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Abstract. We consider a viscous fluid of finite depth below the air, occupying a three-
dimensional domain bounded below by a fixed solid boundary and above by a free moving
boundary. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes
equations, and the effect of surface tension is neglected on the free surface. The long time
behavior of solutions near equilibrium has been an intriguing question since the work of Beale
[3]. This paper is the third in a series of three [13, 14] that answers this question. Here we
consider the case in which the free interface is horizontally periodic; we prove that the problem
is globally well-posed and that solutions decay to equilibrium at an almost exponential rate.
In particular, the free interface decays to a flat surface.

Our framework contains several novel techniques, which include: (1) optimal a priori esti-
mates that utilize a “geometric” reformulation of the equations; (2) a two-tier energy method
that couples the boundedness of high-order energy to the decay of low-order energy, the latter
of which is necessary to balance out the growth of the highest derivatives of the free interface;
(3) a localization procedure that is compatible with the energy method and allows for curved
lower surface geometry. Our decay estimates lead to the construction of global-in-time solutions
to the surface wave problem.

1. Introduction

1.1. Formulation of the equations in Eulerian coordinates. We consider a viscous, in-
compressible fluid evolving in a moving domain

(1.1) Ω(t) = {y ∈ Σ× R | − b(y1, y2) < y3 < η(y1, y2, t)}.
Here we assume that Ω(t) is horizontally periodic by setting Σ = (L1T) × (L2T) for T = R/Z
the usual 1−torus and L1, L2 > 0 the periodicity lengths. The lower boundary 0 < b ∈ C∞(Σ)
is assumed to be fixed and given, but the upper boundary is a free surface that is the graph of
the unknown function η : Σ × R+ → R. For each t, the fluid is described by its velocity and
pressure functions (u, p) : Ω(t) → R3 × R. We require that (u, p, η) satisfy the gravity-driven
incompressible Navier-Stokes equations in Ω(t) for t > 0:

(1.2)



∂tu+ u · ∇u+∇p = µ∆u in Ω(t)
div u = 0 in Ω(t)
∂tη = u3 − u1∂y1η − u2∂y2η on {y3 = η(y1, y2, t)}
(pI − µD(u))ν = gην on {y3 = η(y1, y2, t)}
u = 0 on {y3 = −b(y1, y2)}

for ν the outward-pointing unit normal on {y3 = η}, I the 3 × 3 identity matrix, (Du)ij =
∂iuj + ∂jui the symmetric gradient of u, g > 0 the strength of gravity, and µ > 0 the viscosity.
The tensor (pI − µD(u)) is known as the viscous stress tensor. The third equation in (1.2)
implies that the free surface is advected with the fluid. Note that in (1.2) we have shifted the
gravitational forcing to the boundary and eliminated the constant atmospheric pressure, patm,
in the usual way by adjusting the actual pressure p̄ according to p = p̄+ gy3 − patm.

The problem is augmented with initial data (u0, η0) satisfying certain compatibility condi-
tions, which for brevity we will not write now. We will assume that η0 > −b on Σ.
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Without loss of generality, we may assume that µ = g = 1. Indeed, a standard scaling
argument allows us to scale so that µ = g = 1, at the price of multiplying b and the periodicity
lengths L1, L2 by positive constants and rescaling b. This means that, up to renaming b, L1,
and L2, we arrive at the above problem with µ = g = 1.

We assume that the initial surface function satisfies the “zero average” condition

(1.3)
1

L1L2

∫
Σ
η0 = 0.

If it happens that η0 does not satisfy (1.3) but does satisfy the extra condition that infΣ b+(η0) >
0, where we have written (η0) for the left side of (1.3), then it is possible to shift the problem
to obtain a solution to (1.2) with η0 satisfying (1.3). Indeed, we may change

(1.4) y3 7→ y3 − (η0), η 7→ η − (η0), b 7→ b+ (η0), and p 7→ p− (η0)

to find a new solution with the initial surface function satisfying (1.3). The data u0 and η0−(η0)
will still satisfy the compatibility conditions, and b+(η0) ≥ infΣ b+(η0) > 0, so after renaming we
arrive at the above problem with η0 satisfying (1.3). Note that for sufficiently regular solutions to
the periodic problem, the condition (1.3) persists in time since ∂tη = u·ν

√
1 + (∂y1η)2 + (∂y2η)2:

(1.5)
d

dt

∫
Σ
η =

∫
Σ
∂tη =

∫
{y3=η(y1,y2,t)}

u · ν =
∫

Ω(t)
div u = 0.

The zero average of η(t) for t ≥ 0 is analytically useful in that it allows us to apply the Poincaré
inequality on Σ for all t ≥ 0. Moreover, we are interested in the decay η(t) → 0 as t → ∞,
in say L2(Σ) or L∞(Σ); due to the conservation of (η0), we cannot expect this decay unless
(η0) = 0.

The problem (1.2) possesses a natural physical energy. For sufficiently regular solutions, we
have an energy evolution equation that expresses how the change in physical energy is related
to the dissipation:

(1.6)
1
2

∫
Ω(t)
|u(t)|2 +

1
2

∫
Σ
|η(t)|2 +

1
2

∫ t

0

∫
Ω(s)
|Du(s)|2 ds =

1
2

∫
Ω(0)
|u0|2 +

1
2

∫
Σ
|η0|2 .

The first two integrals constitute the kinetic and potential energies, while the third constitutes
the dissipation. The structure of this energy evolution equation is the basis of the energy method
we will use to analyze (1.2).

1.2. Geometric form of the equations. In order to work in a fixed domain, we want to
flatten the free surface via a coordinate transformation. We will not use a Lagrangian coordinate
transformation, but rather a flattening transformation introduced by Beale in [4]. To this end,
we consider the fixed equilibrium domain

(1.7) Ω := {x ∈ Σ× R | − b(x1, x2) < x3 < 0}

for which we will write the coordinates as x ∈ Ω. We will think of Σ as the upper boundary of
Ω, and we will write Σb := {x3 = −b(x1, x2)} for the lower boundary. We continue to view η as
a function on Σ× R+. We then define

(1.8) η̄ := Pη = harmonic extension of η into the lower half space,

where Pη is defined by (A.7). The harmonic extension η̄ allows us to flatten the coordinate
domain via the mapping

(1.9) Ω 3 x 7→ (x1, x2, x3 + η̄(x, t)(1 + x3/b(x1, x2))) = Φ(x, t) = (y1, y2, y3) ∈ Ω(t).

Note that Φ(Σ, t) = {y3 = η(y1, y2, t)} and Φ(·, t)|Σb
= IdΣb

, i.e. Φ maps Σ to the free surface
and keeps the lower surface fixed. We have

(1.10) ∇Φ =

1 0 0
0 1 0
A B J

 and A := (∇Φ−1)T =

1 0 −AK
0 1 −BK
0 0 K


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for
A = ∂1η̄b̃− (x3η̄∂1b)/b2, B = ∂2η̄b̃− (x3η̄∂2b)/b2,

J = 1 + η̄/b+ ∂3η̄b̃, K = J−1,

b̃ = (1 + x3/b).

(1.11)

Here J = det∇Φ is the Jacobian of the coordinate transformation.
If η is sufficiently small (in an appropriate Sobolev space), then the mapping Φ is a diffeo-

morphism. This allows us to transform the problem to one on the fixed spatial domain Ω for
t ≥ 0. In the new coordinates, the PDE (1.2) becomes

(1.12)



∂tu− ∂tη̄b̃K∂3u+ u · ∇Au−∆Au+∇Ap = 0 in Ω
divA u = 0 in Ω
SA(p, u)N = ηN on Σ
∂tη = u · N on Σ
u = 0 on Σb

u(x, 0) = u0(x), η(x′, 0) = η0(x′).

Here we have written the differential operators ∇A, divA, and ∆A with their actions given by
(∇Af)i := Aij∂jf , divAX := Aij∂jXi, and ∆Af = divA∇Af for appropriate f and X; for
u·∇Au we mean (u·∇Au)i := ujAjk∂kui. We have also writtenN := −∂1ηe1−∂2η2e2+e3 for the
non-unit normal to Σ, and we write SA(p, u) = (pI−DAu) for the stress tensor, where I the 3×3
identity matrix and (DAu)ij = Aik∂kuj+Ajk∂kui is the symmetric A−gradient. Note that if we
extend divA to act on symmetric tensors in the natural way, then divA SA(p, u) = ∇Ap−∆Au
for vector fields satisfying divA u = 0.

Recall that A is determined by η through the relation (1.10). This means that all of the
differential operators in (1.12) are connected to η, and hence to the geometry of the free sur-
face. This geometric structure is essential to our analysis, as it allows us to control high-order
derivatives that would otherwise be out of reach.

1.3. Previous results and Beale’s non-decay theorem. Many authors have considered
problems similar to (1.2), both with and without viscosity and surface tension: [1, 2, 3, 4, 5,
6, 7, 8, 11, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30]. We refer the reader to the
introduction of our paper [13] for a discussion of how these results relate to ours. We will only
mention the details of those papers most relevant to the present problem.

In [3], Beale developed a local existence theory for the problem (1.2) in Lagrangian coordi-
nates, where the unknowns are replaced with v = u ◦ ζ, q = p ◦ ζ for ζ the Lagrangian flow
map, which satisfies ∂tζ = v. The result showed that (roughly speaking), given v0 ∈ Hr−1

for r ∈ (3, 7/2), there exists a unique solution on a time interval (0, T ), with T depending on
v0, so that v ∈ L2Hr ∩ Hr/2L2. A second local existence theorem was then proved for small
data near equilibrium. It showed that for any fixed 0 < T < ∞, there exists a collection of
sufficiently small data so that a unique solution exists on (0, T ) and so that the solutions depend
analytically on the data.

The second result suggests that solutions should exist globally in time for small data. If global
solutions do exist, it is natural to expect the free surface to decay to 0 as t → ∞. However,
Beale’s third result in [3] was a non-decay theorem that showed that a “reasonable” extension
to small-data global well-posedness with decay of the free surface fails. More precisely, Theorem
6.4 of [3] establishes that it is possible to choose Θ ∈ H1(Ω) with Θ = 0 on Σb so that there
cannot exist a curve of solutions in Lagrangian coordinates, written (v(ε), q(ε)) for ε near 0, so
that (among other things)

(1.13) v(ε) ∈ L2([0,∞);Hr(Ω)) ∩Hr/2([0,∞);L2(Ω)) ∩ L1([0,∞);Hr(Ω)) for r ∈ (3, 7/2),

(1.14) ζ0(ε) = Id+ εΘ, v0(ε) = 0,

(1.15) lim
t→∞

ζ3(ε)|Σ = 0, and v(ε) = εv1 + ε2v2 +O(ε3).
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The proof, which is a reductio ad absurdum, hinges on the inclusion v(ε) ∈ L1Hr and Θ
satisfying the properties

(1.16) div Θ = 0 and
∫

Σ
∂3Θ3 ·Θ3 6= 0.

The condition (1.14) says that the domain is initially close to equilibrium, and the first condition
in (1.15) says that the free surface returns to equilibrium as t → ∞. In the discussion of this
result, Beale pointed out that it does not imply the non-existence of global-in-time solutions,
but rather that establishing global-in-time results requires stronger or different hypotheses than
those imposed in the non-decay theorem. Note that, even though the non-decay theorem is
proved in the context of horizontally infinite domains, its proof carries over to horizontally
periodic domains.

The non-decay theorem raises two intriguing questions. First, is viscosity alone capable of
producing global well-posedness? Second, if global solutions exist, do they decay as t → ∞?
Our main result answers both questions in the affirmative. In order to avoid the applicability
of the non-decay theorem, we must show why its hypotheses are not satisfied. We would like
to highlight two crucial ways in which we do this. The first and most obvious is that we work
in a different coordinate system and within a different functional framework. In particular this
requires higher regularity of the initial data and imposes more compatibility conditions than
are satisfied by the data in the non-decay theorem.

The second difference is found in our assumption that η0 has zero average in (1.3). We claim
that this condition makes (1.16) impossible, i.e. the zero average condition prevents the choice
of Θ satisfying (1.16), which then breaks the reductio ad absurdum used to prove the non-decay
theorem. The argument in the theorem goes as follows. The expansion of v(ε) in (1.15), and
the L1Hr condition in (1.13) imply an expansion ζ(ε) = εζ1 + ε2ζ2 + O(ε3). The term v1 is
assumed to be known, and a contradiction is derived in solving for v2 using the ζ expansion, if
Θ is chosen to satisfy (1.16).

To show that the zero average condition prevents the choice of Θ satisfying (1.16), we must
first compare the flow map, ζ, to the free surface function, η. Since ζ and η yield the same
surface, we must have that as graphs,

(1.17) {(ζ1(x1, x2, 0, t), ζ2(x1, x2, 0, t), ζ3(x1, x2, 0, t))} = {(x1, x2, η(x1, x2, t))}.

Let ψi(x1, x2, t) = ζi(x1, x2, 0, t) for i = 1, 2. If ζ is a diffeomorphism, then it is possible to solve
ψ(y1, y2, t) = (x1, x2) = x′ for y′ = (y1, y2), i.e. y′ = ψ−1(x′, t). Hence

(1.18) η(x1, x2, t) = ζ3(ψ−1(x1, x2, t), 0, t) for all x′ ∈ Σ, t ≥ 0.

At time t = 0 we have

(1.19) ψ0(ε) = (x1 + εΘ1)e1 + (x2 + εΘ2)e2, and e3 · ζ0(ε)(y′, 0) = εΘ3(y′, 0),

so that η0(x′) = εΘ3(ψ0(ε)−1(x′), 0). Using the zero average condition and a change of variables
shows that

(1.20) 0 =
∫

Σ
η0(x′)dx′ = ε

∫
Σ

Θ3(ψ0(ε)−1(x′), 0)dx′ = ε

∫
Σ

Θ3(y′, 0) |detDyψ0(ε)| dy′,

but it is easily verified that for ε near 0,

(1.21) |detDyψ0(ε)| = detDyψ0(ε) = 1 + ε(∂1Θ1 + ∂2Θ2) +O(ε2),

so that

(1.22) 0 = ε

∫
Σ

Θ3

(
1 + ε(∂1Θ1 + ∂2Θ2) +O(ε2)

)
dy′.

Sending ε→ 0, we find that Θ must satisfy

(1.23) 0 =
∫

Σ
Θ3dy

′ and 0 =
∫

Σ
Θ3(∂1Θ1 + ∂2Θ2)dy′.
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However, div Θ = 0 implies that ∂3Θ3 = −(∂1Θ1 + ∂2Θ2), so that the latter condition becomes

(1.24) 0 =
∫

Σ
Θ3∂3Θ3,

in violation of assumption (1.16).
This analysis shows that imposing condition (1.16) on the initial data for the flow map is

essentially equivalent to choosing an initial coordinate system in which the average disturbance
of the free surface does not vanish. If the system returns to equilibrium, then the map describing
the equilibrium surface should be a non-zero constant (whatever the initial average was), and
hence we should not expect L2 or L∞ decay of this map. Choosing the initial data with zero
average circumvents this problem and allows for L2 and L∞ decay.

1.4. Local well-posedness. The a priori estimates we develop in this paper are done in dif-
ferent coordinates and in a different functional framework from those used by Beale in [3]. As
such, we need a local well-posedness theory for (1.12) in our framework. We proved this in
Theorem 1.1 of our companion paper [13]. Since we will need the result here, we record it now.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We
take Hk(Ω) and Hk(Σ) for k ≥ 0 to be the usual Sobolev spaces. When we write norms we will
suppress the H and Ω or Σ. When we write

∥∥∥∂jt u∥∥∥
k

and
∥∥∥∂jt p∥∥∥

k
we always mean that the space

is Hk(Ω), and when we write
∥∥∥∂jt η∥∥∥

k
we always mean that the space is Hk(Σ).

