � �y��
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and by (2.7) and the l’Hospital rule,

lim
x→−V�∞�

φ�x�
x

= lim
y→∞

y

−V�y� = lim
y→∞

1
I�y� = ∞�

The uniform integrability of the sequence �V−�hn��n≥1 now follows from not-
ing that �hn�n≤1 remains bounded in L1�P� [Proposition 3.1 (ii), (iii)] and by
applying the de la Vallée–Poussin theorem.

Let �hn�n≤1 be a sequence in � �y� which converges almost surely to a vari-
able h. It follows from the uniform integrability of the sequence �V−�hn��n≥1
that

lim
n→∞E

[
V−�hn�] = E�V−�h��

and from Fatou’s lemma that

lim inf
n→∞ E

[
V+�hn�] ≥ E�V+�h���

This implies (3.9). Finally, we note that h is an element of � �y� because, ac-
cording to Proposition 3.1, the set � �y� is closed under convergence in prob-
ability. ✷

We are now able to prove assertion (ii) of Theorem 3.1.

Lemma 3.3. In addition to the assumptions of Theorem 3.1, assume that
v�y� < ∞. Then the optimal solution ĥ�y� to the optimization problem (3.5)
exists and is unique. As a consequence v�y� is strictly convex on �v <∞�.

Proof. Let �gn�n≥1 be a sequence in � �y� such that

lim
n→∞E

[
V�gn�] = v�y��

By Lemma 3.1 there exists a sequence hn ∈ conv�gn�gn+1� � � ��, n ≥ 1, and a
variable ĥ such that hn→ ĥ almost surely. From the convexity of the function
V we deduce that

E
[
V�hn�] ≤ sup

m≥n
E
[
V�gm�]�

so that

lim
n→∞E

[
V�hn�] = v�y��

We deduce from Lemma 3.1 that

E
[
V�ĥ�] ≤ lim

n→∞E
[
V�hn�

] = v�y�
and that ĥ ∈ � �y�. The uniqueness of the optimal solution follows from
the strict convexity of the function V. As regards the strict convexity of v
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fix y1 < y2 with v�y1� < ∞: note that �ĥ�y1� + ĥ�y2��/2 is an element of
� ��y1 + y2�/2� and therefore, using again the strict convexity of V,

v

(
y1 + y2

2

)
≤ E

[
V

(
ĥ�y1� + ĥ�y2�

2

)]
<
v�y1� + v�y2�

2
� ✷

We now turn to the proof of assertion (i) of Theorem 3.1. Since the value
function u defined in (3.4) clearly is concave and u�x0� <∞, for some x0 > 0,
we have u�x� <∞, for all x > 0.

Lemma 3.4. Under the assumptions of Theorem 3.1 we have

�3�10� v�y� = sup
x>0

[
u�x� − xy] for each y > 0�

Proof. For n > 0 we define �n to be the positive elements of the ball of
radius n of L∞���� �P�, that is,

�n =
{
g� 0 ≤ g ≤ n}�

The sets �n are σ�L∞�L1�-compact. Noting that, by item (iii) of Proposi-
tion 3.1, � �y� is a closed convex subset of L1���� �P� we may use the mini-
max theorem (see, e.g., [33], Theorem 45.8) to get the following equality, for n
fixed:

sup
g∈�n

inf
h∈� �y�

E�U�g� − gh� = inf
h∈� �y�

sup
g∈�n

E�U�g� − gh��

From the dual relation [item (ii) of Proposition 3.1] between the sets � �x� and
� �y�� we deduce that g ∈ � �x� if and only if

sup
h∈� �y�

E�gh� ≤ xy�

It follows that

lim
n→∞ sup

g∈�n
inf
h∈� �y�

E�U�g� − gh� = sup
x>0

sup
g∈� �x�

E�U�g� − xy�

= sup
x>0
�u�x� − xy��

On the other hand,

inf
h∈� �y�

sup
g∈�n

E�U�g� − gh� = inf
h∈� �y�

E�Vn�h���= vn�y��

where

Vn�y� = sup
0<x≤n

�U�x� − xy��

Consequently, it is sufficient to show that

�3�11� lim
n→∞v

n�y� = lim
n→∞ inf

h∈� �y�
E�Vn�h�� = v�y�� y > 0�
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Evidently, vn ≤ v, for n ≥ 1. Let �hn�n≥1 be a sequence in � �y� such that

lim
n→∞E

[
Vn�hn�] = lim

n→∞v
n�y��

Lemma 3.1 implies the existence of a sequence fn ∈ conv�hn� hn+1� � � ��, which
converges almost surely to a variable h. We have h ∈ � �y�, because the set
� �y� is closed under convergence in probability. Since Vn�y� = V�y� for y ≥
I�1� ≥ I�n�, we deduce from Lemma 3.4 that the sequence �Vn�fn��−, n ≥ 1,
is uniformly integrable. Similarly as in the proof of the previous lemma, the
convexity of Vn and Fatou’s lemma now imply

lim
n→∞E

[
Vn�hn�] ≥ lim inf

n→∞ E
[
Vn�fn�] ≥ E�V�h�� ≥ v�y��

which proves (3.11). ✷

Lemma 3.5. Under the assumptions of Theorem 3.1, we have

�3�12� lim
x→0

u′�x� = ∞� lim
y→∞v

′�y� = 0�

Proof. By the duality relation (3.10), the derivatives u′ and v′ of the value
functions u and v satisfy

−v′�y� = inf
{
x� u′�x� ≤ y}� y > 0�

u′�x� = inf
{
y� � −v′�y� ≤ x}� x > 0�

It follows that the assertions (3.12) are equivalent. We shall prove the sec-
ond one. The function −v is concave and increasing. Hence there is a finite
positive limit

−v′�∞��= lim
y→∞−v

′�y��

Since the function −V is increasing and −V′�y� = I�y� tends to 0 as y tends
to ∞, for any ε > 0 there exists a number C�ε� such that

−V�y� ≤ C�ε� + εy ∀y > 0�

By this, the L1�P�-boundedness of � (3.8) and l’Hospital’s rule,

0 ≤ −v′�∞� = lim
y→∞

−v�y�
y

= lim
y→∞ sup

h∈� �y�
E

[−V�h�
y

]

≤ lim
y→∞ sup

h∈� �y�
E

[
C�ε� + εh

y

]
≤ lim
y→∞E

[
C�ε�
y

+ ε
]
= ε�

Consequently, −v′�∞� = 0. ✷
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Proof of Theorem 3.1. It suffices to remark that we obtain from the as-
sumption u�x0� <∞, for some x0 > 0, and the concavity of U that u�x� <∞,
for all x > 0 and that u is concave. Formula (3.8) now follows from Lemma
3.4 and the general bidual property of the Legendre-transform (see, e.g., [31],
Theorem III.12.2).

The continuous differentiability of u follows from the strict convexity of v
on �v <∞� again by general duality results ([31], Theorem V.26.3). ✷

In the setting of Theorem 3.1 we still prove, for later use, the following
result.

Lemma 3.6. Under the hypotheses of Theorem 3.1, let �yn�n≥1 be a sequence
of positive numbers which converges to a number y > 0 and assume that

v�yn� < ∞ and v�y� < ∞. Then ĥ�yn� converges to ĥ�y� in probability and

V�ĥ�yn�� converges to V�ĥ�y�� in L1���� �P�.

Proof. If ĥ�yn� does not converge to ĥ�y� in probability, then there exists
ε > 0 such that

lim sup
n→∞

P
(∣∣ĥ�yn� − ĥ�y�∣∣ > ε) > ε�

Moreover, since by item (iii) of Proposition 3.1 we have Eĥ�yn� ≤ yn and
Eĥ�y� ≤ y, we may assume (by possibly passing to a smaller ε > 0) that

�3�13� lim sup
n→∞

P
(∣∣ĥ�yn� + ĥ�y�∣∣ ≤ 1/ε� ∣∣ĥ�yn� − ĥ�y�∣∣ > ε) > ε�

Define

hn = 1
2

(
ĥ�yn� + ĥ�y�)� n ≥ 1�

From the convexity of the function V we have

V�hn� ≤ 1
2

(
V
(
ĥ�yn�)+V(

ĥ�y�))
and from (3.13) and the strict convexity of V we deduce the existence of η > 0
such that

lim sup
n→∞

P
{
V�hn� ≤ 1

2

(
V
(
ĥ�yn�)+V(

ĥ�y�))− η} > η�
Hence

E
[
V�hn�] ≤ 1

2

(
E
[
V
(
ĥ�yn�)]+E[

V
(
ĥ�y�)])− η2

= 1
2

(
v�yn� + v�y�)− η2�

The function v is convex and therefore continuous on the set �v < ∞�. It
follows that

lim sup
n→∞

E
[
V�hn�] ≤ v�y� − η2�
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By Lemma 3.1 we can construct a sequence gn ∈ conv�hn� hn+1� � � ��, n ≥ 1,
which converges almost surely to a variable g. It follows from Lemma 3.2 and
the convexity of V that g ∈ � �y� and

E�V�g�� = E
[

lim inf
n→∞ V�gn�

]
≤ lim inf

n→∞ E
[
V�gn�]

≤ lim inf
n→∞ E

[
V�hn�] ≤ v�y� − η2�

which contradicts the definition of v�y�. Therefore ĥ�yn� converges to ĥ�y� in
probability as n tends to ∞.

By Lemma 3.2 the sequence �V−�ĥ�yn���n≥1 is uniformly integrable. Con-
sequently, V�ĥ�yn�� converges to V�ĥ�y�� in L1���� �P� if

lim
n→∞EV

(
ĥ�yn�) = V(

ĥ�y�)�
which in turn follows from the continuity of the value function v on the set
�v <∞�. ✷

We now state the abstract version of Theorem 2.2.

