
21-127 Concepts Homework 5: Solutions

4.20 a) First check injectivity:

f((x, y)) = f((u, v))⇒ (ax− by, bx + ay) = (au− bv, bu + av)

⇒ ax− by = au− bv ∧ bx + ay = bu + av

⇒ a(x− u) = b(y − v) ∧ b(x− u) = a(v − y)

⇒ ab(x− u) = b2(y − v) ∧ ab(x− u) = −a2(y − v)

⇒ (b2 + a2)(y − v) = 0

⇒ y − v = 0 (a2 + b2 6= 0)

⇒ y = v

⇒ a(x− u) = 0 ∧ b(x− u) = 0

⇒ x− u = 0 (¬a = b = 0)

⇒ x = u

⇒ (x, y) = (u, v)

Now check surjectivity; given (r, s) ∈ R2 we seek (x, y) such that f((x, y)) =

(r, s). Solving the resulting simultaneous equation suggests (x, y) =
(
ar+bs
a2+b2

, as−br
a2+b2

)
so we check this works:

f

((
ar + bs

a2 + b2
,
as− br

a2 + b2

))
=

(
a
ar + bs

a2 + b2
− b

as− br

a2 + b2
, b
ar + bs

a2 + b2
+ a

as− br

a2 + b2

)
=

(
a2r + abs− abs + b2r

a2 + b2
,
abr + b2s + a2s− abr

a2 + b2

)
= (r, s)

b) Our work in (a) suggests inverse g(x, y) =
(
ax+by
a2+b2

, ay−bx
a2+b2

)
, we must

check that f ◦ g = id and g ◦ f = id,

f(g((x, y))) = f(

(
ax + by

a2 + b2
,
ay − bx

a2 + b2

)
)

=

(
a
ax + by

a2 + b2
− b

ay − bx

a2 + b2
, b
ax + by

a2 + b2
+ a

ay − bx

a2 + b2

)
=

(
a2x + aby − aby − b2x

a2 + b2
,
abx + b2y + a2y − abx

a2 + b2

)
= (x, y)
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Note that this calculation is almost identical to the one we used to check
surjectivity.

g(f((x, y))) = g((ax− by, bx + ay))

=

(
a(ax− by) + b(bx + ay)

a2 + b2
,
a(bx + ay)− b(ax− by)

a2 + b2

)
=

(
a2x + b2x

a2 + b2
,
a2y + b2y

a2 + b2

)
= (x, y)

c) f describes a rotation about the origin. For example for a = 0, b = 1
we have f((x, y)) = (−y, x) which is a rotation by 90 degrees anticlockwise.

4.21 Define f from {even size subsets} to {odd size subsets} by
f(A) = A4{1}. So if 1 was absent we add it, and if it was present we remove
it; either way we change the parity of |A| from even to odd. We can also
define g from {odd size subsets} to {even size subsets} by g(A) = A4 {1}.
Then

f(g(A)) = f(A4 1) = (A4 1)4 1 = A4 (14 1) = A4 ∅ = A

and

g(f(A)) = f(A4 1) = (A4 1)4 1 = A4 (14 1) = A4 ∅ = A

So g is the inverse of f and hence f is bijective.
Note that even though f and g are defined in the same way they are not

the same function because they have different domains and codomains.

4.24 No, for example f(x) = g(x) = x. Then fg(x) = f(x)g(x) = x2 and
this is not surjective; for example -1 is not in its image.

4.39 Observe that f(f(x)) = f(a(x + b) − b) = a([a(x + b) − b] + b) − b =
a2(x + b)− b. We guess that fn(x) = an(x + b)− b and try to prove this by
induction.

Base case n = 1: immediate.
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Given for n,

fn+1(x) = f(fn(x))

= f(an(x + b)− b)

= a([an(x + b)− b] + b)− b

= an+1(x + b)− b

5.3 Observe that the numbers on opposite sides of a die sum to 7 (there are
either 1 & 6, 2 & 5 or 3 & 4). So for any roll totalling x we can turn over
the two dice and get a roll totalling (7 + 7)−x = 14−x. The act of turning
over is a bijection (it is its own inverse) so there are equal numbers of rolls
totalling x and totalling 14− x.

5.6 Number the elements of A and B from 1 to n and regards bijection from
A to B as bijections from [n] to [n]. Such a bijection is just a permutation,
and the number of these is n!.

5.17 Note n,m < k and without loss of generality n ≤ m. Dividing through
by n! we get 1+ m!

n! = k!
n! . But m!

n! divides k!
n! and the only way this is possible

is if m!
n! = 1. Then m! = n! so m = n; and k(k − 1)..(n + 1) = k!

n! = 2 so
k = 2 and n = 1. This gives (n,m, k) = (1, 1, 2) as the only possibility.