In the following we write 0H
1(Ω) := {u ∈ H1(Ω) | u|Σb

= 0}. The compatibility conditions
for the initial data are the natural ones that would be satisfied for solutions in our functional
framework. They are cumbersome to write, so we shall not record them here. We refer the
reader to [13] for their precise definition.

Theorem 1.1. Let N ≥ 3 be an integer. Assume that u0 and η0 satisfy the bounds ‖u0‖24N +
‖η0‖24N+1/2 <∞ as well as the appropriate compatibility conditions. There exist 0 < δ0, T0 < 1
so that if

(1.25) 0 < T ≤ T0 min

{
1,

1
‖η0‖24N+1/2

}
,

and ‖u0‖24N + ‖η0‖24N ≤ δ0, then there exists a unique solution (u, p, η) to (1.12) on the interval
[0, T ] that achieves the initial data. The solution obeys the estimates

(1.26)
2N∑
j=0

sup
0≤t≤T

∥∥∥∂jt u∥∥∥2

4N−2j
+

2N∑
j=0

sup
0≤t≤T

∥∥∥∂jt η∥∥∥2

4N−2j
+

2N−1∑
j=0

sup
0≤t≤T

∥∥∥∂jt p∥∥∥2

4N−2j−1

+
∫ T

0

 2N∑
j=0

∥∥∥∂jt u∥∥∥2

4N−2j+1
+
∥∥∥∂2N+1

t u
∥∥∥2

(0H1(Ω))∗
+

2N∑
j=0

∥∥∥∂jt p∥∥∥2

4N−2j


+
∫ T

0

‖η‖24N+1/2 + ‖∂tη‖24N−1/2 +
2N+1∑
j=2

∥∥∥∂jt η∥∥∥2

4N−2j+5/2


≤ C

(
‖u0‖24N + ‖η0‖24N + T ‖η0‖24N+1/2

)
and

(1.27) sup
0≤t≤T

‖η‖24N+1/2 ≤ C
(
‖u0‖24N + (1 + T ) ‖η0‖24N+1/2

)
for a universal constant C > 0. The solution is unique among functions that achieve the initial
data and for which the sum of the first three sums in (1.26) is finite. Moroever, η is such that
the mapping Φ(·, t), defined by (1.9), is a C4N−2 diffeomorphism for each t ∈ [0, T ].
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Remark 1.2. All of the computations involved in the a priori estimates that we develop in
this paper are justified by Theorem 1.1 and the fact that η(t) has zero average for t ≥ 0. In
this sense, Theorem 1.1 is a necessary ingredient in the global analysis of (1.12). We do not
believe that our a priori estimates could be justified within a high-regularity modification of the
functional framework of [3].

1.5. Main result. In [17], Hataya studied the periodic problem with a flat bottom, b(x′) =
b ∈ (0,∞). Using the parabolic theory pioneered by Beale [3] and Solonnikov [21], it was shown
that if η0 has zero average (1.3), then

(1.28)
∫ ∞

0
(1 + t)2 ‖u(t)‖2r−1 dt+ sup

t≥0
(1 + t)2 ‖η(t)‖2r−2 <∞

for r ∈ (5, 11/2). Our result on the periodic problem is an improvement of this in two important
ways. First, we allow for a more general non-flat bottom geometry. Second, we establish faster
decay rates by working in a higher regularity context.

To state our result, we must first define our energies and dissipations. For any integer N ≥ 3
we write the high-order energy as

(1.29) E2N =
2N∑
j=0

(∥∥∥∂jt u∥∥∥2

4N−2j
+
∥∥∥∂jt η∥∥∥2

4N−2j

)
+

2N−1∑
j=0

∥∥∥∂jt p∥∥∥2

4N−2j−1

and the corresponding dissipation as

(1.30) D2N =
2N∑
j=0

∥∥∥∂jt u∥∥∥2

4N−2j+1
+

2N−1∑
j=0

∥∥∥∂jt p∥∥∥2

4N−2j

+ ‖η‖24N−1/2 + ‖∂tη‖24N−1/2 +
2N+1∑
j=2

∥∥∥∂jt η∥∥∥2

4N−2j+5/2
.

We write the high-order spatial derivatives of η as

(1.31) F2N := ‖η‖24N+1/2 .

We define the low-order energy as

(1.32) EN+2 =
N+2∑
j=0

(∥∥∥∂jt u∥∥∥2

2(N+2)−2j
+
∥∥∥∂jt η∥∥∥2

2(N+2)−2j

)
+
N+1∑
j=0

∥∥∥∂jt p∥∥∥2

2(N+2)−2j−1
.

Finally, we define total energy

(1.33) G2N (t) = sup
0≤r≤t

E2N (r) +
∫ t

0
D2N (r)dr + sup

0≤r≤t
(1 + r)4N−8EN+2(r) + sup

0≤r≤t

F2N (r)
(1 + r)

.

Notice that the low-order terms EN+2 are weighted, so bounds on G2N imply decay estimates
EN+2(t) . (1 + t)−4N+8.

Theorem 1.3. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem
1.1 and that η0 satisfies the zero average condition (1.3). Let N ≥ 3 be an integer. There exists
a 0 < κ = κ(N) so that if E2N (0) + F2N (0) < κ, then there exists a unique solution (u, p, η) on
the interval [0,∞) that achieves the initial data. The solution obeys the estimate

(1.34) G2N (∞) ≤ C1 (E2N (0) + F2N (0)) < C1κ,

where C1 > 0 is a universal constant.

Remark 1.4. The decay of EN+2(t) implies that

(1.35) sup
t≥0

(1 + t)4N−8
[
‖u(t)‖22N+4 + ‖η(t)‖22N+4

]
≤ C1κ.

Since N may be taken to be arbitrarily large, this decay result can be regarded as an “almost
exponential” decay rate.
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Remark 1.5. The surface η is sufficiently small to guarantee that the mapping Φ(·, t), defined
in (1.9), is a diffeomorphism for each t ≥ 0. As such, we may change coordinates to y ∈ Ω(t)
to produce a global-in-time, decaying solution to (1.2).

The proof of Theorem 1.3 is completed in Section 9. We now present a summary of the
principal difficulties we encounter in our analysis as well as a sketch of the key ideas used in
our proof.

Principal difficulties
In the study of the unforced incompressible Navier-Stokes equations in a fixed bounded

domain with Dirichlet boundary conditions, it is natural to use the energy method to prove
that solutions decay in time. Indeed, one may prove an analogue of (1.6) for sufficiently smooth
solutions, which relates the natural energy and dissipation:

(1.36) ∂tE +D := ∂t

∫
Ω

|u(t)|2

2
+

1
2

∫
Ω
|Du(t)|2 = 0.

Korn’s inequality allows us to control CE(t) ≤ D(t) for a constant C > 0 independent of time,
which shows that the dissipation is stronger than the energy. From this and Gronwall’s lemma
we may immediately deduce that the energy E decays exponentially in time and that we have
the estimate E(t) ≤ E(0) exp(−Ct).

If one seeks to similarly use the energy method to obtain decay estimates for solutions to (1.2),
then one encounters a fundamental obstacle that may already be observed in the differential
form of (1.6),

(1.37) ∂t

(∫
Ω(t)

|u(t)|2

2
+
∫

Σ

|η(t)|2

2

)
+

1
2

∫
Ω(t)
|Du(t)|2 = 0.

The difficulty is that the dissipation provides no direct control of the η−term in the energy. As
such, we must resort to using the equations (1.2) to try to control ‖η(t)‖0 in terms of ‖Du(t)‖0.
From (1.2) we see that there are only two available routes: solving for η in the fourth equation;
or using the third equation, which is the kinetic transport equation. If we pursue the first route,
then we must be able to control

(1.38) ‖p(t)‖2H0(Σ) + ‖Du(t)ν · ν‖2H0(Σ) . ‖Du(t)‖2H0(Ω(t)) ,

which is not possible. If instead we pursue the second route, then we must estimate η as a
solution to the kinematic transport equation. Such an estimate (see Lemma A.5) only allows
us to estimate ‖η(t)‖0 in terms of

∫ t
0 ‖Du(s)‖0 ds. That is, transport estimates do not provide

control of the η−part of the energy in terms of the “instantaneous” dissipation, but rather
in terms of the “cumulative” integrated dissipation. From this we see that in our problem
the dissipation is actually weaker than the energy, so we cannot argue as above to deduce
exponential decay.

We might hope that we could avoid this problem by working with a high-regularity energy
method, but we will always encounter the same type of problem as above. Regardless of the level
of regularity in the energy, the instantaneous dissipation is always weaker than the instantaneous
energy, which prevents us from deducing exponential decay of the energy. Instead we pursue a
strategy similar to one employed in [22] for another problem where the dissipation is weaker than
the energy. We first show that high-order energies are bounded by using an integrated version
or (1.37) for derivatives of the solution. Then we consider a low-order energy and show that an
equation of the form (1.37) holds, i.e. ∂tElow + CDlow ≤ 0. Now, instead of trying to estimate
(1.38) for low-order derivatives, we instead interpolate between low-order derivatives and high-
order derivatives, which are bounded. Instead of an estimate CElow ≤ Dlow, we must prove one of
the form CE1+θ

low ≤ Dlow for some θ > 0. We can then use this to derive the differential inequality
∂tElow +CE1+θ

low ≤ 0, which can be integrated to see that Elow(t) . Elow(0)/(1 + t)1/θ. We would
then find that the low-order energy decays algebraically in time rather than exponentially.

To complete this program, we must overcome a pair of intertwined difficulties. First, to close
the high-order energy estimates with, say ‖u‖24N+1 for an integer N ≥ 0 in the dissipation,
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we have to control η in H4N+1/2. The only option for this is to again appeal to estimates for
solutions to the transport equation, which say (roughly speaking) that
(1.39)

sup
0≤t≤T

‖η(t)‖24N+1/2 ≤ C exp
(
C

∫ T

0
‖Du(t)‖H2(Σ) dt

)[
‖η0‖24N+1/2 + T

∫ T

0
‖u(t)‖24N+1 dt

]
.

Without knowing a priori that u decays, the right side of this estimate has the potential to grow
at the rate of (1+T )e

√
T . Even if u decays rapidly, the right side can still grow like (1+T ). This

growth is potentially disastrous in closing the high-order, global-in-time estimates. To manage
the growth, we must identify a special decaying term that always appears in products with the
highest derivatives of η. If the special term decays quickly enough, then we can hope to balance
the growth and close the high-order estimates. Due to the growth in (1.39), we believe that it
is not possible to construct global-in-time solutions without also deriving a decay result.

This leads us to the second difficulty in this program. The decay rate of the special term is
dictated by the decay rate of the low-order energy, so we must make the low-order energy decay
sufficiently quickly. This amounts to making the constant θ > 0 appearing in the interpolation
estimates above sufficiently small. We must then carefully choose the terms that will appear in
the low-order and high-order energies in order to keep θ small enough.

The resolution of these intertwined difficulties requires a delicate and involved analysis. We
now sketch some of the techniques we will employ.

Localization and horizontal energy evolution estimates
In order to use the natural energy structure of the problem (given in Eulerian coordinates

by (1.6)) to study high-order derivatives, we can only apply derivatives that do not break the
structure of the boundary condition u = 0 on Σb. We allow the lower boundary Σb to be
curved. This means that spatial derivatives in the x1 and x2 directions are not compatible with
the boundary condition on Σb. This prohibits us from applying, say ∂k1 , to the equations and
studying the evolution of ∂k1u and ∂k1η. The only operator that does not break the boundary
condition is ∂t.

To get around this problem we introduce a localization procedure. We localize in a horizontal
strip near Σ, and in an area around Σb. Near Σ the problem behaves like a free boundary problem
with a flat bottom, and we are free to apply all horizontal derivatives. In the lower domain,
near Σb, the problem behaves like a fixed boundary problem with curved lower boundary. The
only derivatives we can apply are temporal, but they are sufficient for controlling all derivatives
because of the fixed upper boundary.

We then build our a priori estimates out of sums of these appropriate derivatives in the
localizations as well as sums of temporal derivatives in all of Ω. The natural energy structure
(1.6) leads us to consider “horizontal” energies and dissipations of the form (see Section 2.5 for
precise definitions):

Ēn = Ē+
n + Ē−n + Ē0

n,

D̄n = D̄+
n + D̄−n + D̄0

n,
(1.40)

where we allow n = 2N or n = N + 2 for an integer N ≥ 3. Here 2n is the number of
temporal derivatives, the superscript ± indicates the upper or lower localization, the superscript
0 indicates the global temporal derivatives, and the bar indicates horizontal derivatives. After
estimating the nonlinear terms that appear from differentiating (1.12), we are eventually led to
evolution equations for these energies. Roughly speaking, at high-order we have the estimate

(1.41) Ē2N (t) +
∫ t

0
D̄2N (r)dr . E2N (0) +

∫ t

0
(E2N (r))θD2N (r)dr+

∫ t

0

√
D2N (r)K(r)F2N (r)dr,

where K is of the form

(1.42) K = ‖∇u‖2C1 + ‖Du‖2H2(Σ) ,

and θ > 0; and at low-order we have

(1.43) ∂tĒN+2 + D̄N+2 . Eθ2NDN+2.
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Notice that the product KF2N in (1.41) multiplies low-order norms of u against the highest-order
norm of η.

The actual derivation of bounds like (1.41)–(1.43) is rather delicate and depends crucially on
the geometric structure of the equations given in (1.12). Indeed, if we attempted rewrite (1.12)
as a perturbation of the usual constant-coefficient Navier-Stokes equations, then we would fail
to achieve the estimate (1.41) because we would be unable to control the interaction between
∂2N
t p and div ∂2N

t u, the latter of which does not vanish in the geometric form of the equations.
Comparison estimates
The next step in the analysis is to replace the horizontal energies and dissipations with the

full energies and dissipations. We prove that there is a universal 0 < δ < 1 so that if E2N ≤ δ,
then

E2N . Ē2N , D2N . D̄2N +KF2N ,

EN+2 . ĒN+2, DN+2 . D̄N+2

(1.44)

This estimate is extremely delicate and can only be obtained by carefully using the structure
of the equations. We make use of every bit of information from the boundary conditions and
the vorticity equations to establish it. There are two structural components of the estimates
that are of such importance that we mention them now. First, the equation divA u = 0 allows
us to write ∂3u3 = −(∂1u1 + ∂2u2) +G2 for some quadratic nonlinearity G2. This allows us to
“trade” a vertical derivative of u3 for horizontal derivatives of u1 and u2, an indispensable trick
in our analysis. Second, the interaction between the parabolic scaling of u (∂tu ∼ ∆u) and the
transport scaling of η (∂tη ∼ u3|Σ) allows us to gain regularity for the temporal derivatives of
η in the dissipation, and it also gives us control of ∂2N+1

t η, which is one more time derivative
than appears in the energy.

Two-tier energy method
Suppose we know that

(1.45) EN+2(r) ≤ δ

(1 + r)4N−8

for some 0 < δ < 1 and N ≥ 3. It is possible to show that K . EN+2, so that K also decays as
in (1.45). Since η satisfies a transport equation, we may use Lemma A.5 to derive an estimate
of the form

(1.46) sup
0≤r≤t

F2N (r) . exp
(
C

∫ t

0

√
K(r)dr

)[
F2N (0) + t

∫ t

0
D2N (r)dr

]
.