Theorem 3.2. In addition to the assumptions of Theorem 3.1, we also sup-
pose that the asymptotic elasticity of the utility function U is strictly less than
one, that is,

AE�U� = lim sup
x→∞

xU′�x�
U�x� < 1�

Then in addition to the assertions of Theorem 3.1 we have:

(i) v�y� < ∞, for all y > 0. The value functions u and v are continuously
differentiable on �0�∞� and the functions u′ and −v′ are strictly decreasing
and satisfy

u′�∞� = lim
x→∞u

′�x� = 0� −v′�0� = lim
y→0

−v′�y� = ∞�

The asymptotic elasticity AE�u� of u is less than or equal to the asymptotic
elasticity of the utility function U,

AE�u�+ ≤ AE�U�+ < 1�

where x+ denotes max�x�0�.
(ii) The optimal solution ĝ�x� ∈ � �x� to (3.4) exists and is unique. If ĥ�y� ∈

� �y� is the optimal solution to (3.5), where y = u′�x�, we have the dual relation

ĝ�x� = I(ĥ�y�)� ĥ�y� = U′(ĝ�x�)�
Moreover,

E
[
ĝ�x�ĥ�y�] = xy�
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(iii) We have the following relations between u′� v′ and ĝ� ĥ, respectively,

u′�x� = E
[
ĝ�x�U′�ĝ�x��

x

]
� v′�y� = E

[
ĥ�y�V′�ĥ�y��

y

]
�

Again, the proof of Theorem 3.2 will be broken into several steps. As regards
some useful results pertaining to the asymptotic elasticity, we have assembled
them in Section 6 below and we shall freely use them in the sequel.

As observed in Section 6 we may assume without loss of generality that
U�∞� = V�0� > 0. We start with an analogue to Lemma 3.6 above.

Lemma 3.7. Under the hypotheses of Theorem 3.2, let �yn�∞n=1 be a sequence

of positive numbers tending to y > 0. Then V′�ĥ�yn��ĥ�yn� tends to V′�ĥ�y��
ĥ�y� in L1���� �P�.

Proof. By Lemma 3.6 the sequence ĥ�yn� tends to ĥ�y� in probability,
hence by the continuity of V′ we conclude that V′�ĥ�yn��ĥ�yn� tends to
V′�ĥ�y��ĥ�y� in probability.

In order to obtain the conclusion we have to show the uniform integrability
of the sequence V′�ĥ�yn��ĥ�yn�. At this point we use the hypothesis that the
asymptotic elasticity of U is less then one, which by Lemma 6.3(iv) implies
the existence of y0 > 0 and a constant C <∞ such that

−V′�y� < CV�y�
y

for 0 < y < y0�

Hence the sequence of random variables �V′�ĥ�yn��ĥ�yn���ĥ�yn�<y0��∞n=1 is

dominated in absolute value by the sequence �C�V�ĥ�yn�����ĥ�yn�<y0��∞n=1
which is uniformly integrable by Lemma 3.6.

As regards the remaining part �V′�ĥ�yn��ĥ�yn���ĥ�yn�≥y0��∞n=1� the uniform

integrability follows as in the proof of Lemma 3.2 from the fact that �ĥ�yn��∞n=1
is bounded in L1���� �P�� and limy→∞V′�y� = 0. ✷

Remark 3.1. For later use we remark that, given the setting of Lemma
3.7 and in addition a sequence �µn�∞n=1 of real numbers tending to 1 , we still
may conclude that V′�µnĥ�yn��ĥ�yn� tends to V′�ĥ�y��ĥ�y� in L1���� �P�.
Indeed, it suffices to remark that it follows from Lemma 6.3 that, for fixed
0 < µ < 1� we can find a constant C̃ <∞ and y0 > 0 such that

−V′�µy� < C̃V�y�
y

for 0 < y < y0�

Plugging this estimate into the above proof yields the conclusion.

Lemma 3.8. Under the assumptions of Theorem 3.2, the value function v
is finitely valued and continuously differentiable on �0�∞�, the derivative v′ is
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strictly increasing and satisfies

�3�14� −yv′�y� = E[
ĥ�y�I�ĥ�y��]�

Proof. Observe that −yv′�y� = limλ→1�v�y� − v�λy�/�λ− 1��, provided
the limit exists. We shall show

lim sup
λ↘1

v�y� − v�λy�
λ− 1

≤ E[
ĥ�y�I�ĥ�y��](3.15)

and

lim inf
λ↘1

v�y� − v�λy�
λ− 1

≥ E[
ĥ�y�I(ĥ�y�)](3.16)

This will prove the validity of (3.14) with v′�y� replaced by the right deriva-
tive v′r�y�; using Lemma 3.7 we then can deduce the continuity of the function
y→ v′r�y� which, by the convexity of v, implies the continuous differentiability
of v, thus finishing the proof of the lemma. ✷

To show (3.15) we estimate

lim sup
λ↘1

v�y� − v�λy�
λ− 1

≤ lim sup
λ↘1

1
λ− 1

E

[
V

(
1
λ
ĥ�λy�

)
−V(

ĥ�λy�)]
≤ lim sup

λ↘1

1
λ− 1

E

[(
1
λ
− 1

)
ĥ�λy�V′

(
1
λ
ĥ�λy�

)]
= E[

ĥ�λy�I(ĥ�y�)]�
where in the last line we have used Remark 3.1.

To show (3.16) it suffices to apply the monotone convergence theorem,

lim inf
λ↘1

v�y� − v�λy�
λ− 1

≥ lim inf
λ↘1

1
λ− 1

E
[
V
(
ĥ�y�)−V(

λĥ�y�)]
≥ lim inf

λ↘1

1
λ− 1

E
[�1− λ�ĥ�y�V′(λĥ�y�)]

= E[
ĥ�y�I(ĥ�y�)]�

Finally, v′ is strictly increasing, because v is strictly convex by Theorem 3.1.
By (3.6) we have that u′ is the inverse to −v′ and therefore, using Lemma

3.8, u′ also is continuous and strictly decreasing.

Lemma 3.9. Under the assumptions of Theorem 3.2, suppose that the num-

bers x and y are related by x = −v′�y�. Then ĝ�x��= I�ĥ�y�� is the unique
optimal solution to (3.4).

Proof. Let us first show that ĝ�x��= I�ĥ�y�� belongs to � �x�. According
to Proposition 3.1 it is sufficient to show that, for any h ∈ � �y�,
�3�17� E

[
hI

(
ĥ�y�)] ≤ xy = −yv′�y� = E[

ĥI
(
ĥ�y�)]�

where the last equality follows from (3.14).
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Let us fix h ∈ � �y� and denote

hδ = �1− δ�ĥ�y� + δh� δ ∈ �0�1��
From the inequality

0 ≤ E[
V�hδ�

]−E[
V
(
ĥ�y�)] = E[∫ ĥ�y�

hδ

I�z�dz
]

≤ E[
I�hδ�

(
ĥ�y� − hδ

)]
�

we deduce that

�3�18� E
[
I
(�1− δ�ĥ�y�)ĥ�y�] ≥ E[

I�hδ�h
]
�

Remark 3.1 implies that for δ close to 0,

E
[
I
(�1− δ�ĥ�y�)ĥ�y�] <∞�

The monotone convergence theorem and the Fatou lemma applied, respec-
tively, to the left- and right-hand sides of (3.18), as δ → 0, now give us the
desired inequality (3.17). Hence, ĝ�x� ∈ � �x�.

For any g ∈ � �x� we have

E
[
gĥ�y�] ≤ xy�
U�g� ≤ V(

ĥ�y�)+ gĥ�y��
It follows that

E�U�g�� ≤ v�y� + xy = E
[
V
(
ĥ�y�)+ ĥ�y�I�ĥ�y��]

= E[
U
(
I
(
ĥ�y�))] = E[

U
(
ĝ�x�)]�

proving the optimality of ĝ�x�. The uniqueness of the optimal solution follows
from the strict concavity of the function U. ✷

Lemma 3.10. Under the assumptions of Theorem 3.2, the asymptotic elas-
ticity of u is less than or equal to the asymptotic elasticity of U,

AE�u�+ ≤ AE�U�+ < 1�

where x+ denotes max�x�0�.

Proof. By passing from U�x� to U�x� + C, if necessary, we may assume
w.l.g. that U�∞� > 0 (compare Lemma 6.1 below and the subsequent discus-
sion). Fix γ > lim supx→∞�xU′�x�/U�x��; we infer from Lemma 6.3 that there
is x0 > 0, s.t.,

�3�19� U�λx� < λγU�x� for λ > 1� x > x0�

We have to show that there is x1 > 0� s.t.,

�3�20� u�λx� < λγu�x� for λ > 1� x > x1�
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First suppose that assertion (3.19) holds true for each x > 0 and λ > 1,
which implies

u�λx� = E[
U
(
ĝ�λx�)]

≤ E
[
λγU

(
ĝ�λx�
λ

)]
≤ λγu�x��

This gives the desired inequality (3.20) for all x > 0.
Now assume that (3.19) only holds true for x ≥ x0; replace U by the utility

function Ũ which is defined by

Ũ�x� =
 c1

xγ

γ
� for x ≤ x0,

c2 +U�x�� for x ≥ x0�

where the constants c1� c2 are such that we achieve smooth pasting at x0:
choose c1 such that c1x

γ−1
0 = U′�x0� and c2 such that c1�xγ0/γ� = c2 +U�x�.

