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1, Diestel 3.4: Let X and X ′ be minimal separators in G such that X meets (intersects non-trivially)
at least two components of G − X ′. Show that X ′ meets all the components of G − X, and that X
meets all the components of G−X ′.

We assume that G is connected. By minimality, every vertex in X (resp, X ′) is adjacent to a vertex
in each of the components of G − X (resp, G − X ′). Now let x, y ∈ X with x ∈ C1, y ∈ C2, where
C1 and C2 are components of G−X ′. Let C be any component of G−X. x and y are each adjacent
to vertices in C, so there is a path from x to y which uses only vertices of C in its interior. Since X ′

separates x and y, there must be a vertex from X ′ on the path, which must also be in C. Since C was
arbitrary, we conclude that X ′ meets all components of G−X.

Now let D1 and D2 be components of G − X, with x, y ∈ X ′ such that x ∈ D1 and y ∈ D2. If X
does not meet some component D of G−X ′, then as above, we find a path from x to y using interior
vertices from D. This path doesn’t use any vertices of X, which contradicts x and y being in distinct
components of G−X. Thus, X meets all components of G−X ′.
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2, Diestel 3.7: Show the block graph of any connected graph is a tree.

Claim: The block graph of a connected graph is connected
Proof: Let G be a connected graph and let B be the block graph of G. G is non-empty and the trivial
graph has no cutvertices, so there exists a non-empty block in G, and so B is non-empty. Let v, w ∈ B
be arbitrary. If v is a cutvertex in G, then v is in some block of G, b (because G[v] is a connected
subgraph without a cutvertex). By the definition of B, vb ∈ E(B). We can do the same for w if w is a
cutvertex. The, it suffices to find a v–w walk in B when v and w are both arbitrary blocks (because if
they are cutvertices we can take edges to blocks and then the walk between those blocks, and similarly
if only one is a cutvertex).

If v and w are both vertices representing blocks, then these blocks are nonempty (because they are
maximal, and in the earlier paragraph we showed that G has a non-empty block). So, let v′ ∈ V (G)
be a vertex in block v and let w′ ∈ V (G) be a vertex in block w. There exists a v′–w′ path in G, so
we call one such path P ′. We define W , and prove that W is a v–w walk in B. Then, W proves the
existence of a v–w path in B, so we conclude that B is connected.

Let b0 = v and P0 = P , then define bi and Pi recursively so that Pi+1 is a maximal subpath of Pi that
does not begin with an edge in bi. Then, bi+1 is the block that has the first edge of Pi+1. Eventually
Pk is trivial (because for i ≥ 1 each Pi+1 has fewer edges than Pi) and we define bk = w instead. This
definition uses the comment from Diestel that each edge is in a unique block.

To form W , insert between each bi and bi+1 the vertex ai that is in both bi and bi+1. Because ai is in
both bi and bi+1, each edge traversed in our walk is indeed an edge of B, so

W = b0a0b1a1 · · · ak−1bk

is a b0–bk walk, and because b0 = v and bk = w, it is a v–w walk. It remains to be shown that ai as
defined exists.

Diestel comments that blocks intersect in at most one vertex, and that this vertex is a cutvertex, hence
the usage of the definite article “the” above, but we must confirm that bi and bi+1 do indeed intersect.
If 0 < i < k, bi has some edge that occurs in Pi, and then all edges of Pi are in bi until an edge in bi+1

is reached. Because Pi is a path, there is a vertex in both the last consecutive edge of bi and the first
edge of bi+1, and because this vertex is in edges of both bi and bi+1, it is in bi and bi+1. Finally, in the
case i = 0, if P begins with an edge in b0 then the proof is the same as for other i. Otherwise, the first
edge must be in b1, and so v′ is in v = b0 (by definition) and is in an edge of b1 (because P is a path),
and so is in b1. �

Claim: Block graphs are acyclic.
Proof: Let G be a graph, B the block graph of G, and C a cycle in B. Name

C = b0a1b1a2b2 · · · akbk

where b0 = bk and note that cycles have at least 3 vertices so k ≥ 2.We prove that H = ∪ki=1bi is a
connected subgraph with no cutvertices. Because b1 6= b2, this contradicts the maximality of b1 or b2.

That H is connected is fairly clear: each bi is connected, and each ai for is in bi and bi−1, so given
vertices v ∈ bi and w ∈ bj with i ≤ j < k, we know v is connected to ai+1 (they’re both in bi)
which is connected to ai+2 (they’re both in bi+1), etc. until we have aj connected to w (both in bj).
Connectedness is transitive, so v is connected to w.