Although the right side of this equation could potentially blow up exponentially in time, the
decay of K implied by (1.45) implies that

(1.47) sup
0≤r≤t

F2N (r) . F2N (0) + t

∫ t

0
D2N (r)dr.

This estimate allows for F2N (t) to grow linearly in time, but in the product K(r)F2N (r) that
appears in (1.41), we can use the decay of K to balance this growth. Then if sup0≤r≤t E2N (r) ≤ δ
with δ small enough, we can combine (1.41), (1.44), (1.45), and (1.47) to get an estimate

(1.48) E2N (t) +
∫ t

0
D2N (r)dr . E2N (0) + F2N (0).

This highlights the first step of our two-tier energy method: the decay of low-order terms (i.e.
K) can balance the growth of F2N , yielding boundedness of the high-order terms. In order
to close this argument, we must use a second step: the boundedness of the high-order terms
implies the decay of low-order terms, and in particular the decay of K.

To attain this decay, we combine (1.43) and (1.44) to see that

(1.49) ∂tĒN+2 +
1
2
DN+2 ≤ 0
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if E2N ≤ δ for δ small enough. If we could show that ĒN+2 . DN+2, then this estimate
would yield exponential decay of ĒN+2 and EN+2. An inspection of ĒN+2 and DN+2 (see
Section 2.5) shows that DN+2 can control every term in ĒN+2 except ‖η‖22(N+2) since DN+2 only
controls ‖η‖22(N+2)−1/2. In a sense, this means that exponential decay fails precisely because
the dissipation fails to control the highest spatial derivatives of η appearing in ĒN+2. In lieu of
an estimate of the form ĒN+2 . DN+2, we instead interpolate between E2N and DN+2:

(1.50) ĒN+2 . (DN+2)(4N−8)/(4N−7)(E2N )1/(4N−7).

Combining (1.49) with (1.50) and the boundedness of E2N in terms of the data (1.48) then
allows us to deduce that

(1.51) ∂tĒN+2 +
C

(E2N (0) + F2N (0))1/(4N−8)
(ĒN+2)1+1/(4N−8) ≤ 0.

Gronwall’s inequality (along with some auxiliary estimates) then leads us to the bound

(1.52) EN+2(t) . ĒN+2(t) .
E2N (0) + F2N (0)

(1 + t)4N−8
.

We thus use the boundedness of high-order terms to deduce the decay of low-order terms,
completing the second step of the two-tier energy estimates.

Poincaré from the zero average condition
Owing to (1.5), we know that the average of η(t) over Σ vanishes for all t ≥ 0. This allows

us to utilize the standard Poincaré inequality on Σ to estimate ‖η‖20 . ‖Dη‖
2
0. This is useful

because we will be able to control ‖Dη‖20 with the dissipation (through careful use of the
boundary conditions), which means we will gain control of η itself. This plays an essential role
in the derivation of the decay rate in our two-tier energy method.

Localization for the curved lower surface
The localization procedure that we employ introduces a difficulty in the form of “localization

forces” that appear because the cutoff functions we multiply by to localize do not commute with
all of the differential operators. These localization forces can only be controlled in terms of the
dissipation by employing the Poincaré inequality for η on Σ. Through a careful balance of how
and where we localize, we are able to control the localization forces and close our estimates.

1.6. Comparison to the horizontally infinite problem. In our companion paper [14], we
prove the analogue of Theorem 1.3 for horizontally infinite domains. In order to compare with
Theorem 1.3, we record a version of our result here. In the theorem the terms E10, F10, and
G10 are similar to what we use here (setting N = 5). However, they differ in two crucial
ways: they include terms involving the horizontal Riesz potential, which amounts to negative
fractional derivatives; and at low-order they require a minimal number of derivatives in the
sums of derivatives. We refer to [14] for precise definitions.

Theorem 1.6. Suppose the initial data (u0, η0) satisfy the compatibility conditions of Theorem
1.1. Let λ ∈ (0, 1). There exists a κ > 0 so that if E10(0) + F10(0) < κ, then there exists a
unique solution (u, p, η) on the interval [0,∞) that achieves the initial data. The solution obeys
the estimate

(1.53) G10(∞) ≤ C1 (E10(0) + F10(0)) < C1κ,

where C1 > 0 is a universal constant. For any 0 ≤ ρ < λ, we have that

(1.54) sup
t≥0

[
(1 + t)2+ρ ‖u(t)‖2C2(Ω)

]
≤ C(ρ)κ,

for C(ρ) > 0 a constant depending on ρ. Also,

(1.55) sup
t≥0

(1 + t)1+λ ‖u(t)‖22 + (1 + t)1+λ ‖η(t)‖2L∞ +
1∑
j=0

(1 + t)j+λ
∥∥Djη(t)

∥∥2

0

 ≤ Cκ
for a universal constant C > 0.
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Remark 1.7. For the horizontally infinite problem we require the lower boundary to be com-
pletely flat, i.e. we take b ∈ (0,∞) to be a constant. If we allowed for a curved lower surface
and attempted the same localization procedure that we use here, the lack of a Poincaré inequality
for η would prohibit us from controlling the localization forces in terms of the dissipation, and
our estimates would fail to close.

Remark 1.8. A key difference between the periodic result, Theorem 1.3, and the non-periodic
result, Theorem 1.6, is that in the periodic case, increasing N also increases the decay rate. No
such gain is possible in the non-periodic case.

Remark 1.9. The reader interested in a unified presentation of Theorems 1.1, 1.6, and 1.3
may consult [12].

1.7. Comparison to the case with surface tension. If the effect of surface tension is
included at the air-fluid free interface, then the formulation of the PDE must be changed.
Surface tension is modeled by modifying the fourth equation in (1.2) to be

(1.56) (pI − µD(u))ν = gην − σHν,

where H = ∂i(∂iη/
√

1 + |Dη|2) is the mean curvature of the surface {y3 = η(t)} and σ > 0 is
the surface tension.

In [4], Beale proved small-data global well-posedness for the problem with surface tension
in horizontally infinite domains. The flattened coordinate system we employ was introduced
in [4] and used in place of Lagrangian coordinates. However, Beale employed a change of
unknown velocities that is more complicated than just a coordinate change. Well-posedness
was demonstrated with u ∈ L2Hr and η ∈ L2Hr+1/2, given that u0 ∈ Hr−1/2, η0 ∈ Hr are
sufficiently small for r ∈ (3, 7/2). In this context it is understood that surface tension leads to
the decay of certain modes, thereby aiding global existence.

In [5], Beale-Nishida studied the asymptotic properties of the solutions constructed in [4].
They showed that if η0 ∈ L1(Σ), then

(1.57) sup
t≥0

(1 + t)2 ‖u(t)‖22 + sup
t≥0

2∑
j=1

(1 + t)1+j
∥∥Djη(t)

∥∥2

0
<∞,

and that this decay rate is optimal. Taking λ ≈ 1 in our Theorem 1.6, the estimates (1.55)
yield almost the same decay rates.

In [19], Nishida-Teramoto-Yoshihara showed that in horizontally periodic domains with sur-
face tension and a flat bottom, if η0 has zero average, then there exists a γ > 0 so that

(1.58) sup
t≥0

eγt
[
‖u(t)‖22 + ‖η(t)‖23

]
<∞.

In this case, the equation (1.56) gives a third way of estimating η in terms of the dissipation;
using this, it is possible to show that the dissipation is stronger than the energy. Thus, if surface
tension is added in the periodic case, fully exponential decay is possible, whereas without surface
tension we only recover algebraic decay of arbitrary order in Theorem 1.3.

The comparison of these two results with ours establishes a nice contrast between the surface
tension and non-surface tension cases. Without surface tension we can recover “almost” the
same decay rate as in the case with surface tension. This shows that viscosity is the basic decay
mechanism and that the effect of surface tension serves to enhance the decay rate.

1.8. Definitions and terminology. We now mention some of the definitions, bits of notation,
and conventions that we will use throughout the paper.

Einstein summation and constants
We will employ the Einstein convention of summing over repeated indices for vector and

tensor operations. Throughout the paper C > 0 will denote a generic constant that can depend
on the parameters of the problem, N , and Ω, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next.
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When a constant depends on a quantity z we will write C = C(z) to indicate this. We will
employ the notation a . b to mean that a ≤ Cb for a universal constant C > 0.

Norms
We write Hk(Ω) with k ≥ 0 and and Hs(Σ) with s ∈ R for the usual Sobolev spaces. We

will typically write H0 = L2; the exception to this is when we use L2([0, T ];Hk) notation to
indicate the space of square-integrable functions with values in Hk.

To avoid notational clutter, we will avoid writing Hk(Ω) or Hk(Σ) in our norms and typically
write only ‖·‖k. Since we will do this for functions defined on both Ω and Σ, this presents some
ambiguity. We avoid this by adopting two conventions. First, we assume that functions have
natural spaces on which they “live.” For example, the functions u, p, and η̄ live on Ω, while η
itself lives on Σ. As we proceed in our analysis, we will introduce various auxiliary functions;
the spaces they live on will always be clear from the context. Second, whenever the norm of a
function is computed on a space different from the one in which it lives, we will explicitly write
the space. This typically arises when computing norms of traces onto Σ of functions that live
on Ω.

Derivatives
We write N = {0, 1, 2, . . . } for the collection of non-negative integers. When using space-time

differential multi-indices, we will write N1+m = {α = (α0, α1, . . . , αm)} to emphasize that the
0−index term is related to temporal derivatives. For just spatial derivatives we write Nm. For
α ∈ N1+m we write ∂α = ∂α0

t ∂α1
1 · · · ∂αm

m . We define the parabolic counting of such multi-indices
by writing |α| = 2α0 + α1 + · · · + αm. We will write Df for the horizontal gradient of f , i.e.
Df = ∂1fe1 + ∂2fe2, while ∇f will denote the usual full gradient.

For a given norm ‖·‖ and integers k,m ≥ 0, we introduce the following notation for sums of
spatial derivatives:

(1.59)
∥∥∥Dk

mf
∥∥∥2

:=
∑
α∈N2

m≤|α|≤k

‖∂αf‖2 and
∥∥∥∇kmf∥∥∥2

:=
∑
α∈N3

m≤|α|≤k

‖∂αf‖2 .

The convention we adopt in this notation is that D refers to only “horizontal” spatial derivatives,
while ∇ refers to full spatial derivatives. For space-time derivatives we add bars to our notation:

(1.60)
∥∥∥D̄k

mf
∥∥∥2

:=
∑

α∈N1+2

m≤|α|≤k

‖∂αf‖2 and
∥∥∥∇̄kmf∥∥∥2

:=
∑

α∈N1+3

m≤|α|≤k

‖∂αf‖2 .

When k = m ≥ 0 we will write

(1.61)
∥∥∥Dkf

∥∥∥2
=
∥∥∥Dk

kf
∥∥∥2
,
∥∥∥∇kf∥∥∥2

=
∥∥∥∇kkf∥∥∥2

,
∥∥∥D̄kf

∥∥∥2
=
∥∥∥D̄k

kf
∥∥∥2
,
∥∥∥∇̄kf∥∥∥2

=
∥∥∥∇̄kkf∥∥∥2

.

We allow for composition of derivatives in this counting scheme in a natural way; for example,
we write

(1.62)
∥∥∥DDk

mf
∥∥∥2

=
∥∥∥Dk

mDf
∥∥∥2

=
∑
α∈N2

m≤|α|≤k

‖∂αDf‖2 =
∑
α∈N2

m+1≤|α|≤k+1

‖∂αf‖2 .

1.9. Plan of paper. Throughout the paper we assume that N ≥ 3.
In Section 2 we prove some preliminary lemmas and we define the energies and dissipations.

We also describe how we localize to handle the curved boundary b ∈ C∞(Σ). In Section 3 we
present estimates of the some nonlinear forcing terms Gi (as defined in (2.24)–(2.31)) and some
other nonlinearities. In Section 4 we use the geometric form of the equations to estimate the
evolution of temporal derivatives. Section 5 concerns similar energy evolution estimates for the
localized energies. For these, we employ the linear perturbed framework with the Gi forcing
terms. In the upper localization we apply horizontal spatial derivatives as well as temporal
derivatives, but in the lower localization we only apply temporal derivatives. Section 6 concerns
the comparison estimates, where we show how to estimate the full energies and dissipations in
terms of their horizontal counterparts. Section 7 combines all of the analysis of Sections 3–6
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into our a priori estimates for solutions to (1.12) in the periodic setting. Section 8 concerns a
specialized version of the local well-posedness theorem that guarantees that η has zero average
for all time. Finally, in Section 9 we record our global well-posedness and decay result, proving
Theorem 1.3.

Below, in (2.52), we will define the total energy G2N that we use in the global well-posedness
analysis. For the purposes of deriving our a priori estimates, we will assume throughout Sections
3–7 that solutions are given on the interval [0, T ] and that G2N (T ) ≤ δ for 0 < δ < 1 as small
as in Lemma 2.3 so that its conclusions hold. This also means that E2N (t) ≤ 1 for t ∈ [0, T ].
We will also assume throughout that the solutions satisfy the zero average condition

(1.63)
∫

Σ
η(t) = 0 for all t ∈ [0, T ].

We should remark that Theorem 1.1 does not produce solutions that necessarily satisfy the
zero average condition. To guarantee that this holds, we must record a specialized version of
the local well-posedness result, Theorem 8.1. We could record this result before the a priori
estimates, but we have chosen to postpone it until after the a priori estimates. Note that
the bounds of Theorem 8.1 control more than just G2N (T ), and the extra control it provides
guarantees that all of the calculations used in the a priori estimates are justified.

2. Preliminaries for the a priori estimates

In this section we present some preliminary results that we will use in our a priori estimates.
We first present two forms of equations similar to (1.12) and describe the corresponding energy
evolution structure. Then we record a useful lemma, describe our localization procedure, and
define the energies and dissipations.

2.1. Geometric form. We now give a linear formulation of the PDE (1.12) in its geometric
form. Suppose that η, u are known and that A,N , J, etc are given in terms of η as usual ((1.10),
etc). We then consider the linear equation for (v, q, ζ) given by

(2.1)



∂tv − ∂tη̄b̃K∂3v + u · ∇Av + divA SA(q, v) = F 1 in Ω
divA v = F 2 in Ω
SA(q, v)N = ζN + F 3 on Σ
∂tζ −N · v = F 4 on Σ
v = 0 on Σb.

Now we record the natural energy evolution associated to solutions v, q, ζ of the geometric
form equations (2.1).

Lemma 2.1. Suppose that u and η are given solutions to (1.12). Suppose (v, q, ζ) solve (2.1).
Then

(2.2) ∂t

(
1
2

∫
Ω
J |v|2 +

1
2

∫
Σ
|ζ|2
)

+
1
2

∫
Ω
J |DAv|2 =

∫
Ω
J(v · F 1 + qF 2) +

∫
Σ
−v · F 3 + ζF 4.

Proof. We multiply the ith component of the first equation of (2.1) by Jvi, sum over i and
integrate over Ω to find that

(2.3) I + II = III

for

(2.4) I =
∫

Ω
∂tviJvi − ∂tη̄b̃∂3vivi + ujAjk∂kviJvi,

(2.5) II =
∫

Ω
Ajk∂kSij(v, q)Jvi, and III =

∫
Ω
F 1 · vJ.

In order to integrate by parts in I, II we will utilize the geometric identity ∂k(JAik) = 0 for
each i.
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Then

(2.6) I = ∂t

∫
Ω

|v|2 J
2

+
∫

Ω
−|v|

2 ∂tJ

2
− ∂tη̄b̃∂3

|v|2

2
+ uj∂k

(
JAjk

|v|2

2

)
:= I1 + I2.