The utility function Ũ now satisfies (3.19) for all x > 0; hence we know that
the corresponding value function ũ satisfies (3.20), for all x > 0. Clearly there
is a constant K > 0 such that

U�x� −K ≤ Ũ�x� ≤ U�x+ x0� +K� x > 0�
hence we obtain for the corresponding value functions

u�x� −K ≤ ũ�x� ≤ u�x+ x0� +K�
and in particular there is a constant C > 0 and x2 > 0 such that

u�x� −C ≤ ũ�x� ≤ u�x� +C for x ≥ x2�

so that we may deduce from Lemma 6.4 that AE�u� = AE�ũ� ≤ γ, which
completes the proof. ✷

Proof of Theorem 3.2. We have to check that the above lemmas imply
all the assertions of Theorem 3.2.

As regards the assertions

u′�∞� = lim
x→∞u

′�x� = 0 and − v′�0� = lim
x→0

−v′�y� = ∞�

they are equivalent as, by Theorem 3.1(i) and Lemma 3.8, −v′�y� is the inverse
function of u′�x�. Hence it suffices to prove the first one. We have established
in Lemma 3.10 that AE�u� < 1, which implies in particular that u′�∞� = 0.

To show the validity of the three assertions,

E
[
ĝ�x�ĥ�y�] = xy� u′�x� = E

[
ĝ�x�U′(ĝ�x�)

x

]
�

v′�y� = E
[
ĥ�y�V′(ĥ�y�)

y

]
�
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we have established the third one in Lemma 3.8. The other two assertions
are simply reformulations, when we use the relations y = u′�x�� x = −v′�y��
ĝ�x� = −V′�ĥ�y�� and ĥ�y� = U′�ĝ�x��.

The proof of Theorem 3.2 now is complete. ✷

We complete the section with the following proposition, which will be used
in the proof of item (iv) of Theorem 2.2. Let �̃ be a convex subset of � such
that (1) for any g ∈ � �

�3�21� sup
h∈�̃

E�gh� = sup
h∈�

E�gh��

(2) The set �̃ is closed under countable convex combinations, that is, for
any sequence �hn�n≥1 of elements of �̃ and any sequence of positive numbers
�an�n≥1 such that

∑∞
n=1 a

n = 1� the random variable
∑∞
n=1 a

nhn belongs to �̃ .

Proposition 3.2. Assume that the assumptions of Theorem 3.2 hold true
and that �̃ satisfies the above assertions. The value function v�y� defined in
(3.5) equals

�3�22� v�y� = inf
h∈�̃
E�V�yh���

Proof. Let us fix ε > 0. For n > 0� we define

Vn�y� = max
0<x≤n

[
U�x� − xy]� y > 0�

The function Vn is convex and Vn ↑ V, n→∞. By Lemma 6.3 below for any
random variable h > 0,

�3�23� E�V�h�� <∞⇒ E�V�λh�� <∞ ∀λ ∈ �0�1��
Hence, for any integer k we can find a number n�k� such that

�3�24� E

[
Vn�k�

(
1
2k
ĥ�y�

)]
≥ E

[
V

(
1
2k
ĥ�y�

)]
− ε

2k
�

where ĥ�y� is the optimal solution to (3.5). Denote

W0 = Vn�0�� � � � �Wk = Vn�k+1� −Vn�k�� � � � �
The functions Wk, k ≥ 1, are convex and decreasing. Since Wk ≤ V −Vn�k�,
k ≥ 1, we deduce from (3.24) that

�3�25� E

[
Wk

(
ĥ�y�
2k

)]
≤ ε

2k
� k ≥ 1�

From (3.21) and the convexity of �̃ we deduce, by applying the bipolar
theorem [3], that � is the smallest convex, closed, solid subset of L0

+���� �P�
containing �̃ . It follows that for any h in � one can find a sequence �fn�n≥1 in
�̃ such that f = limn→∞ fn exists almost surely and f ≥ h. In particular such
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a sequence exists for h = ĥ�y� and in this case we deduce from the maximality
of ĥ�y� that h = f = limn→∞ fn almost surely.

Since Vk�y� = V�y�, for y ≥ I�k�, and Vk�y� is bounded from above, we
deduce from Lemma 3.2 that, for k fixed, the sequence Vk�fn�, n ≥ 1, is
uniformly integrable and therefore EVk�fn� → EVk�ĥ�y�� as n → ∞. We
can construct the sequence �fn�n≥1 such that

EWk

(
fn

2k

)
≤ EWk

(
ĥ�y�
2k

)
+ ε

2k
� n ≥ k� k ≥ 0�

We now define

f =
∞∑
k=1

1
2k
fk�

We have f ∈ �̃ , because the set �̃ is closed under countable convex combina-
tions, and

�3�26�
EWk�f� �1�≤ EWk

( ∞∑
i=1

1
2k+i

fk+i
) �2�≤

∞∑
i=1

1
2i
EWk

(
fk+i

2k

)

≤ EWk

(
ĥ�y�
2k

)
+ ε

2k
� k ≥ 0�

where in (1) and (2) we used the fact that the function Wk is decreasing and
convex. Finally, we deduce from (3.25) and (3.26) that

EV�f� =
∞∑
k=0

EWk�f� ≤
∞∑
k=0

EWk

(
ĥ�y�
2k

)
+ 2ε

≤ EV(
ĥ�y�)+ 3ε = v�y� + 3ε�

The proof now is complete. ✷

4. Proof of the main theorems. In order to make the link between The-
orems 2.1 and 2.2 and their “abstract versions,” 3.1 and 3.2, we still have to
prove Proposition 3.1.

Let us first comment on the content of Proposition 3.1 and its relation to
known results. First note that assertion (iii) as well as the convexity and
solidity of � and � are rather obvious. The main content of Proposition 3.1 in
the closedness of � and � (w.r.t. the topology of convergence in measure) and
the bipolar relation (ii) between � and � .

In order to deal with this bipolar relation in the proper generality recall
that, for a nonempty set C ⊆ L0

+���� �P�, we define its polar C0 by

C0 = {
h ∈ L0

+���� �P�� E�gh� ≤ 1� for all g ∈ C}�
Using this terminology, assertion (ii) of Proposition 3.1 states that � = � 0

and � = � 0.
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Let us recall known results pertaining to the content of Proposition 3.1. It
was shown by Delbaen and Schachermayer (see [7] for the case of a locally
bounded semi-martingale S and [10], Theorems 4.1 and 5.5, for the general
case) that assumption (2.2) implies that � is closed w.r.t. the topology of con-
vergence in measure and that g ∈ � iff, for each Q ∈� e�S�, we have

�4�1� EQ�g� = E
[
g
dQ

dP

]
≤ 1�

Denoting by �̃ the subset � consisting of the functions h of the form h =
dQ/dP, for some Q ∈� e�S�, and using the above terminology, assertion (4.1)
may be phrased as

�4�2� � = �̃ 0�

On the other hand, it follows from the definition of � that, for h ∈ � and
g ∈ � , we have E�gh� ≤ 1; in other words,

�4�3� � ⊆ � 0 = �̃ 00�

It was shown in [3] that the following version of the bipolar theorem holds
true: for a subset A of L0

+���� �P� the bipolar A00 of A is the smallest sub-
set of L0

+���� �P� containing A, which is convex, solid and closed w.r.t. the
topology of convergence in measure.

Hence, in order to complete the proof of Proposition 3.1 it will suffice to
prove the following lemma.

Lemma 4.1. The set � is closed with respect to the topology of convergence
in measure.

In order to prove Lemma 4.1 we recall the concept of Fatou convergence in
the setting of stochastic processes (see [13]).

Definition 4.1. Let �Xn�n≥1 be a sequence of stochastic processes defined
on a filtered probability space ���� � ��t�t≥0�P� and τ be a dense subset of
R+. The sequence �Xn�n≥1 is Fatou convergent on τ to a process X, if �Xn�n≥1
is uniformly bounded from below and

Xt = lim sup
s↓t� s∈τ

lim sup
n→∞

Xn
s

= lim inf
s↓t� s∈τ

lim inf
n→∞ Xn

s

almost surely for all t ≥ 0. If τ = R+, then the sequence �Xn�n≥1 is called
simply Fatou convergent.

The following lemma on Fatou convergence was proved in [13].
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Lemma 4.2. Let �Xn�n≥1 be a sequence of supermartingales,Xn
0 = 0, n ≥ 1,

which is uniformly bounded from below, and τ be a dense countable subset of
R+. There is a sequence Yn ∈ conv�Xn�Xn+1� � � ��, n ≥ 1, and a supermartin-
gale Y, Y0 ≤ 0, such that �Xn�n≥1 is Fatou convergent on τ to Y. ✷

Proof of Lemma 4.1. Let �gn�n≥1 be a sequence in � , which converges
almost surely to a function g, and �Yn�n≥1 be a sequence in � such that
YnT ≥ gn. We have to show that g is in � . Without restriction of generality
we may suppose that these processes are constant on �T�+∞�. By Lemma 4.2
there is a sequence Zn ∈ conv�Yn�Yn+1� � � ��� n ≥ 1, which is Fatou convergent
to a process Z on the set of rational points. By the same lemma �XtZt�0≤t≤T
is a supermartingale, for each X ∈ � and Z0 ≤ 1. By passing from Z to Z/Z0,
if necessary, we may assume that Z ∈ � . The result now follows from the
obvious inequality, ZT ≥ g. ✷

Proof of Proposition 3.1. Let us verify that Lemma 4.1 indeed implies
Proposition 3.1: the set � contains �̃ and clearly is convex and solid. By
Lemma 4.1 it also is closed and therefore we may apply the bipolar Theorem
to conclude that

�4�4� � ⊇ �̃ 00�

It follows that

�4�5� � = �̃ 00 = � 00

and therefore, using (4.2) and the fact that � 00 = � ,

� = � 0 and � = � 0 = �̃ 0�

which implies assertions (i) and (ii) of Proposition 3.1. As regards assertion
(iii), it is obvious that � contains the constant function �. The L0-boundedness
of � , which by (ii) is equivalent to the existence of a strictly positive element
g ∈ D, is implied by assumption (2.2). ✷

If we combine Proposition 3.1 with Theorems 3.1 and 3.2, we obtain pre-
cisely Theorems 2.1 and 2.2, with the exception of item (iv) of Theorem 2.2,
which now follows from the fact that � is closed under countable convex
combinations and Proposition 3.2, observing that (3.29) is implied by (4.2)
and (4.5).