In fact, the above can show that H has no cutvertices. Observe that each bi is still connected after
the deletion of a vertex (because it is a cutvertex), so the only possibility of eliminating a v, w path is
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by deleting some ai. Yet, the above argument never uses ak, so we may reindex, rotating the cycle of
blocks so that ai = ak, and we see that the remainder of H is still connected. �

The block graph is a tree by the above claims and definition.
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3, Diestel 3.8: Let G be a k-connected graph, and let xy be an edge of G. Show that G/xy is
k-connected if and only if G− {x, y} is (k − 1)-connected.

Let G be a k-connected graph and let xy be an edge in G.

Assume G/xy is k-connected. As G/xy is k-connected, it has at least k + 1 vertices, so G has at
least k + 2 vertices and G − {x, y} has at least k vertices. Any separator of G/xy contains at least
k vertices, at most one of which is vxy, so any separator of G/xy − vxy has size at least k − 1. As
G/xy − vxy = G− {x, y}, we conclude G− {x, y} is (k − 1)-connected.

Now assume G − {x, y} is (k − 1)-connected. Let X ⊆ G/xy. Assume that |X| < k. If vxy /∈ X,
then X ⊆ G but X is not a separator of G as it has size less than k and G is k-connected. So G−X
is connected, and as contracting and edge cannot disconnect a graph, G/xy −X is not disconnected.
If vxy ∈ X, let X ′ = X \ {vxy}. Then |X ′| ⊆ G − {x, y}, but |X| < k − 1 so X ′ does not separate
G − {x, y}. As G/xy − X = G − {x, y} − X ′, G/xy is also connected. In both cases, G/xy − X is
connected, so

|X| < k ⇒ X is not a separator of G/xy,

so by the contrapositive,
X is a separator of G/xy ⇒ |X| ≥ k.

Finally, if G−{x, y} is (k− 1)-connected, it has at least k vertices, so G has at least k+ 2 vertices, so
G/xy has at least k + 1 vertices. We conclude G/xy is k-connected.
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4, Diestel 3.9: (i) Let e be an edge in a 2-connected graph G 6= K3. Show that either G− e or G/e
is again 2-connected.

(ii) Does every 2-connected graph G 6= K3 have an edge e such that G/e is still 2-connected?

(i) Assume that G− e is not 2-connected. We will show that G/e is 2-connected. Let v be a cutvertex
of G − e. v is not an endpoint of e, since G has no cutvertices. By problem number 3 (Diestel 3.8)
we only need to show that G, minus e’s endpoints, is connected. Let C1 and C2 be the components
of (G − e) − v containing endpoints x and y of e, respectively. If z is an arbitrary vertex of C1 − x,
then, using the fact that x is not a cutvertex of G, we find a path from z to v in G − x. The path
doesn’t pass through y since x and y are in different components of (G− e)− v. We can do the same
for vertices of C2 − y, showing that G− {x, y} is connected, as desired.

(ii) Consider the construction of G, starting with a cycle. If only edges between pairs of non-adjacent
vertices were added to create G, then since G is not a 3-cycle, it has a cycle using all of the |G| > 3
vertices. Contracting an edge of that cycle leaves a 2-connected graph, and G is the result of adding
edges between non-adjacent vertices of it, which is still 2-connected.

Otherwise, an H-path of length at least 2 was added at some point, so consider the last such path,
x0, x1, . . . , xk. G/{x0, x1} is created by adding edges between non-adjacent vertices of the graph where
an H-path of length one less is added at the stage where x0, x1, . . . , xk was added. The result of this
process, namely G/{x0, x1}, is thus 2-connected.
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5, Diestel 3.14: Show that every transitive graph G with κ(G) = 2 is a cycle. Hint: Exercise 3.4 is
useful.

Let G be such a graph and consider a 2-separator {x, y} such that G − {x, y} has a component C of
smallest possible cardinality. Note that if |C| = 1, then the result follows easily, because the vertex
of C would have to have degree at most 2. Since it must have degree at least 2 (in order to ensure
2-connected), its degree must be 2. The graph is then connected and 2-regular, and must be a cycle.

We now assume for the sake of contradiction that |C| > 1.

Observe that x and y can’t each be connected to all of the vertices of C. If so, then mapping x to
an arbitrary vertex of C, would produce a minimal separator {φ(x), φ(y)}, which by the minimality of
|C|, and problem 1, would leave x and y in different components upon deletion. This is contradicted
by the remaining existence of a path from x to y through a different vertex of C.

Thus we may, without loss of generality, consider the minimal separator {φ(x), φ(y)} obtained by
mapping x to a vertex in C to which it is not adjacent. By problem 1, {x, φ(x)} separates G, with one
of the components, say D, being C intersected with the component of G− {φ(x), φ(y)} containing x.
D is a non-empty (it contains a vertex from C to which x is adjacent) proper (it doesn’t contain φ(x))
subset of C, which contradicts the minimality of |C|.
Thus, |C| = 1, and the result follows.
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