Since b̃ = 1 + x3/b, an integration by parts and an application of the boundary condition v = 0
on Σb reveals that

(2.7)

I2 =
∫

Ω
−|v|

2 ∂tJ

2
− ∂tη̄b̃∂3

|v|2

2
+ uj∂k

(
JAjk

|v|2

2

)
=
∫

Ω
−|v|

2 ∂tJ

2
+
|v|2

2

(
∂tη̄

b
+ b̃∂t∂3η̄

)
−
∫

Ω
∂kujJAjk

|v|2

2
+

1
2

∫
Σ
−∂tη |v|2 + ujJAjke3 · ek |v|2 .

It is straightforward to verify that ∂tJ = ∂tη̄/b+ b̃∂t∂3η̄ in Ω and that JAjke3 · ek = Nj on Σ.
Then since u, η satisfy ∂kujAjk = 0 and ∂tη = u · N , we have I2 = 0. Hence

(2.8) I = ∂t

∫
Ω

|v|2 J
2

.

A similar integration by parts shows that

(2.9) II =
∫

Ω
−AjkSij(v, q)J∂kvi +

∫
Σ
JAj3Sij(v, q)vi

=
∫

Ω
−qAik∂kviJ + J

|DAv|2

2
+
∫

Σ
Sij(v, q)Njvi

so that

(2.10) II =
∫

Ω
−qJF 2 + J

|DAv|2

2
+
∫

Σ
ζN · v + v · F 3.

But

(2.11)
∫

Σ
ζN · v =

∫
Σ
ζ(∂tζ − F 4) = ∂t

∫
Σ

|ζ|2

2
+
∫

Σ
−ζF 4,

which means

(2.12) II =
∫

Ω
−qJF 2 + J

|DAv|2

2
+ ∂t

∫
Σ

|ζ|2

2
+
∫

Σ
−ζF 4.

Now (2.2) follows from (2.3), (2.8), and (2.12). �

In order to utilize (2.1) we apply the differential operator ∂α = ∂α0
t to (1.12). The resulting

equations are (2.1) for v = ∂αu, q = ∂αp, and ζ = ∂αη, where

(2.13) F 1 = F 1,1 + F 1,2 + F 1,3 + F 1,4 + F 1,5 + F 1,6

for

(2.14) F 1,1
i =

∑
0<β<α

Cα,β∂
β(∂tη̄b̃K)∂α−β∂3ui +

∑
0<β≤α

Cα,β∂
α−β∂tη̄∂

β(b̃K)∂3ui

(2.15) F 1,2
i = −

∑
0<β≤α

Cα,β

(
∂β(ujAjk)∂α−β∂kui + ∂βAik∂α−β∂kp

)
(2.16) F 1,3

i =
∑

0<β≤α
Cα,β∂

βAj`∂α−β∂`(Aim∂muj +Ajm∂mui)

(2.17) F 1,4
i =

∑
0<β<α

Cα,βAjk∂k(∂βAi`∂α−β∂`uj + ∂βAj`∂α−β∂`ui)

(2.18) F 1,5
i = ∂α∂tη̄b̃K∂3ui and F 1,6

i = Ajk∂k(∂αAi`∂`uj + ∂αAj`∂`ui).
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In these equations, the terms Cα,β are constants that depend on α and β. The term F 2 =
F 2,1 + F 2,2 for

(2.19) F 2,1 = −
∑

0<β<α

Cα,β∂
βAij∂α−β∂jui and F 2,2 = −∂αAij∂jui.

We write F 3 = F 3,1 + F 3,2 for

(2.20) F 3,1 =
∑

0<β≤α
Cα,β∂

βDη(∂α−βη − ∂α−βp)

(2.21) F 3,2
i =

∑
0<β≤α

Cα,β(∂β(NjAim)∂α−β∂muj + ∂β(NjAjm)∂α−β∂mui).

Finally,

(2.22) F 4 =
∑

0<β≤α
Cα,β∂

βDη · ∂α−βu.

2.2. Perturbed linear form. Writing the equations in the form (1.12) is more faithful to the
geometry of the free boundary problem, but it is inconvenient for many of our a priori estimates.
This stems from the fact that if we want to think of the coefficients of the equations for u, p
as being frozen for a fixed free boundary given by η, then the underlying linear operator has
non-constant coefficients. This makes it unsuitable for applying differential operators.

To get around this problem, in many parts of the paper we will analyze the PDE in a different
formulation, which looks like a perturbation of the linearized problem. The utility of this form of
the equations lies in the fact that the linear operators have constant coefficients. The equations
in this form are

(2.23)



∂tu+∇p−∆u = G1 in Ω
div u = G2 in Ω
(pI − Du− ηI)e3 = G3 on Σ
∂tη − u3 = G4 on Σ
u = 0 on Σb.

Here we have written G1 = G1,1 +G1,2 +G1,3 +G1,4 +G1,5 for

(2.24) G1,1
i = (δij −Aij)∂jp

(2.25) G1,2
i = ujAjk∂kui

(2.26) G1,3
i = [K2(1 +A2 +B2)− 1]∂33ui − 2AK∂13ui − 2BK∂23ui

(2.27) G1,4
i = [−K3(1+A2+B2)∂3J+AK2(∂1J+∂3A)+BK2(∂2J+∂3B)−K(∂1A+∂2B)]∂3ui

(2.28) G1,5
i = ∂tη̄(1 + x3/b)K∂3ui.

G2 is the function

(2.29) G2 = AK∂3u1 +BK∂3u2 + (1−K)∂3u3,

and G3 is the vector

(2.30) G3 := ∂1η

 p− η − 2(∂1u1 −AK∂3u1)
−∂2u1 − ∂1u2 +BK∂3u1 +AK∂3u2

−∂1u3 −K∂3u1 +AK∂3u3


+ ∂2η

−∂2u1 − ∂1u2 +BK∂3u1 +AK∂3u2

p− η − 2(∂2u2 −BK∂3u2)
−∂2u3 −K∂3u2 +BK∂3u3

+

(K − 1)∂3u1 +AK∂3u3

(K − 1)∂3u2 +BK∂3u3

2(K − 1)∂3u3

 .

Finally,

(2.31) G4 = −Dη · u.
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At several points in our analysis, we will need to localize (2.23) by multiplying by a cutoff
function. This leads us to consider the energy evolution for a minor modification of (2.23).

Lemma 2.2. Suppose (v, q, ζ) solve

(2.32)



∂tv +∇q −∆v = Φ1 in Ω
div v = Φ2 in Ω
(qI − Dv)e3 = aζe3 + Φ3 on Σ
∂tζ − v3 = Φ4 on Σ
v = 0 on Σb,

where either a = 0 or a = 1. Then

(2.33) ∂t

(
1
2

∫
Ω
|v|2 +

1
2

∫
Σ
a |ζ|2

)
+

1
2

∫
Ω
|Dv|2 =

∫
Ω
v · Φ1 + qΦ2 +

∫
Σ
−v · Φ3 + aζΦ4.

Proof. We take the inner-product of the first equation in (2.32) with v and integrate over Ω to
find

(2.34) ∂t

∫
Ω

|v|2

2
−
∫

Ω
(qI − Dv) : ∇u+

∫
Σ

(qI − Dv)e3 · u =
∫

Ω
v · Φ1.

We then use the second equation in (2.32) to compute

(2.35)
∫

Ω
−(qI − Dv) : ∇u =

∫
Ω
−q div v +

|Dv|2

2
=
∫

Ω
−qΦ2 +

|Dv|2

2
.

The boundary conditions in (2.32) provide the equality

(2.36)
∫

Σ
(qI − Dv)e3 · v =

∫
Σ
aζv3 + v · Φ3 = ∂t

∫
Σ
a
|ζ|2

2
+
∫

Σ
−aζΦ4 + v · Φ3.

Combining (2.34)–(2.36) then yields (2.33). �

2.3. An initial lemma. The following result is useful for removing the appearance of J factors.

Lemma 2.3. There exists a universal 0 < δ < 1 so that if ‖η‖25/2 ≤ δ, then

(2.37) ‖J − 1‖2L∞ + ‖A‖2L∞ + ‖B‖2L∞ ≤
1
2
, and ‖K‖2L∞ + ‖A‖2L∞ . 1.

Proof. According to the definitions of A,B, J given in (1.11) and Lemma A.4, we may bound

(2.38) ‖J − 1‖2L∞ + ‖A‖2L∞ + ‖B‖2L∞ . ‖η̄‖
2
3 . ‖η‖

2
5/2 .

Then if δ is sufficiently small, we find that the first inequality in (2.37) holds. As a consequence
‖K‖2L∞ + ‖A‖2L∞ . 1, which is the second inequality in (2.37). �

2.4. Localization. Let 0 < b− := infx′ b(x′) and supx′ b(x′) = b+ < ∞. Let χi ∈ C∞c (R) for
i = 1, 2, 3 with the property that

(2.39)


χ1 = 1 on [−3b−/4, 1] and χ1 = 0 on (−∞,−7b−/8)
χ2 = 1 on [−(b+ + 1),−b−/2] and χ2 = 0 on (−3b−/8,∞)
χ3 = 1 on [−b−/2, 1] and χ3 = 0 on (−∞,−5b−/8).

We then define the subsets Ωi ⊂ Ω by

Ω1 = {−3b−/4 ≤ x3 ≤ 0} ∩ Ω,

Ω2 = {−b+ ≤ x3 ≤ −b−/2} ∩ Ω,

Ω3 = {−b−/2 ≤ x3 ≤ 0} ∩ Ω.
(2.40)

We will view the functions χi(x) = χi(x3) as cutoff functions in the vertical direction. They
are constructed so that χ1 = 1 on Ωi and so that Ω = Ω1 ∪ Ω2 = Ω3 ∪ Ω2, Ω3 ⊂ Ω1, and
supp(∇χ2) ⊂ Ω3.
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When we multiply the equations in (2.23) by χi, i = 1, 2, we find that (χiu, χip, η) solve

(2.41)



∂t(χiu) +∇(χip)−∆(χiu) = χiG
1 +H1,i in Ω

div(χiu) = χiG
2 +H2,i in Ω

((χip)I − D(χiu))e3 = δi,1
(
ηe3 +G3

)
on Σ

∂tη − (χ1u3) = G4 on Σ
χiu = 0 on Σb,

where δi,1 is the Kronecker delta and

(2.42) H1,i = ∂3χi(pe3 − 2∂3u)− ∂2
3χiu and H2,i = ∂3χiu3.

The H functions have this form since χi is only a function of x3.

2.5. Energies and dissipations. We will consider energies and dissipates at both the N + 2
and 2N levels. To define both at once we consider a generic integer n ≥ 3. Recall that we use
the derivative conventions described in Section 1.8. We define the energy as

(2.43) En =
n∑
j=0

(∥∥∥∂jt u∥∥∥2

2n−2j
+
∥∥∥∂jt η∥∥∥2

2n−2j

)
+
n−1∑
j=0

∥∥∥∂jt p∥∥∥2

2n−2j−1
.

The corresponding dissipation is

(2.44) Dn =
n∑
j=0

∥∥∥∂jt u∥∥∥2

2n−2j+1
+
n−1∑
j=0

∥∥∥∂jt p∥∥∥2

2n−2j

+ ‖η‖22n−1/2 + ‖∂tη‖22n−1/2 +
n+1∑
j=2

∥∥∥∂jt η∥∥∥2

2n−2j+5/2
.

For our “horizontal” energies and dissipations, we must use different types of derivatives
depending on the localization. In the whole domain we only consider temporal derivatives,
writing

(2.45) Ē0
n =

n∑
j=0

∥∥∥√J∂jt u∥∥∥2

0
+

n∑
j=0

∥∥∥∂jt η∥∥∥2

0
and D̄0

n =
n∑
j=0

∥∥∥D∂jt u∥∥∥2

0
.

Remark 2.4. According to Lemma 2.3, if ‖η‖25/2 ≤ δ, then

(2.46)
1
2

n∑
j=0

∥∥∥∂jt u∥∥∥2

0
≤

n∑
j=0

∥∥∥√J∂jt u∥∥∥2

0
≤ 3

2

n∑
j=0

∥∥∥∂jt u∥∥∥2

0
.

In the upper localization we allow both horizontal spatial derivatives and temporal derivatives,
but we do not allow the highest order temporal derivatives:

(2.47) Ē+
n =

∥∥D̄2n−1
0 (χ1u)

∥∥2

0
+
∥∥DD̄2n−1(χ1u)

∥∥2

0
+
∥∥D̄2n−1

0 η
∥∥2

0
+
∥∥DD̄2n−1η

∥∥2

0
,

(2.48) D̄+
n =

∥∥D̄2n−1
0 D(χ1u)

∥∥2

0
+
∥∥DD̄2n−1D(χ1u)

∥∥2

0
.

In the lower localization we only take temporal derivatives, but not all the way to the highest
order:

(2.49) Ē−n =
n−1∑
j=0

∥∥∥∂jt (χ2u)
∥∥∥2

0
and D̄−n =

n−1∑
j=0

∥∥∥D∂jt (χ2u)
∥∥∥2

0
.

Our specialized energy terms are

(2.50) F2N = ‖η‖24N+1/2
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and

(2.51) K := ‖∇u‖2L∞ +
∥∥∇2u

∥∥2

L∞
+

2∑
i=1

‖Dui‖2H2(Σ) .

The total energy we will use in our global well-posedness result is

(2.52) G2N (t) = sup
0≤r≤t

E2N (r) +
∫ t

0
D2N (r)dr + sup

0≤r≤t
(1 + r)4N−8EN+2(r) + sup

0≤r≤t

F2N (r)
(1 + r)

.

3. Nonlinear estimates

3.1. Estimates of Gi at the N + 2 level. We now estimate the Gi terms defined in (2.24)–
(2.31) at the N + 2 level.

Theorem 3.1. Then there exists a θ > 0 so that

(3.1)
∥∥∥∇̄2(N+2)−2

0 G1
∥∥∥2

0
+
∥∥∥∇̄2(N+2)−2

0 G2
∥∥∥2

1
+
∥∥∥D̄2(N+2)−2

0 G3
∥∥∥2

1/2
+
∥∥∥D̄2(N+2)−2

0 G4
∥∥∥2

1/2

. Eθ2NEN+2

and

(3.2)
∥∥∥∇̄2(N+2)−1

0 G1
∥∥∥2

0
+
∥∥∥∇̄2(N+2)−1

0 G2
∥∥∥2

1
+
∥∥∥D̄2(N+2)−1

0 G3
∥∥∥2

1/2
+
∥∥∥D̄2(N+2)−1

0 G4
∥∥∥2

1/2

+
∥∥∥D̄2(N+2)−2∂tG

4
∥∥∥2

1/2
. Eθ2NDN+2.

Proof. The estimates of these nonlinearities are fairly routine to derive, so for the sake of brevity
we present only a sketch. First we note that all terms are quadratic or of higher order. Then
we apply the differential operator and expand using the Leibniz rule; each term in the resulting
sum is also at least quadratic. We then estimate one term in Hk (k = 0, 1/2, or 1 depending on
Gi) and the other term in L∞ or Hm for m depending on k, using Sobolev embeddings, trace
theory, and Lemmas A.1, A.3, and A.4. The derivative count in the differential operators is
chosen in order to allow estimation by EN+2 in (3.1) and by DN+2 in (3.2). �

3.2. Estimates of Gi at the 2N level. Now we estimate Gi at the 2N level.

Theorem 3.2. Then there exists a θ > 0 so that

(3.3)
∥∥∥∇̄4N−2

0 G1
∥∥∥2

0
+
∥∥∥∇̄4N−2

0 G2
∥∥∥2

1
+
∥∥∥D̄4N−2

0 G3
∥∥∥2

1/2
+
∥∥∥D̄4N−2

0 G4
∥∥∥2

1/2
. E1+θ

2N ,

(3.4)
∥∥∥∇̄4N−2

0 G1
∥∥∥2

0
+
∥∥∥∇̄4N−2

0 G2
∥∥∥2

1
+
∥∥∥D̄4N−2

0 G3
∥∥∥2

1/2
+
∥∥∥D̄4N−2

0 G4
∥∥∥2

1/2

+
∥∥∇̄4N−3∂tG

1
∥∥2

0
+
∥∥∇̄4N−3∂tG

2
∥∥2

1
+
∥∥D̄4N−3∂tG

3
∥∥2

1/2
+
∥∥D̄4N−2∂tG

4
∥∥2

1/2

. Eθ2ND2N ,

and

(3.5)
∥∥∇4N−1G1

∥∥2

0
+
∥∥∇4N−1G2

∥∥2

1
+
∥∥D4N−1G3

∥∥2

1/2
+
∥∥D4N−1G4

∥∥2

1/2
. Eθ2ND2N +KF2N .