The proof of Theorems 2.1 and 2.2 now is complete.
As regards Theorem 2.0 we still have to show the validity of the remain-

ing assertions of Theorem 2.0 which are not directly implied by Theorem 2.1
(note that in Theorem 2.0 we did not make any assumption on the asymptotic
elasticity of U so that Theorem 2.2 does not apply).

We start by observing that in the complete case, the definitions of v�y� given
in (2.8) and (2.9) indeed coincide.
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Lemma 4.3. Assume that the family � = � e�S� of martingale measures
consists of one element Q only. Then for the function v�y� as defined in (2.9)
we have

�2�10� v�y� = E
[
V

(
y

(
dQ

dP

))]
�

where dQ/dP is the Radon–Nikodym derivative of Q with respect to P on
����T�.

Proof. We denote by Z = �Zt�0≤t≤T the density process of Q with respect
to P. Let Y be an element of � �1�. We shall show that the setA = �YT > ZT�
has measure zero, which will prove the lemma. Denoting by

a = Q�A��
we have to show a = 0, as the measures P and Q are equivalent.

Suppose that a > 0. The process

Mt =
1
Zt
E
[
ZT�A � �t

]
is a martingale under Q with the initial value M0 = a and the terminal value
MT = �A. By our completeness assumption we may apply Jacod’s theorem
(see [19], page 338, Theorem 11.2) so thatM can be represented as a stochastic
integral with respect to S,

Mt = a+
∫ t

0
Hu dSu�

Hence M ∈ ��a�. However,

E�YTMT� = E�YT�A� > E�ZT�A� = a = Y0M0�

which contradicts the supermartingale property of YM. ✷

Proof of Theorem 2.0. We first prove that

�4�6� v′�y� = E
[
dQ

dP
V′

(
y
dQ

dP

)]
�

for each y > y0. Indeed, fix y > y0 and h > 0; for almost each ω ∈ � we have

V

(
�y+ h�dQ

dP
�ω�

)
−V

(
y
dQ

dP
�ω�

)
=

∫ y+h
y

dQ

dP
�ω�V′

(
z
dQ

dP
�ω�

)
dz�

hence

v�y+ h� − v�y� = E
[
V

(
�y+ h�dQ

dP

)
−V

(
y
dQ

dP

)]
= E

[∫ y+h
y

dQ

dP
V′

(
z
dQ

dP

)
dz

]
=

∫ y+h
y

E

[
dQ

dP
V′

(
z
dQ

dP

)]
dz�
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where we are allowed to use Fubini’s theorem above as the integrand �dQ/dP�
V′�z�dQ/dP�� is negative on �×�y�y+h�. As the double integral is finite we
obtain (4.6).

Using the definition of X̂�x� given in Theorem 2.0(ii) and the relations
y = u′�x�� x = −v′�y� for 0 < x < x0 and y > y0� we obtain the formula

�4�7� u′�x� = E
[
X̂T�x�U′�X̂T�x��

x

]
� 0 < x < x0

and

�4�8� EQ
[
X̂T�x�

] = E[
I

(
y
dQ

dP

)
dQ

dP

]
= −v′�y� = x�

thus proving items (ii) and (iii) of Theorem 2.0.
Formula (4.8) in conjunction with the martingale representation theorem

shows in particular that X̂�x� ∈ ��x�. We still have to show that X̂�x� is the
optimal solution of (2.3). To do so we follow the classical reasoning based on
the fact that the marginal utility U′�X̂T�x�� is proportional to dQ/dP: let
X�x� be any element of ��x�. As EQ�XT�x�� ≤ x we obtain

E
[
U�XT�x��

] = E[
U�X̂T�x�� +

(
U�XT�x�� −U�X̂T�x��

)]
≤ E[

U
(
X̂T�x�

)]+E[
U′

(
X̂T�x�

)(
XT�x� − X̂T�x�

)]
= E[

U
(
X̂T�x�

)]+EQ[ dPdQU′�X̂T�x��
(
XT�x� − X̂T�x�

)]
= E[

U
(
X̂T�x�

)]+ yEQ[XT�x� − X̂T�x�
]

≤ E[
U�X̂T�x��

]
�

where, by the strict concavity ofU, in the second line we have strict inequality
ifXT�x� ≡ X̂T�x�. This readily shows that X̂�x� is the unique optimal solution
of (2.3).

To prove item (i), note that it follows from (4.6) that v is continuously dif-
ferentiable and strictly convex on �y0�∞�, hence by general properties of the
Legendre transform [31] we have that u is continuously differentiable and
strictly concave on �0� x0�. ✷

5. Counterexamples. We start with an example of a continuous secu-
rity market and a well-behaved utility function U for which the infimum in
Theorem 2.2(iv) is not attained.

Example 5.1. The construction of the financial market is exactly the same
as in [9]. Let B and W be two independent Brownian motions defined on a
filtered probability space ���� �P�, where the filtration ��t�t≥0 is supposed
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to be generated by B and W. The process L defined as

Lt = exp
(
Bt − 1

2t
)
� t ∈ R+�

is known to be a martingale but not a uniformly integrable martingale, be-
cause Lt tends to 0 almost surely as t tends to ∞. The stopping time τ is
defined as

τ = inf
{
t ≥ 0� Lt = 1/2

}
�

Clearly τ <∞ a.s. Similarly, we construct a martingale

Mt = exp
(
Wt − 1

2t
)
�

The stopping time σ is defined as

σ = inf
{
t ≥ 0�Mt = 2

}
�

The stopped process Mσ = �Mt∧σ�t≥0 is a uniformly integrable martingale. In
case M does not hit level 2, the stopping time σ equals ∞. Therefore we have
that Mσ equals 2 or 0, each with probability 1/2.

We now define the security market model with the time horizon,

T = τ ∧ σ�
and the (stock) price process,

St = exp
{−Bt + 1

2t
}
�

The utility function U is defined as

U�x� = lnx�

in which case I�y� = −V′�y� = 1/y and V�y� = − lny− 1.

Proposition 5.1. The following assertions hold true:

(i) The process LTMT = �Lt∧TMt∧T�t≥0 is the density process of an equiv-
alent martingale measure and hence � = �.

(ii) The process LT = �Lt∧T�t≥0 is not a uniformly integrable martingale
and hence is not the density process of an equivalent martingale measure.

(iii) The process LT is the unique optimal solution of the optimization prob-
lem,

v�1� = inf
Y∈� �1�

E�V�YT�� = − sup
Y∈� �1�

E�lnYT + 1��

(iv) The process ST is in the unique optimal solution to the optimization
problem

u�1� = sup
X∈��1�

E�U�XT�� = sup
X∈��1�

E�ln�XT���
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Proof. The items (i) and (ii) were proved in [9]. Clearly, L ∈ � �1�. For any
Y ∈ � �1�, the process Y/L = YS is a supermartingale starting at Y0S0 = 1.
Hence, by Jensen’s inequality,

E�lnYT� = E
[
ln
YT
LT

]
+E�lnLT� ≤ ln

(
E

[
YT
LT

])
+E�lnLT� ≤ E�lnLT��

To complete the proof, it is sufficient to show that

v�1� = −E�lnLT� − 1 <∞�
From the supermartingale property of the process

Nt =
√
Lt exp

(
t

8

)
= exp

(
Bt
2
− t

8

)
and the inequality LT ≥ 1/2� we deduce that

E

[
exp

(
T

8

)]
≤
√

2�

It follows that BT is a uniformly integrable martingale and

E�lnLT� = E
[
BT − 1

2T
] = − 1

2E�T� > −∞�
Assertion (iv) now follows from Theorem 2.2(ii). ✷

We give one more example displaying a phenomenon similar to Example 5.1
above, that is, that the infimum in (2.2)(iv) is not attained.

Example 5.1′ below will not be a continuous process, which is a drawback in
comparison to Example 5.1. On the other hand, Example 5.1′ has some other
merits: it is a one-period process defined on a countable probability space �
and it shows that the optimal solution Ŷ�y� to (2.9) may fail to be a local
martingale.

Example 5.1′. Let �pn�∞n=0 be a sequence of strictly positive numbers,
∑∞
n=0

pn = 1, tending sufficiently fast to zero and �xn�∞n=0 a sequence of positive
reals, x0 = 2, decreasing also to zero [but less fast than �pn�∞n=0]. For example,
p0 = 1 − α� pn = α2−n, for n ≥ 1, and x0 = 2� xn = 1/n, for n ≥ 1, will do, if
0 < α < 1 is small enough to satisfy �1− α�/2+ α∑∞

n=1 2−n�−n+ 1� > 0.
Now define S�=�S0� S1� by letting S0 ≡ 1 and S1 to take the values �xn�∞n=0

with probability pn. As filtration we choose the natural filtration generated
by S. Clearly, the process S satisfies � e�S� = ∅.

In this easy example we can explicitly calculate the family of processes
��1�: it consists of all processes X with X0 = 1 and such that X1 equals the
random variable Xλ �= 1+ λ�S1 −S0�, for some −1 ≤ λ ≤ 1.