4.15 Proof by induction on k,
Base case k = 1: We can weigh an object of weight 1 with a weight of 1.
Given for k: We can weight 1, ..., 3

k−1
2 already by hypothesis. We also

now have a new weight 3k. By placing this on one side and the previ-
ous weight combinations on the other we can get weights 3k − 1 through
3k − 3k−1

2 = 3k+1
2 . So this gives us all weights up to 3k − 1, and we have 3k

just taking the last weight by itself. Finally we have weights 3k + 1 through
3k + 3k−1

2 = 3k+1−1
2 by putting the 3k weight on the same side as our earlier

combinations.

4.34 a) True. Given that h is injective,

f(x) = f(y)⇒ g(f(x)) = g(f(y))⇒ h(x) = h(y)⇒ x = y

so f is injective.
b) False. For example A = {1}, B = {2, 3}, C = {4}, f(1) = 2,

g(2) = g(3) = 4. Then g is not injective but h(1) = 4 so h is.
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c) False. Using the same counterexample as (b).
d) True. Given z ∈ C, h is surjective so we have x ∈ A such that

g(f(x)) = h(x) = z. Define y = f(x); then y ∈ B and g(y) = z.

4.50 We want to find all the An for n odd, as these are the places we will use
g−1; everywhere else we will use f . We observe B0 = B\im(f) = {0}. Then
A1 is all the members of A with exactly one ancestor, i.e. the children of
members of B0 (which have no ancestors), so A1 = {g(0)} = {12}. Then A3

contains the grandchildren of these children so A3 = {g(f(12))} = {g(12)} =
{34}. Continuing in the vein A2n−1 = {1− 1

2n }.So,

h(x) =

{
g−1(x) = 2x− 1 x = 1− 1

2n for some n ∈ N
f(x) = x otherwise

4.51 We could take an injection in each direction and then use the Schroeder-
Bernstein method as in question 4.50 to get a bijection. But it’s faster just
to make up a function that fills in the gaps:

h(x) =


0 x = 1

2
1

n−2 x = 1
n for n ∈ N, n ≥ 3

x otherwise

Extra 1 In any disc take two distinct points (x, y) and (u, v). Now by
Theorem 1.10 we can find a rational between any two real numbers; take
rationals p between x and u; and q between y and v. Then (p, q) lies between
(x, y) and (u, v) and hence inside the disc. This tells us that inside any disc
there is a member of Q2.

Given a disjoint arrangement of discs in R2, choose a member of Q2

inside each; this defines a function from {discs} to Q2 and the function is
injective because the discs are disjoint. Hence |{discs}| ≤ |Q2| = |N| so the
collection of discs is countable.

Extra 2 a) We saw in class that |{functions N→ N}| = |P(N)|, so certainly
|{non-decreasing functionsN → N}| ≤ |P(N)|. Given A ∈ P(N) define a
function f : N→ N iteratively by f(1) = 1 and,

f(n + 1) =

{
f(n) n /∈ A

f(n) + 1 n ∈ A

Note that the resulting function is non-decreasing. Also this process of
changing a set into a function constitutes an injective function from P(N)
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to {non-decreasing functions N → N} because we can find whether n was
in A by checking whether f(n + 1) − f(n) = 1. Hence we have |P(N)| ≤
|{non-decreasing functions N→ N}| so by Schroeder-Bernstein |{non-decreasing functions N→
N}| = |P(N)|.

b) There are certainly at least |N|-many non-increasing functions, for
example the constant functions. Observe that a non-increasing function can
only decrease a finite number of times, and must eventually stabilise, say by
n so ∀m ≥ n : f(m) = f(n). Now we can regard this function as a finite list
{f(1), f(2), ..., f(n)}, giving us a mapping from {non-increasing functions N→
N} to {finite lists of naturals}; this mapping is injective because the func-
tion is recoverable from the list (just take f(m) = f(n) for m > n). Hence
|{non-increasing functions N → N}| ≤ |{finite lists of naturals}| = |N| (saw
in class). So by Schroeder Bernstein |{non-increasing functions N→ N}| =
|N|.

Extra 3 We have injective f : R → R2 given by f(x) = (x, 0). And we
have injective f : R2 → R given by taking (cn...c1.a1a2a3...., dn...d1.b1b2....)
to cndncn−1...d2c1d1.a1b1a2b2.... I.e. we interleave their decimal expansions,
and this will retain all the information from the original two reals so it is
injective. Whence by Schroder Bernstein |R2| = |R|.

Upon first seeing this proof, the great mathematician Georg Cantor
wrote ’Je le vois, mais je ne crois pas’ - ’I see it but I don’t believe it’.
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