Proof. The proof of (3.3) and (3.4) proceeds as in Theorem 3.1, using Sobolev embeddings,
trace theory, and Lemmas A.1, A.3, and A.4 to estimate ∂αGi.

We now turn to the derivation of (3.5). Consider ∂αGi with |α| = 4N − 1 and α0 = 0, i.e.
purely spatial derivatives, and expand ∂αGi using the Leibniz rule. With two exceptions, we
may argue as in the derivation of (3.4) to estimate the desired norms of all of the resulting
terms by Eθ2ND2N for θ > 0. The exceptional terms are ones involving either ∇4N+1η̄ in Ω or
D4Nη on Σ. We will now show how to estimate the exceptional terms with KF2N , as defined
by (2.51) and (2.50).
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In ∇4N−1G1, there are terms of the form ∂β η̄Q∂γu, with

(3.6) Q = Q(A,B, J,K,∇A,∇B,∇J)

a polynomial and β, γ ∈ N3 with |β| = 4N + 1 and |γ| = 1. To estimate such a term, we use
Lemma A.3 to bound

(3.7)
∥∥∇4N+1η̄

∥∥2

0
.
∥∥∥D4N+1/2η

∥∥∥2

0
. F2N .

Sobolev embeddings imply that ‖Q‖2L∞ . Eθ2N . 1 for some θ > 0, so

(3.8)
∥∥∥∂β η̄Q∂γu∥∥∥2

0
.
∥∥∇4N+1η̄

∥∥2

0
‖∇u‖2L∞ ‖Q‖

2
L∞ .

∥∥∥D4N+1/2η
∥∥∥2

0
‖∇u‖2L∞ . F2NK.

This estimate then yields the G1 estimate in (3.5).
In ∇4N−1G2 there are terms of the form ∂β η̄Q∂γu with Q = Q(A,B,K) a polynomial and

β, γ ∈ N3 with |β| = 4N , |γ| = 1. Again, Sobolev embeddings imply that ‖Q‖2C1(Ω) . Eθ2N . 1,
so

(3.9)
∥∥∥∂β η̄Q∂γu∥∥∥2

1
. ‖Q‖2C1(Ω)

∥∥∥∂β η̄∂γu∥∥∥2

1
.
∥∥∥∂β η̄∂γu∥∥∥2

0
+
∥∥∥∂β η̄∇∂γu∥∥∥2

0
+
∥∥∥∇∂β η̄∂γu∥∥∥2

0

.
∥∥∇4N η̄

∥∥2

0
‖∇u‖2C1(Ω) +

∥∥∇4N+1η̄
∥∥2

0
‖∇u‖2L∞ . ‖η‖

2
4N−1/2 ‖∇u‖

2
3 +KF2N

. E2ND2N +KF2N ,

where again we have used Lemmas A.3, A.4, and Sobolev embeddings. This estimate yields the
G2 estimate in (3.5).

In D4N−1G3 there are terms of the form ∂βηQ∂γu, where β ∈ N2 with |β| = 4N , γ ∈ N3

with |γ| = 1, and Q is a term for which we can estimate ‖Q‖2C1(Σ) . Eθ2N . 1. Then Lemma
A.2 implies that

(3.10)
∥∥∥∂βηQ∂γu∥∥∥2

1/2
.
∥∥∥∂βη∥∥∥2

1/2
‖Q∂γu‖2C1 . ‖η‖24N+1/2 ‖Q‖

2
C1 ‖∇u‖2C1(Σ) . F2NK,

where in the last inequality we have used ‖∇u‖2C1(Σ) . K, which follows since ∇u and ∇2u are
continuous on the closure of Ω. This estimate yields the G3 estimate in (3.5).

In D4N−1G4 the exceptional terms are of the form ∂βui, where β ∈ N2 with |β| = 4N and
i = 1, 2. Then Lemma A.1 implies that

(3.11)
∥∥∥∂βηu1

∥∥∥2

1/2
.
∥∥∥∂βη∥∥∥2

1/2
‖ui‖2H2(Σ) . F2NK.

This estimate yields the G4 estimate in (3.5). �

3.3. Other nonlinearities. Now we provide an estimate of for ∂jtA when j = 2N + 1 and
when j = N + 3.

Lemma 3.3. We have that

(3.12)
∥∥∥∂2N+1

t A
∥∥∥2

0
. D2N , and

∥∥∥∂N+3
t A

∥∥∥2

0
. DN+2.

Proof. We will only prove the first estimate in (3.12); the second follows from similar analysis.

Since
∥∥∥∂2N+1

t η
∥∥∥2

1/2
≤ D2N and temporal derivatives commute with the Poisson integral, we may

employ Lemma A.3 to bound

(3.13)
∥∥∥∂2N+1

t η̄
∥∥∥2

1
=
∥∥∥∂2N+1

t η̄
∥∥∥2

0
+
∥∥∥∇∂2N+1

t η̄
∥∥∥2

0
.
∥∥∥∂2N+1

t η
∥∥∥2

1/2
≤ D2N .

From this we easily deduce that

(3.14)
∥∥∥∂2N+1

t J
∥∥∥2

0
+
∥∥∥∂2N+1

t K
∥∥∥2

0
. D2N .

This, the previous bound, and the Sobolev embeddings then imply the first estimate in (3.12)
since the components of A are either unity, K, AK, or BK. �
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4. Global energy evolution in the geometric form

4.1. Estimates of the perturbations when ∂α = ∂α0
t is applied to (1.12). We now present

estimates for the perturbations (2.13)–(2.22) when ∂α = ∂α0
t for α0 ≤ 2N .

Theorem 4.1. Let ∂α = ∂α0
t with α0 ≤ 2N and let F 1, F 2, F 3, F 4 be defined by (2.13)–(2.22).

Then

(4.1)
∥∥F 1

∥∥2

0
+
∥∥F 2

∥∥2

0
+
∥∥∂t(JF 2)

∥∥2

0
+
∥∥F 3

∥∥2

0
+
∥∥F 4

∥∥
0
. E2ND2N .

Also,

(4.2)
∥∥F 2

∥∥2

0
. E2

2N .

Proof. We first consider the F 1 estimate in (4.1). Each term in the sums that define F 1 is at
least quadratic. It is straightforward to see that each such term can be written in the form XY ,
where we X involves fewer temporal derivatives than Y , and we may use the usual Sobolev
embeddings and Lemmas A.1, A.3, and A.4 along with the definitions of E2N and D2N to
estimate

(4.3) ‖X‖2L∞ . E2N and ‖Y ‖20 . D2N .

Then ‖XY ‖20 ≤ ‖X‖
2
L∞ ‖Y ‖

2
0 . E2ND2N , and the F 1 estimate in (4.1) follows by summing.

The first F 2 estimate and the F 2 estimate in (4.2) follow similarly. A similar argument, also
employing trace estimates, yields the F 3 and F 4 estimates in (4.1).

The same analysis also works for ∂t(JF 2,1) and shows that
∥∥∂t(JF 2,1)

∥∥2

0
. E2ND2N . To

handle ∂t(JF 2,2) when α0 = 2N we must also be able to estimate
∥∥∥∂2N+1

t A
∥∥∥2

0
. D2N , but

this is possible due to Lemma 3.3. Then a similar splitting into L∞ and H0 estimates shows
that

∥∥∂t(JF 2,2)
∥∥2

0
. E2ND2N , and then the ∂t(JF 2) estimate in (4.1) follows since F 2 =

F 2,1 + F 2,2. �

We now present estimates for these perturbations when ∂α = ∂α0
t with α0 ≤ N + 2. The

proof may be carried out as in Theorem 4.1, and is thus omitted.

Theorem 4.2. Let ∂α = ∂α0
t with α0 ≤ N + 2 and let F 1, F 2, F 3, F 4 be defined by (2.13)–

(2.22). Then

(4.4)
∥∥F 1

∥∥2

0
+
∥∥F 2

∥∥2

0
+
∥∥∂t(JF 2)

∥∥2

0
+
∥∥F 3

∥∥2

0
+
∥∥F 4

∥∥
0
. E2NDN+2.

Also,

(4.5)
∥∥F 2

∥∥2

0
. E2NEN+2.

4.2. Global energy evolution with only temporal derivatives. Now we present the ap-
plications of Theorems 4.1 and 4.2.

Proposition 4.3. There exists a θ > 0 so that

(4.6) Ē0
2N (t) +

∫ t

0
D̄0

2N . E2N (0) + (E2N (t))3/2 +
∫ t

0
(E2N )θD2N .

Proof. We apply ∂α = ∂α0
t with 0 ≤ α0 ≤ 2N to (1.12). Then v = ∂α0

t u, q = ∂α0
t p, and ζ = ∂α0

t η
solve (2.1) with F i, i = 1, 2, 3, 4 given by (2.13)–(2.22). Applying Lemma 2.1 to these functions
and then integrating in time from 0 to t gives

(4.7)
1
2

∫
Ω
J |∂α0

t u(t)|2 +
1
2

∫
Σ
|∂α0
t η(t)|2 +

1
2

∫ t

0

∫
Ω
J |DA∂α0

t u|2 =
1
2

∫
Ω
J |∂α0

t u(0)|2

+
1
2

∫
Σ
|∂α0
t η(0)|2 +

∫ t

0

∫
Ω
J(∂α0

t u · F 1 + ∂α0
t pF 2) +

∫ t

0

∫
Σ
−∂α0

t u · F 3 + ∂α0
t ηF 4.

We claim that for 0 ≤ α0 ≤ 2N we have the estimate

(4.8)
∥∥∥√J∂α0

t u(t)
∥∥∥2

0
+ ‖∂α0

t η(t)‖20 +
∫ t

0
‖D∂α0

t u‖20 . E2N (0) + (E2N (t))3/2 +
∫ t

0
Eθ2ND2N .



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 21

Once the claim is established, we may sum over α0 to deduce (4.6).
We will estimate all of the terms involving F i on the right side of (4.7), beginning with the

F 1 term. According to Theorem 4.1 and Lemma 2.3, we may bound

(4.9)
∫ t

0

∫
Ω
J∂α0

t u · F 1 ≤
∫ t

0
‖∂α0

t u‖0 ‖J‖L∞
∥∥F 1

∥∥
0
.
∫ t

0

√
D2N

√
E2ND2N =

∫ t

0

√
E2ND2N .

Similarly, we use Theorem 4.1 and trace theory to handle the F 3 and F 4 terms:

(4.10)
∫ t

0

∫
Σ
−∂α0

t u · F 3 + ∂α0
t ηF 4 ≤

∫ t

0
‖∂α0

t u‖H0(Σ)

∥∥F 3
∥∥

0
+ ‖∂α0

t η‖0
∥∥F 4

∥∥
0

.
∫ t

0

(
‖∂α0

t u‖1 + ‖∂α0
t η‖0

)√
E2ND2N .

∫ t

0

√
E2ND2N .

For the term ∂α0
t pF 2 we must consider the cases α0 < 2N and α0 = 2N separately. The case

α0 = 2N is more delicate, so we begin with it. In this case, there is one more time derivative
on p than can be controlled by D2N . We are then forced to integrate by parts in time:

(4.11)
∫ t

0

∫
Ω
∂2N
t pJF 2 = −

∫ t

0

∫
Ω
∂2N−1
t p∂t(JF 2) +

∫
Ω

(∂2N−1
t pJF 2)(t)−

∫
Ω

(∂2N−1
t pJF 2)(0).

Then according to Theorem 4.1 we may estimate
(4.12)

−
∫ t

0

∫
Ω
∂2N−1
t p∂t(JF 2) .

∫ t

0

∥∥∥∂2N−1
t p

∥∥∥
0

∥∥∂t(JF 2)
∥∥

0
.
∫ t

0

√
D2N

√
E2ND2N =

∫ t

0

√
E2ND2N .

On the other hand, it is easy to verify using (4.2) that

(4.13)
∫

Ω
(∂2N−1
t pJF 2)(t)−

∫
Ω

(∂2N−1
t pJF 2)(0) . E2N (0) + (E2N (t))3/2.

Hence

(4.14)
∫ t

0

∫
Ω
∂2N
t pJF 2 . E2N (0) + (E2N (t))3/2 +

∫ t

0

√
E2ND2N .

On the other hand, if 0 ≤ α0 < 2N , then we may control ∂α0
t p directly using the F 2 estimate

in Theorem 4.1:

(4.15)
∫ t

0

∫
Ω
∂α0
t pJF 2 .

∫ t

0
‖∂α0

t p‖0
∥∥F 2

∥∥
0
.
∫ t

0

√
D2N

√
E2ND2N =

∫ t

0

√
E2ND2N .

Now we combine (4.9), (4.10), and (4.14)–(4.15) to deduce that

(4.16)
1
2

∫
Ω
J |∂α0

t u(t)|2 +
1
2

∫
Σ
|∂α0
t η(t)|2 +

1
2

∫ t

0

∫
Ω
J |DA∂α0

t u|2

. E2N (0) + (E2N (t))3/2 +
∫ t

0

√
E2ND2N

for all 0 ≤ α0 ≤ 2N .
We now seek to replace J |DA∂α0

t u|2 with |D∂α0
t u|2 in (4.16). To this end we write

(4.17) J |DA∂α0
t u|2 = |D∂α0

t u|2 + (J − 1) |D∂α0
t u|2 +J (DA∂α0

t u+ D∂α0
t u) : (DA∂α0

t u− D∂α0
t u)

and estimate the last three terms on the right side. For the last term we note that

(4.18) DA∂α0
t u± D∂α0

t u = (Aik ± δik)∂k∂α0
t uj + (Ajk ± δjk)∂k∂α0

t ui

so that Sobolev embeddings and Lemmas A.3 and A.4 provide the bounds

(4.19) |DA∂α0
t u− D∂α0

t u| .
√
E2N |∇∂α0

t u| and |DA∂α0
t u+ D∂α0

t u| . (1 +
√
E2N ) |∇∂α0

t u| .
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We then get

(4.20)
∫ t

0

∫
Ω
|J (DA∂α0

t u+ D∂α0
t u) : (DA∂α0

t u− D∂α0
t u)|

.
∫ t

0
(
√
E2N + E2N )

∫
Ω
|∇∂α0

t u|2 .
∫ t

0

√
E2ND2N .

Similarly,

(4.21)
∫ t

0

∫
Ω
|J − 1| |D∂α0

t u|2 .
∫ t

0

√
E2ND2N .

We may then use (4.17) and (4.20)–(4.21) to replace in (4.16) and derive the bound (4.8). This
completes the proof of the claim and of the proposition. �

Now we present the corresponding estimate at the N + 2 level.