Using again U�x� = ln�x� as a utility function and writing f�λ� =
E�U�Xλ��� we obtain by an elementary calculation,

f′�λ� =
∞∑
n=0

pn
xn − 1

1+ λ�xn − 1�
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so that f′�λ� is strictly positive for −1 ≤ λ ≤ 1 if α > 0 satisfies the above
assumption f′�1� = �1− α� 1

2 + α
∑∞
n=1 2−n�−n+ 1� > 0. Hence f�λ� attains its

maximum on �−1�1� at λ = 1; in other words, the optimal investment process
X̂�1� equals the process S.

We can also explicitly calculate u�x� by

u�x� = E�U�xS1�� =
∑∞
n=0pnU�xxn�

=
∞∑
n=0

pn
(
ln�x� + ln�xn�

) = ln�x� +
∞∑
n=0

pn ln�xn��

In particular, u′�1� = 1 and by Theorem 2.2 we get Ŷ�1� = U′(X̂�1�) = �S1�−1.
Note that

E
[
S−1

1

] = ∞∑
n=0

pn
xn

= p0

2
+

∞∑
n=1

npn

is strictly less than 1 by using again the condition �1−α� 1
2 +α

∑∞
n=1 2−n�−n+

1� > 0. In particular, the optimal element Ŷ�1� ∈ �̂ �1� is not a martingale (not
even a local martingale) but only a supermartingale and Ŷ1�1� is not the den-
sity of a martingale measure for the process S. This finishes the presentation
of Example 5.1′.

From this point on we will assume that the asymptotic elasticity of the
utility function U equals 1. By Corollary 6.1(iii) below this is equivalent to
the following property of the conjugate function V of U:

�5�1�
For any y0 > 0� 0 < µ < 1� C > 0� there is

0 < y < y0 s.t. V�µy� > CV�y�.

Lemma 5.1. Assume that the functionV satisfies (5.1). Then there is a prob-
ability measure Q on R+ supported by a sequence �xk�k≥0 decreasing to 0 such
that:

(i)
∫∞

0 V�x�Q�dx� <∞;

(ii)
∫∞

0 xI�x�Q�dx� = −
∫∞

0 xV
′�x�Q�dx� <∞;

(iii)
∫∞

0 V�γx�Q�dx� = ∞ for any γ < 1.

Proof. Without loss of generality, we may assume that V > 0. Since the
function V satisfies (5.1), there is a decreasing sequence �yn�n≥1 of positive
numbers converging to 0 such that, for any 0 < γ < 1�

�5�2�
∞∑
n=1

1
22n

V�γyn�
V�yn�

= +∞�
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Denote

xn = yn
/(

1− 1
2n

)
�

pn =
K

22nV�yn�
�

where the normalizing constant K is chosen s.t.
∑∞
n=1pn = 1. We now are

ready to define the measure Q, which is supported by the sequence �xn�n≥1,

Q�xn� = pn�

Let us check the assertions of our lemma. We have∫ ∞
0
V�x�Q�dx� =

∞∑
n=1

pnV�xn� ≤
∞∑
n=1

pnV�yn� =K
∞∑
n=1

1
22n

K

3
�

proving (i). As regards (ii), we use the inequality

xI�x� ≤ 1
1− γ

(
V�γx� −V�x�) ≤ 1

1− γV�γx��

which is valid for any γ < 1 and x > 0, to get

xnI�xn� ≤ 2nV�yn��

and hence ∫ ∞
0
xI�x�Q�dx� =

∞∑
n=1

pnxnI�xn� ≤
∞∑
n=1

pn2nV�yn�

=K
∞∑
n=1

1
2n
=K�

Finally, (5.2) implies (iii): for any γ < 1�∫ ∞
0
V�γx�Q�dx� =

∞∑
n=1

pnV�γxn� = ∞�

The proof is complete. ✷

Note 5.1. The assertions (i)–(iii) of Lemma 5.1 are sensitive only to the
behavior of Q near zero. For example, we can always choose Q in such a way
that

∫∞
0 xQ�dx� = 1 or Q��0�1�� = 1.

We now construct an example of a complete continuous financial market
such that the assertions (i), (ii) and (iii) of Theorem 2.2 fail to hold true as
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soon as AE�U� = 1. We start with an easy observation which shows the
intimate relation between assertion (i) and (ii) of Theorem 2.2:

Scholium 5.1. Under the hypotheses of Theorem 2.1, suppose that, for 0 <
x1 < x2, the optimal solutions X̂�x1� ∈ ��x1� and X̂�x2� ∈ ��x2� in (2.3) exist.
Then

u

(
x1 + x2

2

)
>
u�x1� + u�x2�

2
�

Hence, if u′�x� ≡ 1 for x ≥ a, there is at most one x ≥ a for which an optimal
solution X̂�x� ∈ ��x� to (2.3) can exist.

Proof. For X̂�x1� ∈ ��x1� and X̂�x2� ∈ ��x2�� the convex combination
X = �X̂�x1�+X̂�x2��/2 is an element of ���x1 + x2�/2�. By the strict concavity
of the utility function U we have

u

(
x1 + x2

2

)
≥ E�U�X�� > E

[
U
(
X̂�x1�

)]+E[
U
(
X̂�x2�

)]
2

= u�x1� + u�x2�
2

�

The second assertion is an immediate consequence. ✷

After this preliminary result we give the construction of our example.

Example 5.2. Let U be a utility function satisfying (2.4) and such that
AE�U� = 1. Let W be a standard Brownian motion with W0 = 0 defined on a
filtered probability space ����T� ��t�0≤t≤T�P�, where 0 < T <∞ is fixed and
the filtration ��t�0≤t≤T is supposed to be generated by W. Let Q be a measure
on �0�∞� for which the assertions (i)–(iii) of Lemma 5.1 hold true and such
that (see Note 5.1)

�5�3�
∫ ∞

0
xQ�dx� = 1�

Let

a =
∫ ∞

0
xI�x�Q�dx��

and η be a random variable on ����T�, whose distribution under P coincides
with the measure Q. Clearly, (5.3) implies that Eη = 1. The process

Zt = E�η � �t�� t ≥ 0�

is a strictly positive martingale with initial value Z0 = 1. From the integral
representation theorem we deduce the existence of a predictable process µ =
�µ�t≥0 such that

Zt = 1+
∫ t

0
µsZs dWs
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or, equivalently,

Zt = exp
(∫ t

0
µs dWs − 1

2

∫ t
0
µ2
s ds

)
�

The stock price process S is now defined as

�5�4� St = 1+
∫ t

0
Su

(−µu du+ dWu

)
�

The standard arguments based on the integral representation theorem and the
Girsanov theorem imply that the family of martingale measures consists of
exactly one element (i.e., the market is complete) and that the density process
of the unique martingale measure is equal to Z.

Proposition 5.2. Let U be a utility function satisfying (2.4) and such that
AE�U� = 1. Then for the security market model defined in (5.4) the following
assertions hold true:

(i) For x ≤ a, the optimization problem (2.3) has a unique optimal solution
X̂�x�, while, for x > a, no optimal solution to (2.3) exists.

(ii) u is continuously differentiable; it is strictly concave on �0� a�, while
u′�x� = 1, for x ≥ a.

(iii) v is continuously differentiable and strictly convex on �1�∞� and the
right derivative v′r at y = 1 equals v′r�1� = −a, while v�y� = ∞, for y < 1.

Proof. The equivalence of (ii) and (iii) follows from the fact that u and v
are conjugate and from the following well-known relations from the theory of
convex functions:

u�x� = inf
y>0

�v�y� + xy� � x > 0�

u′�s� = inf
{
t > 0� − v′�t� ≤ s}� s ≥ 0�

−v′�t� = inf
{
s > 0� u′�s� ≤ t}� t ≥ 0�

In order to prove (iii), note that

v�y� = E[
V�yZT�

] = ∫ ∞
0
V�yx�Q�dx�� y > 0�(5.5)

−v′�y� = E[
ZTI�yZT�

] = ∫ ∞
0
xI�yx�Q�dx� ≤ a if v�y� <∞�(5.6)

with equality holding in (5.6) for y = 1 [in which case v′�y� has to be in-
terpreted as the right derivative]. Indeed, equality (5.5) is the assertion of
Lemma 4.3 and (5.6) follows from Theorem 2.0 and Lemma 5.1. The fact that
v′�y� is continuous on �1�∞� now follows from (5.6) by applying the monotone
convergence theorem.

To show (i) note that, for x ≤ a, the random variable X̂�x� = I�y�dQ/dP��
with y = u′�x� ≥ 1 is the unique solution to the optimization problem (2.3).

Finally, it follows from Scholium 5.1, from (ii) and the fact that X̂�a� does
exist that, for x > a there cannot exist an optimal solution to (2.3).
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Note 5.2. (a) The message of the above example is rather puzzling from
an economic point of view (at least to the authors): consider an economic agent
with utility functionU satisfying (2.4) andAE�U� = 1, which is endowed with
an initial capital x which is large enough such thatU′�x� < ε, for a given small
number ε > 0; in other words, by passing from the endowment x to x+ 1� the
utility U�x� of the agent increases to U�x+ 1� by less than ε.

The situation changes drastically if the agent is allowed to invest in the
complete market S = �St�0≤t≤T and to maximize the expected utility of the
resulting terminal wealthXT�x�. In the above example, for x ≥ a, the passage
from x to x+ 1 increases the maximal expected utility from u�x� to u�x+ 1�
by 1 [as u′�z� ≡ 1, for z ≥ a]. How can this happen for such a “rich” agent,
faced with small marginal utility U′�z�, if z is in the order of x?

