Derangements:

So combinatorially, we want to partition $[n]$ into its cycle decomposition. This can be treated as just partitioning [n] into bins of size at least 2 and order the elements of the bin.
We will first want to count the number of ways to partition $[n]$ into k cycles of size at least 2 . Denote this as $f(n, k)$. Let's say we partition $[n]$ into k bins of size $a_{1}, a_{2}, \ldots, a_{k}$ (because we are treating the bins as distinguishable now, we will need to divide by k ! later to account for our overcounting) so that $a_{i} \geq 2$ and $\sum_{i=1}^{k} a_{i}=n$. Then there are $\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}$ to choose the elements of each of the bins, and there are $\left(a_{i}-1\right)$! to arrange the elements of the bin into a cycle. So we have that $f(n, k)$ is equal to

$$
\begin{aligned}
& \frac{1}{k!} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n \\
a_{i} \geq 2}}\binom{n}{a_{1}, a_{2}, \ldots, a_{k}} \prod_{i=1}^{k}\left(a_{i}-1\right)! \\
= & \frac{n!}{k!} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n \\
a_{i} \geq 2}} \prod_{i=1}^{k} \frac{\left(a_{i}-1\right)!}{a_{i}!}
\end{aligned}
$$

Now remember we wanted to determine $\frac{d_{n}}{n!}$. Note that this is

$$
\begin{aligned}
& \frac{1}{n!} \sum_{k=0}^{\infty} f(n, k) \\
= & \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n \\
a_{i} \geq 2}} \prod_{i=1}^{k} \frac{\left(a_{i}-1\right)!}{a_{i}!}
\end{aligned}
$$

Now we notice that the term inside the sum is a convolution. In particular, we have that $\sum \underset{a_{1}+a_{2}+\ldots+a_{k}=n}{a_{i} \geq 2} \prod_{i=1}^{k} \frac{\left(a_{i}-1\right)!}{a_{i}!}$ is the coefficient of x^{n} in

$$
\begin{aligned}
& \left(0+0 x+\frac{1!}{2!} x^{2}+\frac{2!}{3!} x^{3}+\frac{3!}{4!} x^{4}+\cdots\right)^{k} \\
= & \left(0+0 x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots\right)^{l} \\
= & (-x-\ln (1-x))^{k}
\end{aligned}
$$

(as a footnote, from here it is quickly modifiable to obtain the EGF of stirling numbers of the first kind) Hence, the coefficient of x^{n} in the EGF of the derangement numbers is the coefficient of x^{n} in the sum

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{1}{k!}(-x-\ln (1-x))^{k} \\
= & e^{-x-\ln (1-x)} \\
= & \frac{e^{-x}}{e^{\ln (1-x)}} \\
= & \frac{e^{-x}}{1-x}
\end{aligned}
$$

So of course the EGF of the derangement numbers is just $\frac{e^{-x}}{1-x}$.

Stirling numbers of the second kind:

Their EGF follows from a very similar process. We want to partition $[n]$ into k nonempty bins. Let's say the bins have size a_{1}, \ldots, a_{k} all at least 1 (we again need to divide by k ! later). There are $\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}$ ways to choose the elements of each bin. And since the elements of these bins are unordered, there is 1 way to fill the bin with the elements we chose. So this means that

$$
\begin{aligned}
& S_{2}(n, k)=\frac{1}{k!} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n \\
a_{i} \geq 1}}\binom{n}{a_{1}, a_{2}, \ldots, a_{k}} \\
& S_{2}(n, k)=\frac{n!}{k!} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n \\
a_{i} \geq 1}} \prod_{i=1}^{k} \frac{1}{a_{i}!} \\
& \frac{S_{2}(n, k)}{n!}=\frac{1}{k!} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{k}=n \\
a_{i} \geq 1}} \prod_{i=1}^{k} \frac{1}{a_{i}!}
\end{aligned}
$$

The RHS is again a convolution. In particular, it is the coefficient of x^{n} in the product of the generating functions

$$
\begin{aligned}
& \frac{1}{k!}\left(0+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\right)^{k} \\
= & \frac{1}{k!}\left(-1+1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\right)^{k} \\
= & \frac{1}{k!}\left(-1+e^{x}\right)^{k}
\end{aligned}
$$

So we have that the coefficient of x^{n} in the EGF of the stirling numbers of the second kind, $\frac{S_{2}(n, k)}{n!}$, is equal to the coefficient of x^{n} in the generating function $\frac{1}{k!}\left(e^{x}-1\right)^{k}$. So of course the EGF of the stirling numbers of the second kind is $\frac{1}{k!}\left(e^{x}-1\right)^{k}$.