Proposition 4.4. Let F 2 be given by (2.19) with ∂α = ∂N+2
t . Then

(4.22) ∂t

(
Ē0
N+2 − 2

∫
Ω
J∂N+1

t pF 2

)
+ D̄0

N+2 .
√
E2NDN+2.

Proof. We apply ∂α = ∂α0
t to (1.12) for 0 ≤ α0 ≤ N + 2. Then v = ∂α0

t u, q = ∂α0
t p, and

ζ = ∂α0
t η solve (2.1) with F i, i = 1, 2, 3, 4 given by (2.13)–(2.22). Applying Lemma 2.1 to these

functions gives

(4.23) ∂t

(
1
2

∫
Ω
J |∂α0

t u|2 +
1
2

∫
Σ
|∂α0
t η|2

)
+

1
2

∫
Ω
J |DA∂α0

t u|2

=
∫

Ω
J(∂α0

t u · F 1 + ∂α0
t pF 2) +

∫
Σ
−∂α0

t u · F 3 + ∂α0
t ηF 4.

We claim that for 0 ≤ α0 ≤ N + 2 we have the estimate

(4.24) ∂t

(∥∥∥√J∂α0
t u(t)

∥∥∥2

0
+ ‖∂α0

t η(t)‖20 − δα0,N+22
∫

Ω
J∂N+1

t pF 2

)
+‖D∂α0

t u‖20 .
√
E2NDN+2,

where δα0,N+2 = 1 if α0 = N + 2 and 0 otherwise. Once the claim is established, we may sum
over α0 to deduce (4.22).

We will estimate all of the terms involving F i on the right side of (4.23) as in Proposition
4.3. We begin with the F 1 term. According to Theorem 4.2 and Lemma 2.3, we may bound

(4.25)
∫

Ω
J∂α0

t u · F 1 ≤ ‖∂α0
t u‖0 ‖J‖L∞

∥∥F 1
∥∥

0
.
√
DN+2

√
E2NDN+2 =

√
E2NDN+2.

Similarly, we use Theorem 4.2 and trace theory to handle the F 3 and F 4 terms:

(4.26)
∫

Σ
−∂α0

t u · F 3 + ∂α0
t ηF 4 ≤ ‖∂α0

t u‖H0(Σ)

∥∥F 3
∥∥

0
+ ‖∂α0

t η‖0
∥∥F 4

∥∥
0

.
(
‖∂α0

t u‖1 + ‖∂α0
t η‖0

)√
E2NDN+2 .

√
E2NDN+2.

For the term ∂α0
t pF 2 we must consider the cases α0 = N + 2 and 0 ≤ α0 < N + 2 separately.

When α0 = N + 2 there is one more time derivative on p than can be controlled by DN+2. We
are then forced to pull out a time derivative:

(4.27)
∫

Ω
∂N+2
t pJF 2 = ∂t

∫
Ω
∂N+1
t pJF 2 −

∫
Ω
∂N+1
t p∂t(JF 2).

Then according to Theorem 4.2 we may estimate

(4.28) −
∫

Ω
∂N+1
t p∂t(JF 2) .

∥∥∥∂N+1
t p

∥∥∥
0

∥∥∂t(JF 2)
∥∥

0
.
√
DN+2

√
E2NDN+2 =

√
E2NDN+2.

Hence

(4.29)
∫ t

0

∫
Ω
∂2N
t pJF 2 . ∂t

∫
Ω
∂N+1
t pJF 2 +

√
E2NDN+2.
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On the other hand, when 0 ≤ α0 < N + 2 we may control ∂α0
t p directly:

(4.30)
∫

Ω
J∂α0

t pF 2 . ‖∂α0
t p‖0

∥∥F 2
∥∥

0
.
√
E2NDN+2.

Now we combine (4.23)–(4.26) and (4.29)–(4.30) to deduce that

(4.31) ∂t

(
1
2

∫
Ω
J |∂α0

t u|2 +
1
2

∫
Σ
|∂α0
t η|2 − δα0,N+2

∫
Ω
∂N+1
t pJF 2

)
+

1
2

∫
Ω
J |DA∂α0

t u|2

.
√
E2NDN+2.

We may argue as in (4.17)–(4.21) of Theorem 4.3 to show that

(4.32)
1
2

∫
Ω
|D∂α0

t u|2 . 1
2

∫
Ω
J |DA∂α0

t u|2 +
√
E2NDN+2.

Then (4.24) follows from (4.31) and (4.32), which completes the proof of the claim and the
proposition. �

5. Localized energy evolution using the perturbed linear form

5.1. Upper localization. We now estimate how the upper-localization energies evolve. In
order to analyze the upper localization, we will use the equation (2.41) with i = 1.

First we need a technical lemma that estimates the term ∂αη∂αG4 when α is the highest
spatial derivatives.

Lemma 5.1. Let α ∈ N2 be such that |α| = 4N , i.e. let ∂α be 4N spatial derivatives in the
x1, x2 directions. Then

(5.1)
∣∣∣∣∫

Σ
∂αη∂αG4

∣∣∣∣ .√E2ND2N +
√
D2NKF2N .

Proof. Throughout the proof β will always denote an element of N2, and we will write Df ·∂βu =
∂1f∂

βu1 + ∂2f∂
βu2 for a function f defined on Σ. Then by the Leibniz rule, we have that

(5.2) ∂αG4 = ∂α(Dη · u) = D∂αη · u+
∑

0<β≤α
|β|=1

Cα,βD∂
α−βη · ∂βu+

∑
0<β≤α
|β|≥2

Cα,βD∂
α−βη · ∂βu

for constants Cα,β depending on α and β. We will analyze each of the three terms on the right
separately.

For the first term, we integrate by parts to see that.

(5.3)
∫

Σ
∂αηD∂αη · u =

1
2

∫
Σ
D |∂αη|2 · u = −1

2

∫
Σ
∂αη∂αη(∂1u1 + ∂2u2).

This then allows us to use (A.3) of Lemma A.1 to bound

(5.4)
∣∣∣∣∫

Σ
∂αηD∂αη · u

∣∣∣∣ . ‖∂αη‖1/2 ‖∂αη(∂1u1 + ∂2u2)‖H−1/2(Σ)

≤ ‖η‖4N+1/2 ‖∂
αη‖−1/2 ‖∂1u1 + ∂2u2‖H2(Σ)

≤ ‖η‖4N+1/2 ‖Dη‖4N−3/2 ‖∂1u1 + ∂2u2‖H2(Σ) ≤
√
F2ND2NK.

Similarly, for the second term we estimate

(5.5)

∣∣∣∣∣∣∣∣
∫

Σ
∂αη

∑
0<β≤α
|β|=1

Cα,βD∂
α−βη · ∂βu

∣∣∣∣∣∣∣∣ .
∥∥D4Nη

∥∥
1/2

∥∥D4Nη
∥∥
−1/2

2∑
i=1

‖Dui‖H2(Σ)

≤ ‖η‖4N+1/2 ‖Dη‖4N−3/2

2∑
i=1

‖Dui‖H2(Σ) ≤
√
F2ND2NK.
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For the third term we first note that ‖∂αη‖−1/2 ≤ ‖Dη‖4N−3/2 ≤
√
D2N , which allows us to

bound

(5.6)
∣∣∣∣∫

Σ
∂αηD∂α−βη · ∂βu

∣∣∣∣ ≤ ‖∂αη‖−1/2

∥∥∥D∂α−βη · ∂βu∥∥∥
H1/2(Σ)

≤
√
D2N

∥∥∥D∂α−βη · ∂βu∥∥∥
H1/2(Σ)

.

We estimate the last term on the right using Lemma A.1, but in different ways depending on
|β|:

(5.7)
∥∥∥D∂α−βη · ∂βu∥∥∥

H1/2(Σ)
.

{∥∥D∂α−βη∥∥
1/2

∥∥∂βu∥∥
H2(Σ)

for 2 ≤ |β| ≤ 2N∥∥D∂α−βη∥∥
2

∥∥∂βu∥∥
H1/2(Σ)

for 2N + 1 ≤ |β| ≤ 4N

.

{
‖Dη‖4N−3/2 ‖u‖2N+3 for 2 ≤ |β| ≤ 2N
‖Dη‖2N+1 ‖u‖4N+1 for 2N + 1 ≤ |β| ≤ 4N

,

so that
∥∥D∂α−βη · ∂βu∥∥

H1/2(Σ)
.
√
E2ND2N for all 0 < β ≤ α with |β| ≥ 2. Hence

(5.8)

∣∣∣∣∣∣∣∣
∫

Σ
∂αη

∑
0<β≤α
|β|≥2

Cα,βD∂
α−βη · ∂βu

∣∣∣∣∣∣∣∣ .
√
D2N

√
E2ND2N =

√
E2ND2N .

The estimate (5.1) then follows from (5.4), (5.5), and (5.8). �

Now we estimate the upper-localization energy at the 2N level.

Proposition 5.2. Let α ∈ N1+2 so that α0 ≤ 2N − 1 and |α| ≤ 4N . Then for any ε ∈ (0, 1) it
holds that

(5.9) ‖∂α(χ1u)‖20 + ‖∂αη‖20 +
∫ t

0
‖D∂α(χ1u)‖20

. Ē+
2n(0) +

∫ t

0
Eθ2ND2N +

√
D2nKF2N + εD2N + ε−8N−1D̄0

2N .

In particular,

(5.10) Ē+
2N (t) +

∫ t

0
D̄+

2N . Ē
+
2N (0) +

∫ t

0
Eθ2ND2N +

√
D2nKF2N + εD2N + ε−8N−1D̄0

2N .

Proof. We divide the proof into several steps.
Step 1 – Evolution equation
We apply Lemma 2.2 to v = χ1∂

αu, q = χ1∂
αp, ζ = ∂αη with a = 1, Φ1 = χ1∂

αG1 +∂αH1,1,
Φ2 = χ1∂

αG2 + ∂αH2,1, Φ3 = ∂αG3, and Φ4 = ∂αG4 to find

(5.11)

∂t

(
1
2

∫
Ω
|∂α(χ1u)|2 +

1
2

∫
Σ
|∂αη|2

)
+

1
2

∫
Ω
|D∂α(χ1u)|2 =

∫
Ω
χ1∂

αu · (χ1∂
αG1 + ∂αH1,1)

+
∫

Ω
χ1∂

αp(χ1∂
αG2 + ∂αH2,1) +

∫
Σ
−∂αu · ∂αG3 + ∂αη∂αG4.

Here H1,1 and H2,1 are given by (2.42).
Step 2 – Estimates of terms involving H1,1 and H2,1

We will estimate the terms on the right side of (5.11), beginning with the terms involving
H1,1 and H2,1. Since χ1 is only a function of x3, we have that

(5.12) ∂αH1,1 = ∂3χ1(∂αpe3 − 2∂α∂3u)− ∂2
3χ1∂

αu and ∂αH2,1 = ∂3χ1∂
αu3.
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This and the constraints on α allow us to estimate

(5.13)
∫

Ω
χ1∂

αu · ∂αH1,1 + χ1∂
αp∂αH2,1 . ‖∂αu‖0 (‖∂αp‖0 + ‖∂αu‖1) + ‖∂αp‖0 ‖∂

αu‖0

. ‖∂αu‖0 (‖∂αp‖0 + ‖∂αu‖1) .
∥∥∥D4N−2α0

0 ∂α0
t u
∥∥∥

0

√
D2N .

√
D2N ‖∂α0

t u‖4N−2α0

We estimate the 4N − 2α0 norm with standard Sobolev interpolation:

(5.14) ‖∂α0
t u‖4N−2α0

. ‖∂α0
t u‖θ0 ‖∂

α0
t u‖1−θ4N−2α0+1 ≤ (D̄0

2N )θ/2(D2N )(1−θ)/2,

where θ = (4N − 2α0 + 1)−1 ∈ (0, 1). Then Young’s inequality allows us to further bound

(5.15)
√
D2N ‖∂α0

t u‖4N−2α0
.
√
D2N (D̄0

2N )θ/2(D2N )(1−θ)/2 = (D̄0
2N )θ/2(D2N )1−θ/2

≤ ε
(

1− θ

2

)
D2N +

θ

2
ε(θ−2)/θD̄0

2N ≤ εD2N + ε−8N−1D̄0
2N ,

where in the last inequality we have used the fact that (2 − θ)/θ = 8N − 4α0 + 1 to find the
largest power of 1/ε when 0 ≤ α0 ≤ 2N . Chaining together (5.13) and (5.15) then yields the
bound

(5.16)
∫

Ω
χ1∂

αu · ∂αH1,1 + χ1∂
αp∂αH2,1 . εD2N + ε−8N−1D̄0

2N .

Step 3 – Terms involving Gi, 1 ≤ i ≤ 4
We now turn to estimates of the terms involving Gi, 1 ≤ i ≤ 4. We claim that

(5.17)
∫

Ω
χ2

1

(
∂αu · ∂αG1 + ∂αp∂αG2

)
. (E2N )θD2N +

√
D2NKF2N

and

(5.18)
∫

Σ
−∂αu · ∂αG3 + ∂αη∂αG4 . (E2N )θD2N +

√
D2NKF2N

for some θ > 0.
To prove the claim, we assume initially that 1 ≤ |α| ≤ 4N − 1. Then according to the

estimates (3.4)–(3.5) of Theorem 3.2 and the definition of D2N , we have

(5.19)
∣∣∣∣∫

Ω
χ2

1

(
∂αu · ∂αG1 + ∂αp∂αG2

)∣∣∣∣ . ‖∂αu‖0 ∥∥∂αG1
∥∥

0
+ ‖∂αp‖0

∥∥∂αG2
∥∥

0

.
√
D2N

√
Eθ2ND2N +KF2N . Eκ2ND2N +

√
D2NKF2N ,

where in the last equality we have written κ = θ/2 for θ > 0 the number provided by Theorem
3.2. Similarly, we may use Theorem 3.2 along with the trace estimate ‖∂αu‖H0(Σ) . ‖∂αu‖1 ≤√
D2N to find that

(5.20)
∣∣∣∣∫

Σ
−∂αu · ∂αG3 + ∂αη∂αG4

∣∣∣∣ ≤ ‖∂αu‖H0(Σ)

∥∥∂αG3
∥∥

0
+ ‖∂αη‖0

∥∥∂αG4
∥∥

0

.
√
D2N

√
Eθ2ND2N +KF2N . Eκ2ND2N +

√
D2NKF2N .

Now assume that |α| = 4N . Since α0 ≤ 2N − 1, we may write α = β + (α − β) for some
β ∈ N2 with |β| = 1, i.e. ∂α involves at least one spatial derivative. Since |α− β| = 4N − 1, we
can then integrate by parts and use (3.5) of Theorem 3.2 to see that

(5.21)
∣∣∣∣∫

Ω
χ2

1∂
αu · ∂αG1

∣∣∣∣ =
∣∣∣∣∫

Ω
χ2

1∂
α+βu · ∂α−βG1

∣∣∣∣ . ∥∥∥∂α+βu
∥∥∥

0

∥∥∥∂α−βG1
∥∥∥

0

≤ ‖∂αu‖1
∥∥∇̄4N−1G1

∥∥
0
.
√
D2N

√
Eθ2ND2N +KF2N . Eκ2ND2N +

√
D2NKF2N .
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For the pressure term we do not need to integrate by parts:

(5.22)
∣∣∣∣∫

Ω
χ2

1∂
αp∂αG2

∣∣∣∣ . ‖∂αp‖0 ∥∥∥∂α−β∂βG1
∥∥∥

0
≤ ‖∂αp‖0

∥∥∇̄4N−1G1
∥∥

1

.
√
D2N

√
Eθ2ND2N +KF2N . Eκ2ND2N +

√
D2NKF2N .