We shall try to give an intuitive explanation of the phenomenon occuring
in Example 5.2. What the agent does to choose an approximating sequence
Xn�x� ∈ ��x� for the optimization problem (2.3) is the following: he or she
uses the portion a of the initial endowment x > a to finance the wealth X̂T�a�
at time T� which is the optimal investment for an agent endowed with initial
capital a. With the remaining endowment x− a� he or she gambles in a very
risky way: he or she bets it all on the event Bn = �ZT = xn�, for some large
n. Noting that the random variable X̂�a� takes the value ξn

�= I�xn� on Bn, an
easy calculation shows that the agent can increase the value of the investment
at time t = T, contingent on Bn, from ξn to �x − a��xnpn�−1 + ξn, by betting
the amount �x−a� at time t = 0 on the event �ZT = xn�. What is the increase
fn�x− a� of expected utility? Clearly, we have

fn�x− a� = pn
[
U
(�x− a��xnpn�−1 + ξn

)−U�ξn�]�
so that fn is a strictly concave function of the variable x − a ∈ R+; another
easy calculation reveals that f′n�0� = 1 so that, “for small x − a” the gain in
expected utility is approximately equal to (and slightly less then) x− a.

So far we have only followed the line of the usual infinitesimal Arrow–
Debreu type arguments for the optimal investment X̂�a�. The new ingredient
is that, in the construction of Example 5.2, we have used the assumption
AE�U� = 1 in order to choose the numbers xn and pn carefully, so that the
functions �fn�∞n=1 =

(
fn�x− a�

)∞
n=1 tend to the identity function uniformly on

compact subsets of R+. Hence in Example 5.2 the above argument does not
only hold for “small x−a” (in the sense of a first-order approximation); we now
have that, for any fixed �x− a� > 0, the increase in expected utility fn�x− a�
tends to x− a, as n tends to infinity.

This explanation of the phenomenon underlying Example 5.2 also indicates
why, for x > a, there is no optimal solution X̂�x� ∈ ��x�, as in the above
reasoning we obviously cannot “pass to the limit n→∞.”

(b) We also note that Example 5.2 is in fact a very natural example: it may
also be viewed, similarly to Examples 5.1 and 5.3 below, as an exponential
Brownian motion with constant drift stopped at a stopping time T, which is
finitely valued (but not bounded).
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Indeed, fix Q as in Lemma 5.1 such that barycenter �Q� = ∫∞
0 xQ�dx� = 1

and such that for the decreasing sequence �xk�k≥0 supporting Q we have x0 >
1 and x1 < 1, which clearly is possible. Now let

Rt = exp�Wt + t/2�� t > 0�

By Girsanov’s formula,

Zt = exp�−Wt − t/2�� t > 0�

is the unique density process with Z0 = 1 such that RtZt is a martingale.
We want to find a stopping time T such that the law of ZT equals Q. Once

we have done so, we may replace the definition of the stock price process S in
(5.4) by

�5�4′� St = Rt∧T = exp
(
Wt∧T + �t ∧T�/2

)
� t > 0

and deduce the conclusions of Proposition 5.2 for this stock price process in
exactly the same way as above.

The existence of a stopping time T such that the law of ZT equals Q is a
variant of the well-known “Skorohod stopping problem.” For the convenience
of the reader we sketch a possible construction of T:

T = inf
{
t� Zt = x0 or

(
Zt = xi and ti−1 < t ≤ ti

)}
�

where the increasing sequence of deterministic times �ti�∞i=0 is defined induc-
tively by t0 = 0 and

ti = inf
{
t� P

[
Zt∧Ti = xi

] = Q�xi�}�
The stopping times Ti are also inductively defined (after determining t0� � � � �
ti−1) by

Ti = inf
{
t� Zt = x0 or

(
Zt = xj and tj−1 < t ≤ tj and 1 ≤ j < i)�

or
(
Zt = xi and ti−1 < t

)}
�

Intuitively speaking, we start to define the stopping time T at time t0 = 0
as the first moment when Zt either hits x0 > 1 or x1 < 1 and continue to do
so until the (deterministic) time t1, when P�ZT∧t = x1� has reached the value
Q�x1�. Then we lower the stakes and define T to be the first moment when
Zt hits x0 or x2 and so on. It follows from the martingale property of Zt and∫∞

0 Q�dx� = 1 that T is finite almost surely and that the law of ZT equals Q.

We close the section with an example of an (incomplete) continuous financial
model such that assertion (iv) of Theorem 2.2 fails to hold true.

Example 5.3. Let Q be a probability measure on R+ supported by a de-
creasing sequence �xk�k≥0: 1 > x0 > x1 > · · · converging to 0, such that∫ ∞

0
V�x�Q�dx� <∞�∫ ∞

0
V�γx�Q�dx� = ∞ ∀γ < 1�
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The existence of such a measure follows from Lemma 5.1 and Note 5.1. Our
construction will use a Brownian motion B and a sequence �εn�n≥1 of inde-
pendent (mutually as well as of B) random variables such that

εn =


2n� with probability

1
2n+1 − 1

,

1
2
� with probability 1− 1

2n+1 − 1
.

Note that Eεn = 1.
The martingale L is defined as

Lt = exp
(
Bt − 1

2t
)
�

Similarly to Note 5.2(b), we define the increasing sequence 0 = t0 < t1 < · · · <
tk < · · · in R+ in such a way that the deterministic function

φ�t� =
∞∑
k=0

xk��tk≤t<tk+1�

has the property that the probability that the stopping time

τ = inf
{
t ≥ 0� Lt = φ�t�

}
belongs to the interval �tk� tk+1� is equal toQ�xk�. In other words, the distribu-
tion of the random variable Lτ under P is equal to Q. Since

∑∞
k=0Q�xk� = 1,

the stopping time τ is finite a.s.
Using the sequence �εn�n≥1� we construct the martingale

Mt =
�t�∏
i=1

εi�

where �t� denotes the largest integer less then t. The stopping time σ is defined
as

σ = inf
{
t ≥ 0�Mt = 2

}
�

The stopped process Mσ = �Mt∧σ�t≥0 is a uniformly integrable martingale. In
the case M does not hit level 2, the stopping time σ equals ∞. Therefore we
have that Mσ equals 2 or 0, each with probability 1/2.

The final ingredient of our construction is the stopping time ψ defined as

ψ = inf
{
t ≥ σ � Lt −Lσ ≥ 1

}
�

Note that L is a uniformly integrable martingale on �τ ∧ σ� τ ∧ ψ�, that is,

E
[
Lτ∧ψ � �τ∧σ

] = Lτ∧σ �
We now determine the security market model with the time horizon

�5�7� T = τ ∧ ψ
and the price process

�5�8� St = exp
{−Bt + 1

2t
}
� 0 ≤ t ≤ T = τ ∧ ψ�
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defined on a filtered probability space ���� �P�, where the filtration is sup-
posed to be generated by LT andMσ (note thatM is stopped at time σ , which
is less than or equal to T).

Proposition 5.3. Assume that the utility function U satisfies (2.4) and
AE�U� = 1. Then for the financial model defined in (5.7) and (5.8), the follow-
ing assertions hold true:

(i) The family of equivalent local martingale measures for the process S is
not empty.

(ii) The process LT = Lτ∧ψ is an element of � �1� and

E�V�LT�� <∞�
However LT is not a uniformly integrable martingale and hence is not the
density process of an equivalent martingale measure.

(iii) IfY is an element of � �1� andY ≡ L� thenEV�YT� = ∞. In particular,

E

[
V

(
dQ

dP

)]
= ∞

for any martingale measure Q.

Proof. (i) Let us show that the process LTMσ is a uniformly integrable
martingale and hence is the density process of a martingale measure. Indeed,

E�LTMσ �
�1�≤ E[

Lτ∧σMσ

] = 2E
[
Lτ∧σ��σ<∞�

]
= lim
n→∞2E

[
Lτ∧σ∧n��σ≤n�

] = lim
n→∞2E

[
Ln��σ≤n�

]
= lim
n→∞2�Ln�P�σ ≤ n� = lim

n→∞2P�σ ≤ n� = 1�

where in (i) we used the fact that L is a uniformly integrable martingale on
�τ ∧ σ�T�.

(ii) Since L is a martingale and SL ≡ 1, we have that LT is an element of
� �1�. From the equality

E
[
LT��σ<∞�

] = 1
2 �

proved above, we deduce that

E�LT� = E
[
Lτ��σ=∞�

]+E[
LT��σ<∞�

]
= 1

2

(
E�Lτ� + 1

)
< 1

2�x0 + 1� < 1�

Hence LT is not a uniformly integrable martingale. Finally,

E
[
V�LT�

] ≤ E[
V�Lτ�

] = ∫ ∞
0
V�x�Q�dx� <∞�

where the first inequality holds true, because LT ≥ Lτ and V is a decreasing
function.

