Derangements:

So combinatorially, we want to partition [n] into its cycle decomposition. This can be treated as just partitioning
[r] into bins of size at least 2 and order the elements of the bin.

We will first want to count the number of ways to partition [n] into k cycles of size at least 2. Denote this as
f(n, k). Let’s say we partition [n] into k bins of size aq,as,...,a; (because we are treating the bins as
distinguishable now, we will need to divide by k! later to account for our overcounting) so that a; > 2 and

Zle a; = n. Then there are (al’a;f__’ak) to choose the elements of each of the bins, and there are (a; — 1)! to
arrange the elements of the bin into a cycle. So we have that f(n, k) is equal to
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Now remember we wanted to determine % Note that this is
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Now we notice that the term inside the sum is a convolution. In particular, we have that
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(as a footnote, from here it is quickly modifiable to obtain the EGF of stirling numbers of the first kind) Hence, the
coefficient of 2™ in the EGF of the derangement numbers is the coefficient of 2™ in the sum
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Stirling numbers of the second kind:



Their EGF follows from a very similar process. We want to partition [n] into k& nonempty bins. Let’s say the bins
have size aq,...,a; all at least 1 (we again need to divide by k! later). There are (a1 aZ" ) ways to choose the
elements of each bin. And since the elements of these bins are unordered, there is 1 way to “fill the bin with the

elements we chose. So this means that
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The RHS is again a convolution. In particular, it is the coefficient of ™ in the product of the generating functions
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So we have that the coefficient of " in the EGF of the stirling numbers of the second kind, Sz(" k) , is equal to the

coefficient of 2™ in the generating function - (e — 1) . So of course the EGF of the stirling numbers of the second
kind is 7 (e” — Dk