We integrate by parts and use the trace estimate H1(Ω) ↪→ H1/2(Σ) to see that

(5.23)
∣∣∣∣∫

Σ
∂αu · ∂αG3

∣∣∣∣ =
∣∣∣∣∫

Σ
∂α+βu · ∂α−βG3

∣∣∣∣ ≤ ∥∥∥∂α+βu
∥∥∥
H−1/2(Σ)

∥∥∥∂α−βG3
∥∥∥

1/2

≤ ‖∂αu‖H1/2(Σ)

∥∥D̄4N−1G3
∥∥

1/2
≤ ‖∂αu‖1

∥∥D̄4N−1G3
∥∥

1/2

.
√
D2N

√
Eθ2ND2N +KF2N . Eκ2ND2N +

√
D2NKF2N .

For the term ∂αη∂αG4 we must split to two cases: α0 ≥ 1 and α0 = 0. In the former case, there
is at least one temporal derivative in ∂α, so ‖∂αη‖1/2 ≤

√
D2N , and hence

(5.24)
∣∣∣∣∫

Σ
∂αη∂αG4

∣∣∣∣ =
∣∣∣∣∫

Σ
∂α+βη∂α−βG4

∣∣∣∣ ≤ ∥∥∥∂α+βη
∥∥∥
−1/2

∥∥∥∂α−βG4
∥∥∥

1/2

≤ ‖∂αη‖1/2
∥∥D̄4N−1G3

∥∥
1/2
.
√
D2N

√
Eθ2ND2N +KF2N . Eκ2ND2N +

√
D2NKF2N .

In the latter case, α0 = 0, so that ∂α involves only spatial derivatives; in this case we use Lemma
5.1 to bound

(5.25)
∣∣∣∣∫

Σ
∂αη∂αG4

∣∣∣∣ .√E2ND2N +
√
D2NKF2N .

Now, owing to the estimates in (5.19)–(5.25) we know that (5.17) and (5.18) hold. This
completes the proof of the claim.

Step 4 – Conclusion
Now, in light of (5.11) and (5.16)–(5.18), we have

(5.26) ∂t

(∫
Ω
|∂α(χ1u)|2 +

∫
Σ
|∂αη|2

)
+
∫

Ω
|D∂α(χ1u)|2

. (E2N )θD2N +
√
D2NKF2N + εD2N + ε−8N−1D̄0

2N

for all |α| ≤ 4N with α0 ≤ 2N − 1. The estimate (5.9) then follows from (5.26) by integrating
in time from 0 to t, and then (5.10) follows from (5.9) by summing over α. �

Now we prove a similar estimate at the N + 2 level.

Proposition 5.3. Let α ∈ N1+2 so that α0 ≤ N+1 and |α| ≤ 2(N+2). Then for any ε ∈ (0, 1)
it holds that

(5.27) ∂t

(
‖∂α(χ1u)‖20 + ‖∂αη‖20

)
+ ‖D∂α(χ1u)‖20 . E

θ
2NDN+2 + εDN+2 + ε−4N−9D̄0

N+2.

In particular,

(5.28) ∂tĒ+
N+2 + D̄+

N+2 . E
θ
2NDN+2 + εDN+2 + ε−4N−9D̄0

N+2.

Proof. We divide the proof into steps as in Proposition 5.2.
Step 1 – Energy evolution
We argue as in Step 1 of Proposition 5.2 to see that (5.11) holds for the present range of α.
Step 2 – Estimates of terms involving H1,1 and H2,1

We have the estimate

(5.29)
∫

Ω
χ1∂

αu · ∂αH1,1 + χ1∂
αp∂αH2,1 . εDN+2 + ε−4N−9D̄0

N+2.



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 27

To derive this, we may argue as in Step 2 of Proposition 5.2; the only difference is that now
when we interpolate we have

(5.30) ‖∂α0
t u‖2N+4−2α0

. ‖∂α0
t u‖θ0 ‖∂

α0
t u‖1−θ2N+5−2α0

for θ = (2N + 5− 2α0)−1 ∈ (0, 1) so that (2− θ)/θ = 4N + 9− 2α0 ≤ 4N + 9, which gives the
power of 1/ε in the estimate.

Step 3 – Terms involving Gi, 1 ≤ i ≤ 4
We claim that

(5.31)
∫

Ω
χ2

1

(
∂αu · ∂αG1 + ∂αp∂αG2

)
.
√
E2NDN+2

and

(5.32)
∫

Σ
−∂αu · ∂αG3 + ∂αη∂αG4 .

√
E2NDN+2.

To prove the claim, we argue as in Step 3 of Proposition 5.2, using the estimates of Theorem
3.1 in place of those of Theorem 3.2. This is sufficient to estimate all of the terms except

(5.33)
∫

Σ
∂αη∂αG4 when |α| = 2(N + 2).

For this, in place of Lemma 5.1, we argue as follows.
First, we write ∂αG4 = I + II + III where I, II, III are the first, second, and third terms

on the right of (5.2), respectively. We may argue as in the proof of Lemma 5.1 to see that

(5.34)
∣∣∣∣∫

Σ
∂αη(I + II)

∣∣∣∣ . ‖η‖2(N+2)+1/2 ‖η‖2(N+2)−1/2 ‖u‖4

.
√
E2N

√
DN+2

√
DN+2 =

√
E2NDN+2

and

(5.35)
∣∣∣∣∫

Σ
∂αη(III)

∣∣∣∣ . ‖η‖2(N+2)−1/2 ‖u‖2(N+2)+1 ‖η‖2(N+2)+1

.
√
DN+2

√
DN+2

√
E2N =

√
E2NDN+2.

Hence

(5.36)
∣∣∣∣∫

Σ
∂αη∂αG4

∣∣∣∣ .√E2NDN+2,

which serves as the replacement for Lemma 5.1 in the present case. Using this, we can complete
the proof of the claim.

Step 4 – Conclusion
We now combine the above as in Proposition 5.2 to deduce the estimate (5.27). Then (5.28)

follows from (5.27) by summing over α. �

5.2. Lower localization. We now consider the evolution of the lower-localization energies at
the 2N level.

Proposition 5.4. Let j be an integer satisfying 0 ≤ j ≤ 2N − 1. Then for any ε ∈ (0, 1) it
holds that

(5.37)
∥∥∥∂jt (χ2u)

∥∥∥2

0
+
∫ t

0

∥∥∥D∂jt (χ1u)
∥∥∥2

0
. Ē−2N (0) +

∫ t

0
Eθ2ND2N + εD2N + ε−8N−1D̄0

2N .

In particular,

(5.38) Ē−2N (t) +
∫ t

0
D̄−2N . Ē

−
2N (0) +

∫ t

0
(E2N )θD2N + εD2N + ε−8N−1D̄0

2N .
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Proof. We apply Lemma 2.2 to v = χ2∂
j
t u, q = χ2∂

j
t p, ζ = ∂jt η with a = 0, Φ1 = χ2∂

j
tG

1 +
∂jtH

1,2, Φ2 = χ2∂
j
tG

2 + ∂jtH
2,2, Φ3 = 0, and Φ4 = 0 to find

(5.39) ∂t

(
1
2

∫
Ω

∣∣∣∂jt (χ2u)
∣∣∣2)+

1
2

∫
Ω

∣∣∣D∂jt (χ2u)
∣∣∣2 =

∫
Ω
χ2∂

j
t u · (χ2∂

j
tG

1 + ∂jtH
1,2)

+
∫

Ω
χ2∂

j
t p(χ2∂

j
tG

2 + ∂jtH
2,2).

Here H1,2 and H2,2 are given by (2.42). The right hand side may then be estimated as in
Proposition 5.2, using only the temporal derivative estimates of Theorem 3.2. In particular, we
have the estimates

(5.40)
∫

Ω
χ2∂

j
t u · ∂

j
tH

1,2 + χ2∂
j
t p∂

j
tH

2,2 . εD2N + ε−8N−1D̄0
2N

and

(5.41)
∫

Ω
χ2

2(∂jt u · ∂
j
tG

1 + ∂jt p∂
j
tG

2) . (E2N )θD2N ,

which yield (5.37) when combined with (5.39) and integrated in time from 0 to t. Then (5.38)
follows from (5.37) by summing over 0 ≤ j ≤ 2N − 1. �

Now we prove the corresponding result at the N + 2 level.

Proposition 5.5. Let j be an integer satisfying 0 ≤ j ≤ N + 1. Then for any ε ∈ (0, 1) it holds
that

(5.42) ∂t

(∥∥∥∂jt (χ2u)
∥∥∥2

0

)
+
∥∥∥D∂jt (χ1u)

∥∥∥2

0
. Eθ2NDN+2 + εDN+2 + ε−4N−9D̄0

N+2.

In particular,

(5.43) ∂tĒ−N+2 + D̄−N+2 . (E2N )θDN+2 + εDN+2 + ε−4N−9D̄0
N+2.

Proof. The proof proceeds as in Proposition 5.4, following Proposition 5.3 rather than Propo-
sition 5.2, and using the ∂jtG

i estimates of Theorem 3.1 rather than of Theorem 3.2. �

6. Comparison results

We now show that, up to some error terms, the instantaneous energy E2N is comparable to the
sum Ē0

2N + Ē+
2N and that the dissipation rate D2N is comparable to the sum D̄0

2N + D̄−2N + D̄+
2N .

We also prove similar results with 2N replaced by N + 2.

6.1. Instantaneous energy. We begin with the result for the instantaneous energy.

Theorem 6.1. There exists a θ > 0 so that

(6.1) E2N . Ē+
2N + Ē0

2N + (E2N )1+θ

and

(6.2) EN+2 . Ē+
N+2 + Ē0

N+2 + (E2N )θEN+2.

Proof. In order to prove the result at both the 2N and N + 2 levels at the same time, we will
generically write n to refer to either quantity. In the proof we will write

(6.3) Wn =
n−1∑
j=0

∥∥∥∂jtG1
∥∥∥2

2n−2j−2
+
∥∥∥∂jtG2

∥∥∥2

2n−2j−1
+
∥∥∥∂jtG3

∥∥∥2

2n−2j−3/2
.

Note that the definitions of Ē+
n and Ē0

n guarantee that

(6.4)
n∑
j=0

∥∥∥∂jt η∥∥∥2

2n−2j
. Ē+

n + Ē0
n.
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The key to proving the result is the following elliptic estimate. Let j = 0, . . . , n − 1. Then
we may apply ∂jt to the equations of (2.23) and use Lemma A.8 to see that

(6.5)
∥∥∥∂jt u∥∥∥2

2n−2j
+
∥∥∥∂jt p∥∥∥2

2n−2j−1
.
∥∥∥∂j+1

t u
∥∥∥2

2n−2(j+1)
+
∥∥∥∂jtG1

∥∥∥2

2n−2j−2
+
∥∥∥∂jtG2

∥∥∥2

2n−2j−1

+
∥∥∥∂jt η∥∥∥2

2n−2j−3/2
+
∥∥∥∂jtG3

∥∥∥2

2n−2j−3/2
.
∥∥∥∂j+1

t u
∥∥∥2

2n−2(j+1)
+ Ē+

n + Ē0
n +Wn.

In the last inequality of (6.5) we have used (6.4) and the definition of Wn.
We claim that

(6.6) En . Ē+
n + Ē0

n +Wn.

To prove this claim, we will use estimate (6.5) and a finite induction. For j = n− 1 we employ
the definition of Ē0

n and Remark 2.4 in (6.5) to get

(6.7)
∥∥∂n−1

t u
∥∥2

2
+
∥∥∂n−1

t p
∥∥2

1
. ‖∂nt u‖

2
0 + Ē+

n + Ē0
n +Wn . Ē+

n + Ē0
n +Wn.

Now suppose that the inequality

(6.8)
∥∥∥∂n−`t u

∥∥∥2

2`
+
∥∥∥∂n−`t p

∥∥∥2

2`−1
. Ē+

n + Ē0
n +Wn

holds for 1 ≤ ` < n. We apply (6.5) with j = n− `− 1 and use the induction hypothesis (6.8)
to find

(6.9)
∥∥∥∂n−`−1

t u
∥∥∥2

2(`+1)
+
∥∥∥∂n−`−1

t p
∥∥∥2

2(`+1)−1
.
∥∥∥∂n−`t u

∥∥∥2

2`
+ Ē+

n + Ē0
n +Wn . Ē+

n + Ē0
n +Wn.

Hence (6.8) holds with ` replaced by `+ 1, and by finite induction,

(6.10)
n−1∑
j=0

∥∥∥∂jt u∥∥∥2

2n−2j
+
∥∥∥∂jt p∥∥∥2

2n−2j−1
. Ē+

n + Ē0
n +Wn.

We then sum (6.4), (6.10), and the trivial inequality ‖∂nt u‖
2
0 ≤ Ē0

n to deduce that (6.6) holds.
To conclude, we must estimateWn for n = 2N and n = N+2. When n = N+2, we use (3.1)

of Theorem 3.1 to bound WN+2 . (E2N )θEN+2, and when n = 2N we use (3.3) of Theorem 3.2
to bound W2N . (E2N )1+θ. These two estimates and (6.6) then imply (6.1) and (6.2). �

6.2. Dissipation. Now we consider the dissipation rate.

Theorem 6.2. For n = N + 2 or n = 2N , write

(6.11) Yn =
∥∥∇̄2n−1

0 G1
∥∥2

0
+
∥∥∇̄2n−1

0 G2
∥∥2

1

+
∥∥D̄2n−1

0 G3
∥∥2

1/2
+
∥∥D̄2n−1

0 G4
∥∥2

1/2
+
∥∥D̄2n−2

0 ∂tG
4
∥∥2

1/2
.

Then

(6.12) Dn . D̄0
n + D̄−n + D̄+

n + Yn.
In particular, there is a θ > 0 so that

(6.13) D2N . D̄0
2N + D̄−2N + D̄+

2N + (E2N )θD2N +KF2N

and

(6.14) DN+2 . D̄0
N+2 + D̄−N+2 + D̄+

N+2 + (E2N )θDN+2

Proof. In this proof we use a separate counting for spatial and temporal derivatives, so unlike
elsewhere, we now use α ∈ N2 to refer only to spatial derivatives. In order to compactly write
our estimates, throughout the proof we will write

(6.15) Z := D̄0
n + D̄+

n + Yn.
The proof is divided into several steps.

Step 1 – Application of Korn’s inequality
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First note that according to Lemma A.7 we have

(6.16)
∥∥D̄2n−1

0 u
∥∥2

H1(Ω1)
+
∥∥DD̄2n−1u

∥∥2

H1(Ω1)
.
∥∥D̄2n−1

0 (χ1u)
∥∥2

1
+
∥∥DD̄2n−1(χ1u)

∥∥2

1
. D̄+

n

and

(6.17)
n∑
j=0

∥∥∥∂jt u∥∥∥2

1
. D̄0

n.

Here, we recall that Ω1 ⊂ Ω is defined in (2.40). Summing these yields the bound

(6.18)
∥∥D̄2n

0 u
∥∥2

H1(Ω1)
. D̄+

n + D̄0
n.

Step 2 – Initial estimates of the pressure and improvement of u estimates
Recall that χ3 is given by (2.39), Ω3 ⊂ Ω1 is given by (2.40), and χ3 = 1 on Ω3. We claim

that we have the estimate

(6.19)
∥∥D̄2n−1

0 u
∥∥2

H2(Ω3)
+
∥∥D̄2n−1

0 ∇p
∥∥2

H0(Ω3)
. Z.

To prove this, we will first use the structure of the equations (2.23) to derive various estimates
of terms involving ∂3. Then we use elliptic estimates for ω = curlu to recover other terms with
∂3.