(iii) To avoid technicalities, we assume hereafter that V > 0. We start with
two lemmas.
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Lemma 5.2. Let χ be a stopping time. Then, for a set A ∈ �χ, P�A� > 0,
A ⊆ �χ < τ� and γ < 1� we have

E
[
V�γLτ��A

] = ∞�
Proof. The lemma can be equivalently reformulated as follows: for any

stopping time χ and γ < 1�

�5�9� E
[
V�γLτ� � �χ

] = ∞ on the set �χ < τ��

Let us denote by k�χ� = k�χ��ω� the first index k such that tk > χ, where tk
is the number from our partition. Since

E
[
V�γLτ� � �χ

] ≥ ∑
k≥k�χ�

V�γxk�P
[�tk ≤ τ < tk+1� � �χ

]
�

(5.9) is satisfied if there exists a �χ-measurable nonnegative function ξ such
that �χ < τ� ⊆ �ξ > 0� and

�5�10� P
[�tk ≤ τ < tk+1� � �χ

]�ω� ≥ ξQ�xk� ∀k ≥ k�χ��

Let θ�y� denote the first passage time of the process L to the number y < 1,

θ�y� = inf
(
t ≥ 0� Lt = y

) = inf
(
t ≥ 0� Bt −

t

2
= lny

)
�

The density of θ�y� equals (see, e.g., [23], Section 3.5.C)

f�t�y��= P�θ�y� ∈ �t� t+ dt��
dt

=
√

ln2 y

2πt3
exp

[
−�lny− t/2�

2

2t

]
�

It follows that the random function ξ defined as

ξ = ess inft≥k�χ�
f�t− χ�xk�χ�/Lχ�

f�t�xk�χ��
��χ<τ�

is strictly positive on the set �χ < τ�.
Further, denoting by

g�t�x� s��= P�τ ∈ �t� t+ dt� � Ls = x� τ > s�
dt

the density of τ conditioned to the event �Ls = x� τ > s� and using the strong
Markov property for the process L� we deduce on the set �χ < τ� and for
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k ≥ k�χ��

Q�xk� = P
(
tk ≤ τ < tk+1

) = ∫ tk+1

tk

g�t � 1�0�dt

=
∫ tk+1

tk

(∫ t
tk�χ�
g
(
t � xk�χ�� s

)
f
(
s�xk�χ�

)
ds

)
dt

≤
∫ tk+1

tk

(∫ t
tk�χ�
g
(
t � xk�χ�� s

)1
ξ
f

(
s− χ� xk�χ�

Lχ

)
ds

)
dt

= 1
ξ

∫ tk+1

tk

g

(
t � Lχ�χ

)
dt = 1

ξ
P
[(
tk ≤ τ < tk+1

) � �χbigr��
proving (5.10). ✷

Lemma 5.3. Any process Y in � �1� has the form

�5�11� Y =NLTA�
where A is a decreasing, nonnegative, predictable process, A0 = 1, and

Nt =
�t�∏
i=1

(
1+ αi��σ∧τ≥i��εi − 1�)�

is a purely discontinues local martingale, where αi is an �i−-measurable ran-
dom function such that −1/�2i − 1� ≤ αi ≤ 2.

Proof. The multiplicative decomposition of the positive supermartingale
Y and the integral representation theorem imply that

Y =NKA�
where A and N are as in the lemma and K has the integral representation

Kt = 1+
∫ t

0
Ku−ζu dBu�

for a predictable process ζ such that the stochastic integral above is well
defined. Further, from (2.1) and (5.8) we deduce that any X ∈ ��1� has the
form

Xt = 1+
∫ t

0
Xu−

[
φu�du− dBu�

]
�

where φ is a predictable process. By Itô’s formula,

XY = “local martingale”+
∫ t

0
Xu−Yu−

[
φu�1− ζu�du+

dAu
Au−

��Au−>0�

]
�

It follows that XY is a supermartingale for any X (hence for any integrable
φ) if and only if ζ ≡ 1 on the set �Y− > 0�, that is, K ≡ L on this set, which
clearly implies the assertion of Lemma 5.3. ✷
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Let us now continue proof of Proposition 5.3. By Lemma 5.3 any Y in the
set � �1� can be represented in the form given in (5.11). If Y ≡ LT, that is,
NTAT ≡ 1, then the supermartingale property ofNA implies that P�NTAT <
1� > 0. Consequently, there exists a number γ < 1 such that the stopping time

χ = inf
{
t ≥ 0� NtAt ≤ γ

}
is strictly less then T with probability greater than zero.

Let us denote by i0 the first index i such that P�αi < 0� χ < i < T� > 0. If
i0 = ∞, that is, the set �αi < 0� χ < i < T� is empty for any i ≥ 1, then

EV�YT� ≥ EV�Yτ���χ<τ���σ=∞�
�1�≤ EV�γLτ���χ<τ���σ=∞�

�2�≤ EV�γLτ���χ<τ�P
[�σ = ∞� � �χ] = EV�γLτ���χ<τ�

[
1− 1

2�χ�+1

]
≥ 1

2
EV�γLτ���χ<τ��

where in (i) we used the inequality Nτ ≤ Nχ, which holds true on the set
�χ < τ�σ = ∞� by our assumption that αi ≥ 0 for χ < i < T, and in (ii)
the conditional independence of Lτ and σ on �χ. The result now follows from
Lemma 5.2.

On the other hand, if i0 <∞, then we similarly deduce that

EV�YT� ≥ EV�Yτ���χ<i0<τ�αi0<0���σ=i0���ψ=∞�

≥ EV�γLτ���χ<i0<τ�αi0<0���σ=i0���ψ=∞�

= EV�γLτ���χ<i0<τ�αi0<0���σ=i0�P
[�ψ = ∞� � �τ]

= EV�γLτ���χ<i0<τ�αi0<0���σ=i0�

[
1− Lτ

1+Lσ

]
≥ 1

1+ x0
EV�γLτ���χ<i0<τ�αi0<0���σ=i0�

= 1
1+ x0

EV�γLτ���χ<i0<τ�αi0<0�P
[�σ = i0� � �i0−]

= 1
�2i0+1 − 1��1+ x0�

EV�γLτ���χ<i0<τ�αi0<0�

and the proof again follows from Lemma 5.2. ✷

6. The asymptotic elasticity of a utility function. In this section we
assemble some facts on the notion of asymptotic elasticity. We let U�x� denote
a strictly concave, increasing, real-valued function defined on �0�∞� satisfying
(2.4). Recall that

F�x� = xU
′�x�

U�x�
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denotes the elasticity function of U and

AE�U� = lim sup
x→∞

F�x� = lim sup
x→∞

xU′�x�
U�x�

denotes the asymptotic elasticity of U.

Lemma 6.1. For a strictly concave, increasing, real-valued function U the
asymptotic elasticityAE�U� is well defined and, depending onU�∞� = limx→∞
U�x�, takes its values in the following sets:

(i) For U�∞� = ∞� we have AE�U� ∈ �0�1��
(ii) For 0 < U�∞� <∞� we have AE�U� = 0�

(iii) For −∞ < U�∞� ≤ 0� we have AE�U� ∈ �−∞�0��

Proof. (i) Using the monotonicity and positivity of U′� we may estimate,
for x ≥ 1,

0 ≤ xU′�x� = �x− 1�U′�x� +U′�x�
≤ [
U�x� −U�1�]+U′�1��

hence, in the case U�∞� = ∞,

0 ≤ lim sup
x→∞

xU′�x�
U�x� ≤ lim sup

x→∞
U�x� −U�1� +U′�1�

U�x� = 1�

(ii) In the case 0 < U�∞� <∞ we have to show that lim supx→∞ xU′�x� =
0. So suppose to the contrary that lim supx→∞ xU′�x� = α > 0 and choose first
x0 such thatU�∞�−U�x0� < α 2 and then x1 > x0 such that �x1−x0�U′�x1� >
α/2 [note that U�∞� < ∞ implies in particular limx→∞U′�x� = 0]. We thus
arrive at a contradiction, as

α

2
> U�x1� −U�x0� ≥ �x1 − x0�U′�x1� >

α

2
�

(iii) By the strict concavity of U� we infer from U�∞� ≤ 0 that U�x� < 0,
for x ∈ R+, so that F�x� < 0, for all x ∈ R+. ✷

What is the economic interpretation of the notion of the elasticity function
F�x� and the asymptotic utility AE�U� for a utility function U? First note
that by passing from U to an affine transformation Ũ�x� = c1 + c2U�x�, with
c1 ∈ R� c2 > 0� the utility maximization problem treated in this paper ob-
viously remains unchanged. On the other hand, the elasticities of the utility
functions F�x� and F̃�x� are different if c1 = 0. This seems to be bad news as a
notion which is not invariant under affine transformations of utility functions
does not seem to make sense, but the good news is that the notion of asymp-
totic elasticity does not change if we pass from U to an affine transformation,
provided U�∞� > 0 and Ũ�∞� > 0.
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Lemma 6.2. Let U�x� be a utility function satisfying (2.4) and Ũ�x� = c1+
c2U�x� an affine transformation, where c1 ∈ R� c2 > 0. If U�∞� > 0 and

Ũ�∞� > 0� then

AE�U� = AE�Ũ� ∈ �0�1��

We leave the easy verification of this lemma to the reader.
From now on we shall always assume that U�∞� > 0 which, from an eco-

nomic point of view, does not restrict the generality. Under this proviso we
may interpret the asymptotic utility AE�U� in economic terms as the ratio of
the marginal utility U′�x� to the average utility U�x�/x, for large x > 0 (in
the sense of the lims superior).

Examples 6.1.

(i) For U�x� = ln�x� we have AE�U� = 0.
(ii) For α < 1� α = 0 and U�x� = xα/α� we have AE�U� = α.

(iii) For a utility function U�x� such that U�x� = x/ln�x�, for x > x0, we
have AE�U� = 1.

We now give the equivalent characterizations of AE�U� in terms of condi-
tions involving the functionsU�V or the derivativesU′� V′ = −I� respectively.

Lemma 6.3. Let U�x� be a utility function satisfying (2.4) and U�∞� > 0.
In each of the subsequent assertions, the infimum of γ > 0 for which these

assertions hold true equals the asymptotic elasticity AE�U�.
(i) There is x0 > 0 s.t.,

U�λx� < λγU�x� for λ > 1, x ≥ x0�

(ii) There is x0 > 0 s.t.,

U′�x� < γU�x�
x

for x ≥ x0�

(iii) There is y0 > 0 s.t.,

V�µy� < µ−γ/�1−γ�V�y� for 0 < µ < 1, 0 < y ≤ y0�

(iv) There is y0 > 0 s.t.,

−V′�y� <
(
γ

1− γ
)
V�y�
y

for 0 < y ≤ y0�

Proof. It follows from the definition of the asymptotic elasticity that
AE�U� equals the infimum over all γ such that (ii) holds true. We shall show
that for each of the above four conditions the inf of the γ’s for which they hold
true is the same.
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(i) ⇔ (ii) To show that (ii) ⇒ (i), fix x > 0� γ > 0 and compare the two
functions

F�λ� = U�λx� and G�λ� = λγU�x�� λ > 1�

Here F and G are differentiable, F�1� = G�1�, and if (ii) holds true then, for
x > x0,

F′�1� = xU′�x� < γU�x� = G′�1��
hence we have F�λ� < G�λ� for λ ∈�1�1 + ε�, for some ε > 0. To show that
F�λ� < G�λ� for all λ > 1� let λ̂ = inf�λ > 1� F�λ� = G�λ�� and suppose that
λ̂ <∞. Note that we must have F′�λ̂� ≥ G′�λ̂�, which leads to a contradiction
as it follows from (ii) that

F′�λ̂� = xU′�λ̂x� < γ
λ̂
U�λ̂x� = γ

λ̂
F�λ̂� = γ

λ̂
G�λ̂� = G′�λ̂��

The reverse implication (i) ⇒ (ii) follows from

U′�x� = F
′�1�
x

≤ G
′�1�
x

= γU�x�
x
�

(ii) ⇔ (iv) Let y0 = U′�x0�. Assuming (ii) we may estimate, for y < y0
�=

U′�x0��
V�y� = sup

x
�U�x� − xy�

= U�−V′�y�� + yV′�y�

>
1
γ

(−V′�y�)U′(−V′�y�)+ yV′�y� = 1− γ
γ
y�−V′�y���

which is precisely (iv). Conversely, assuming (iv) we get, for x ≥ x0
�=−V′�y0�,

U�x� = infy�V�y� + xy�
= V�U′�x�� + xU′�x�

>
1− γ
γ
U′�x�(−V′�U′�x��)+ xU′�x� = 1

γ
xU′�x��

which is precisely (ii).
(iii) ⇔ (iv) Just as in the proof of (i) ⇔ (ii) we compare, for 0 < y ≤ y0 fixed,

the functions

F�µ� = V�µy� and G�µ� = µ−γ/�1−γ�V�y�� 0 < µ < 1�

to obtain that (iv) is equivalent to F�µ� < G�µ�, for 0 < y ≤ y0 and 0 < µ < 1.
This easily implies the equivalence of (iii) and (iv). ✷
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Another way of describing the asymptotic elasticity is to pass to a logarith-
mic scaling of R+, that is, to pass from U to

Û�z� = ln�U�ez��� z > z0
�= ln�U−1�0���

One easily verifies that AE�U� = lim supz→∞ Û′�z�� and a similar charac-
terization may be given in terms of

V̂�z� = ln�V�ez��� z ∈ R�

We also indicate the connection of the condition AE�U� < 1 with the well-
known �2-condition in the theory of Orlicz spaces [26]. Obviously, we have
−V′�y� < �γ/1− γ�V�y�/y, for 0 < y ≤ y0, iff we have for the function V̌�z� =
V�1/z� the inequality

V′�z� ≤ γ

1− γ
V̌�z�
z

for z ≥ z0
�=y−1

0 �

that is, iff the function V̌�z� satisfies the �2 condition. [Note, however, that
V̌�z� is, in general, not a convex function of z ∈ R+.]

Finally, we note an easy and useful characterization of the conditionAE�U�
< 1� which immediately follows from Lemma 6.3.

Corollary 6.1. Let U�x� be a utility function satisfying (2.4) and U�∞� >
0. The following assertions are equivalent:

(i) The asymptotic elasticity of U is less than 1.
(ii) There is x0 > 0� λ > 1 and c < 1 s.t.,

U�λx� < cλU�x� for x > x0�

(ii′) There is x0 > 0 s.t., for every λ > 1 there is c < 1�

U�λx� < cλU�x� for x > x0�

(iii) There is y0 > 0� µ < 1 and C <∞ s.t.,

V�µy� < CV�y� for y < y0�

(iii′) There is y0 > 0 s.t., for every 0 < µ < 1, there is C <∞ s.t.,

V�µy� < CV�y� for y < y0� ✷

We now prove a technical result which was used in Section 3.

Lemma 6.4. Let u�w be two concave functions, defined on R+, verifying
u�∞� > 0�w�∞� > 0 and such that there exist x0 > 0 and C > 0� for which we
have

u�x� −C ≤ w�x� ≤ u�x� +C� x ≥ x0�
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Then

AE�u� = lim sup
x→∞

xu′�x�
u�x� = lim sup

x→∞
xw′�x�
w�x� = AE�w��

Proof. We may assume w.l.g. that u�∞� = w�∞� = ∞ [otherwise AE�u�
= AE�w� = 0] as well as u′�∞� = w′�∞� = 0 [otherwiseAE�u� = AE�w� = 1].

Suppose that AE�u� = γ and AE�w� > γ+α for some 0 ≤ γ < 1 and α > 0�
let us work towards a contradiction.

By Lemma 6.3 we may find arbitrarily large x ∈ R+ such that

�6�1� w′�x� > �γ + α�w�x�
x
�

Let h = h�x� = 8Cx/α�γ + α�u�x� and observe that limx→∞ h�x�/x = 0 so
that in particular x − h > 0, for sufficiently large x. Fixing such an x > 0
satisfying also (6.1) we may estimate

hu′�x− h� + 2C ≥ u�x� − u�x− h� + 2C

≥ w�x� −w�x− h�
≥ hw′�x�

≥ h�γ + α�w�x�
x

≥ h�γ + α�u�x� −C
x

so that

u′�x− h� ≥ �γ + α�u�x� −C
x

− 2C
h
�

Using

2C
h
= α

4
�γ + α�u�x�

x

and the estimates

u�x� −C >
(

1− α
4

)
u�x�� x− h > x

1− α/4
which hold true for sufficiently large x > 0, we obtain

u′�x− h� ≥ �γ + α�
(

1− α
4

)
u�x�
x

− α
4
�γ + α�u�x�

x

≥ �γ + α�
(

1− α
2

)
u�x− h�
x− h

(
1− α

4

)
≥

(
γ + α

4

)
u�x− h�
x− h �

so that Lemma 6.3 gives a contradiction to the assumption AE�u� ≤ γ. ✷

We end this section by comparing the condition AE�U� < 1 with two
other growth conditions [assertions (i) and (iii), respectively, in the subsequent
lemma] which have been studied in [21], condition (4.8) and (5.4)].
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Lemma 6.5. Let U�x� be a utility function satisfying (2.4) and U�∞� > 0.
Consider the subsequent assertions:

(i) There is x0 > 0� α < 1 and β > 1 s.t.,

U′�βx� < αU′�x� for x > x0�

(ii) AE�U� < 1.
(iii) There is x0 > 0� k1 > 0� k2 > 0 and γ < 1 s.t.

U�x� ≤ k1 + k2x
γ for x > x0�

Then the implications �i� ⇒ �ii� ⇒ �iii� hold true, while the reverse implica-
tions �ii� ⇒ �i� and �iii� ⇒ �ii� do not hold true, in general.

Proof. (i) ⇒ (ii) Assume (i) and let a = αβ and b = 1/α > 1 and estimate,
for x > ax0,

U�bx� = U�βx0� +
∫ bx
βx0

U′�t�dt

= U�βx0� + β
∫ x/a
x0

U′�βt�dt

≤ U�βx0� + αβ
∫ x/a
x0

U′�t�dt

= U�βx0� + aU
(
x

a

)
− aU�x0��

It follows that criterion (ii) of Corollary 6.1 is satisfied; hence AE�U� < 1.
(ii) ⇒ (iii) is immediate from assertion (i) of Lemma 6.3.
(ii) � (i) For n ∈ N, let xn = 22n and define the function U�x� by letting

U�xn� = 1 − 1/n and to be linear on the intervals �xn−1� xn� [for 0 < x ≤ x1
continue U�x� in an arbitrary way, so that U satisfies (2.4)].

Clearly U�x� fails (i) as for any β > 1 there are arbitrary large x ∈ R with
U′�βx� = U′�x�. On the other hand, we have U�∞� = 1 so that AE�U� = 0
by Lemma 6.1.

The attentive reader might object that U�x� is neither strictly concave nor
differentiable. But it is obvious that one can slightly change the function to
“smooth out” the kinks and to “strictly concavify” the straight lines so that
the above conclusion still holds true.

(iii) � (ii) Let again xn = 22n and consider the utility function Ũ�x� = x1/2.
Define U�x� by letting U�xn� = Ũ�xn�, for n = 0�1�2��� and to be linear on the
intervals �xn� xn+1� [for 0 < x ≤ x1 again continue U�x� in an arbitrary way,
so that U satisfies (2.4)].

Clearly, U�x� satisfies condition (iii) as U is dominated by Ũ�x� = x1/2.
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To show that AE�U� = 1� let x ∈�xn−1� xn� and calculate the marginal
utility U′ at x,

U′�x� = U�xn� −U�xn−1�
xn − xn−1

= 22n−1 − 22n−2

22n − 22n−1

= 22n−1�1− 2−2n−2�
22n�1− 2−2n−1� = 2−2n−1�1+ o�1���

On the other hand we calculate the average utility at x = xn,

U�xn�
xn

= 22n−1

22n
= 2−2n−1

�

Hence

AE�U� = lim sup
x→∞

xU′�x�
U�x� = 1�

As regards the lack of smoothness and strict concavity ofU a similar remark
applies as in (ii) � (i) above. ✷
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