Let 0 ≤ j ≤ n− 1 and α ∈ N2 be such that

(6.20) 0 ≤ 2j + |α| ≤ 2n− 1.

Note that if 2j + |α| = 2n − 1, then the condition j ≤ n − 1 implies that |α| ≥ 1. This means
that we are free to use (6.18) to bound

(6.21)
∥∥∥∂α∂j+1

t u
∥∥∥
H0(Ω1)

≤
∥∥D̄2n

0 u
∥∥
H1(Ω1)

. Z.

In order to extract further information, we apply the operator ∂jt ∂
α to the first two equations

in (2.23) to find that

(6.22) ∂α∂j+1
t u−∆∂α∂jt u+∇∂α∂jt p = ∂α∂jtG

1

(6.23) div ∂α∂jt u = ∂α∂jtG
2.

Because of the constraints on j, α given by (6.20) we may control

(6.24)
∥∥∥∂α∂jtG1

∥∥∥2

0
+
∥∥∥∂α∂jtG2

∥∥∥2

1
≤
∥∥D̄2n−1

0 G1
∥∥2

0
+
∥∥D̄2n−1

0 G2
∥∥2

1
≤ Z.

We will utilize the structure of (6.22)–(6.23) in conjunction with (6.21) and (6.24) in order to
improve our estimates.

We begin by utilizing (6.23) to control one of the terms in the third component of (6.22).
We have

(6.25) ∂α∂jt (∂3u3) = ∂α∂jt (−∂1u1 − ∂2u2 +G2)

so that (6.18) and (6.24) imply

(6.26)
∥∥∥∂2

3∂
α∂jt u3

∥∥∥
H0(Ω1)

.
∥∥D̄2n

0 u
∥∥
H1(Ω1)

+
∥∥D̄2n−1

0 G2
∥∥2

1
. Z.

A further application of (6.18) to control (∂2
1 + ∂2

2)∂α∂jt u3 then provides the estimate

(6.27)
∥∥∥∆∂α∂jt u3

∥∥∥
H0(Ω1)

. Z.

Applying the bounds (6.21), (6.24), and (6.27) to the third component of (6.22), we arrive at a
partial bound for the pressure:

(6.28)
∥∥∥∂3∂

α∂jt p
∥∥∥
H0(Ω1)

. Z.
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It remains to control the terms ∂i∂α∂
j
t p and ∂2

3∂
α∂jt ui for i = 1, 2. To accomplish this, we

employ an elliptic estimate of curlu := ω. Taking the curl of (6.22) eliminates the pressure
gradient and yields

(6.29) ∂α∂j+1
t ω = ∆∂α∂jtω + curl(∂α∂jtG

1).

We only need the first two components ω1 = ∂2u3 − ∂3u2, ω2 = ∂3u1 − ∂1u3, for which we use
the Σ boundary condition (2.23)

(6.30) ∂iu3 + ∂3ui = Due3 · ei = −G3 · ei for i = 1, 2

to derive the boundary conditions

(6.31)

{
ω1 = 2∂2u3 +G3 · e2 on Σ
ω2 = −2∂1u3 −G3 · e1 on Σ.

The functions χ3ωi, i = 1, 2, satisfy

(6.32) ∆∂α∂jt (χ3ωi) = χ3(∂α∂j+1
t ωi)+2(∂3χ3)(∂3∂

α∂jtωi)+(∂2
3χ3)(∂α∂jtωi)−χ3 curl(∂α∂jtG

1)

in Ω as well as the boundary conditions

(6.33)


∂α∂jt (χ3ω1) = 2∂2∂

α∂jt u3 + ∂α∂jtG
3 · e2 on Σ

∂α∂jt (χ3ω2) = −2∂1∂
α∂jt u3 − ∂α∂jtG3 · e1 on Σ

∂α∂jt (χ3ω1) = ∂α∂jt (χ3ω2) = 0 on Σb.

In order to employ an elliptic estimate of ∂α∂jt (χ3ωi) we must first prove two auxiliary estimates.
First we derive an estimate of the H−1(Ω) = (H1

0 (Ω))∗ norm of each term on the right side
of equation (6.32). Let ϕ ∈ H1

0 (Ω). When α 6= 0 we may write α = β + (α − β) with |β| = 1
and integrate by parts to bound

(6.34)
∣∣∣∣∫

Ω
ϕχ3∂

α∂j+1
t ωi

∣∣∣∣ =
∣∣∣∣∫

Ω
∂βϕχ3∂

α−β∂j+1
t ωi

∣∣∣∣ ≤ ‖ϕ‖1 ∥∥χ3D̄
2n
0 ωi

∥∥
0

since 2(j + 1) + |α− β| = 2j + |α|+ 1 ∈ [1, 2n]. We may use (6.18) for

(6.35)
∥∥χ3D̄

2n
0 ωi

∥∥2

0
.
∥∥D̄2n

0 u
∥∥
H1(Ω1)

. Z.

Chaining these inequalities together when α 6= 0 and taking the supremum over all ϕ such that
‖ϕ‖1 ≤ 1, we get

(6.36)
∥∥∥∂α∂j+1

t ωi

∥∥∥2

H−1
. Z.

A similar argument without an integration by parts shows that (6.36) is also true when α = 0
since in this case the condition j ≤ n−1 implies that 2 ≤ 2(j+1) ≤ 2n. Similarly integrating by
parts with ∂3 in the dual-pairing, we may estimate the second term on the right side of (6.32):
(6.37)∥∥∥2(∂3χ3)(∂3∂

α∂jtωi)
∥∥∥2

H−1
. (‖∂3χ3‖2L∞ +

∥∥∂2
3χ3

∥∥2

L∞
)
∥∥D̄2n

0 ωi
∥∥
H0(Ω3)

.
∥∥D̄2n

0 u
∥∥
H1(Ω1)

. Z.

The third term may be estimated without integration by parts in the dual-pairing:

(6.38)
∥∥∥(∂2

3χ3)(∂α∂jtωi)
∥∥∥2

H−1
.
∥∥∂2

3χ3

∥∥2

L∞

∥∥D̄2n
0 ωi

∥∥
H0(Ω3)

.
∥∥D̄2n

0 u
∥∥
H1(Ω1)

. Z.

The fourth term is estimated by integrating by parts with the curl operator and using (6.24):

(6.39)
∥∥∥χ3 curl(∂α∂jtG

1)
∥∥∥2

H−1
. (‖χ3‖2L∞ + ‖∂3χ3‖2L∞)

∥∥D̄2n−1
0 G1

∥∥2

0
. Z.

Combining these four estimates of the right hand side of (6.32) yields

(6.40)
∥∥∥∆∂α∂jt (χ3ωi)

∥∥∥2

H−1
. Z for i = 1, 2.
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Next, to complete the elliptic estimate of ∂α∂jt (χ3ωi), we also need H1/2(Σ) estimates for
the boundary terms on the right side of the first two equations in (6.33). We may estimate the
∂iu3, i = 1, 2, terms with the embedding H1(Ω) ↪→ H1/2(Σ):

(6.41)
∥∥∥∂α∂jt ∂1u3

∥∥∥2

H1/2(Σ)
+
∥∥∥∂α∂jt ∂2u3

∥∥∥2

H1/2(Σ)
.
∥∥D̄2n

0 u
∥∥
H1(Ω1)

. Z.

On the other hand, estimates of G3 are already built into Z:

(6.42)
∥∥∥∂α∂jtG3

∥∥∥2

1/2
≤
∥∥D̄2n−1

0 G3
∥∥2

1/2
≤ Yn,m ≤ Z.

Since χ3ωi = 0 on Σb for i = 1, 2 we then deduce that

(6.43)
∥∥∥∂α∂jt (χ3ωi)

∥∥∥2

H1/2(∂Ω)
. Z for i = 1, 2.

Now according to (6.40), (6.43), standard elliptic estimates, and the fact that χ3 = 1 on Ω3

(defined by (2.40)) we have

(6.44)
∥∥∥∂α∂jtωi∥∥∥2

H1(Ω3)
.
∥∥∥∂α∂jt (χ3ωi)

∥∥∥2

1
. Z for i = 1, 2.

We may then rewrite

(6.45) ∂2
3∂

α∂jt u1 = ∂3∂
α∂jt (ω2 + ∂1u3) and ∂2

3∂
α∂jt u2 = ∂3∂

α∂jt (∂2u3 − ω1)

and deduce from (6.44) and (6.18) that for i = 1, 2 we have

(6.46)
∥∥∥∂2

3∂
α∂jt ui

∥∥∥2

H0(Ω3)
.
∥∥D̄2n

0 u3

∥∥
H1(Ω1)

+
2∑

k=1

∥∥∥∂α∂jtωk∥∥∥2

H1(Ω3)
. Z.

We then apply this estimate along with (6.18) and (6.24) to the first two components of equation
(6.22) to find that

(6.47)
∥∥∥∂i∂α∂jt p∥∥∥2

H0(Ω3)
. Z for i = 1, 2.

Now we sum the estimates (6.18), (6.26), (6.48), (6.58), and (6.47) over all j ≤ n−1 and α ∈ N2

with 0 ≤ 2j + |α| ≤ 2n− 1 to deduce that (6.19) holds. This proves the claim.
Step 3 – Bootstrapping, η estimates, and improved pressure estimates
Now we make use of Lemma 6.3 to bootstrap from (6.19) to

(6.48)
n−1∑
j=0

∥∥∥∂jt u∥∥∥2

H2n−2j+1(Ω3)
+
n−1∑
j=0

∥∥∥∂jt∇p∥∥∥2

H2n−2j−1(Ω3)
. Z.

With this estimate in hand, we may derive some estimates for η on Σ by employing the boundary
conditions of (2.23):

(6.49) η = p− 2∂3u3 −G3
3,

(6.50) ∂tη = u3 +G4.

We differentiate (6.49) and employ (6.48) to find that

(6.51) ‖Dη‖22n−3/2 . ‖Dp‖
2
H2n−3/2(Σ) + ‖D∂3u3‖2H2n−3/2(Σ) +

∥∥DG3
∥∥2

2n−3/2

. ‖Dp‖2H2n−1(Ω3) + ‖D∂3u3‖2H2n−1(Ω3) +
∥∥G3

∥∥2

2n−1/2
. Z,

so that by the usual Poincaré inequality on Σ (we have that η has zero average) we know

(6.52) ‖η‖22n−1/2 . ‖η‖
2
0 + ‖Dη‖22n−3/2 . ‖Dη‖

2
2n−3/2 . Z.
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Similarly, for j = 2, . . . , n+ 1 we may apply ∂j−1
t to (6.50) and estimate

(6.53)
∥∥∥∂jt η∥∥∥2

2n−2j+5/2
.
∥∥∥∂j−1

t u3

∥∥∥2

H2n−2j+5/2(Σ)
+
∥∥∥∂j−1

t G4
∥∥∥2

2n−2j+5/2

.
∥∥∥∂j−1

t u
∥∥∥2

H2n−2(j−1)+1(Ω3)
+
∥∥∥∂j−1

t G4
∥∥∥2

2n−2(j−1)+1/2
. Z.

It remains only to control ∂tη, which we do again using (6.50):

(6.54) ‖∂tη‖22n−1/2 . ‖u3‖2H2n−1/2(Σ) +
∥∥G4

∥∥2

2n−1/2
. ‖u3‖2H2n(Ω3) + Z . Z.

Summing estimates (6.52)–(6.54) then yields

(6.55) ‖η‖22n−1/2 + ‖∂tη‖22n−1/2 +
n+1∑
j=2

∥∥∥∂jt η∥∥∥2

2n−2j+5/2
. Z.

The η estimates (6.55) now allow us to further improve the estimates for the pressure. Indeed,
for j = 0, . . . , n− 1 we may use Lemma A.6 and (6.49) to bound

(6.56)
∥∥∥∂jt p∥∥∥2

H0(Ω3)
.
∥∥∥∂jt η∥∥∥2

0
+
∥∥∥∂3∂

j
t u3

∥∥∥2

H0(Σ)
+
∥∥∥∂jtG3

∥∥∥2

0
+
∥∥∥∂jt∇p∥∥∥2

H0(Ω3)

.
∥∥∥∂jt u3

∥∥∥2

H2(Ω3)
+ Z . Z.

This, (6.18), and (6.55) allow us to improve (6.48) to

(6.57)
n∑
j=0

∥∥∥∂jt u∥∥∥2

H2n−2j+1(Ω3)
+
n−1∑
j=0

∥∥∥∂jt p∥∥∥2

H2n−2j(Ω3)

+ ‖η‖22n−1/2 + ‖∂tη‖22n−1/2 +
n+1∑
j=2

∥∥∥∂jt η∥∥∥2

2n−2j+5/2
. Z.

Step 4 – Estimates in Ω2

We now extend our estimates to the lower domain, Ω2, by initially applying Lemma 6.4 for

(6.58)
n∑
j=0

∥∥∥∂jt (χ2u)
∥∥∥2

2n−2j+1
+
n−1∑
j=0

∥∥∥∂jt (χ2p)
∥∥∥2

2n−2j
. D̄−n + D̄0

n + Xn + Yn,

where Xn is defined by

(6.59) Xn =
n−1∑
j=0

∥∥∥∂jtH1,2
∥∥∥2

2n−2j−1
+
∥∥∥∂jtH2,2

∥∥∥2

2n−2j

for H1,2 and H2,2 given by (2.42). We must now estimate Xn. For this we note that by
construction supp(∇χ2) ⊂ Ω3, which implies that supp(H1,2) ∪ supp(H2,2) ⊂ Ω3. This allows
us to use the estimate (6.57) to bound

(6.60) Xn .
n−1∑
j=0

(∥∥∥∂jt u∥∥∥2

H2n−2j+1(Ω3)
+
∥∥∥∂jt p∥∥∥2

H2n−2j(Ω3)

)
. Z.

Then estimates (6.58) and (6.60) may be combined to get

(6.61)
n∑
j=0

∥∥∥∂jt u∥∥∥2

H2n−2j+1(Ω2)
+
n−1∑
j=0

∥∥∥∂jt p∥∥∥2

H2n−2j(Ω2)

.
n∑
j=0

∥∥∥∂jt (χ2u)
∥∥∥2

2n−2j+1
+
n−1∑
j=0

∥∥∥∂jt (χ2p)
∥∥∥2

2n−2j
. D̄−n + Z.

Step 5 –Estimates on all of Ω and conclusion
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We recall that Ω = Ω3 ∪ Ω2. This allows us to add the localized estimates (6.57) and (6.61)
to deduce (6.12). In order to deduce (6.13) and (6.14) from (6.12), we must only estimate
Yn for n = 2N and n = N + 2. In the case n = 2N , Theorem 3.2 provides the estimate
Y2N . (E2N )θD2N + KF2N , and (6.13) follows. In the case n = N + 2 we use Theorem 3.1 for
YN+2 . (E2N )θDN+2, and (6.14) follows. �

The next result is a key bootstrap estimate used in the proof of Theorem 6.2.

Lemma 6.3. Let Yn be as defined in Theorem 6.2. Suppose that

(6.62)
∥∥D̄2n−2r+1

0 u
∥∥2

H2r(Ω3)
+
∥∥D̄2n−2r+1

0 ∇p
∥∥2

H2r−2(Ω3)
. D̄0

n + D̄+
n + Yn

for an integer r ∈ {1 . . . , n− 1}. Then

(6.63)
∥∥∂n−rt u

∥∥2

H2r+1(Ω3)
+
∥∥∂n−rt ∇p

∥∥2

H2r−1(Ω3)

+
∥∥∥D̄2n−2(r+1)+1

0 u
∥∥∥2

H2r+2(Ω3)
+
∥∥∥D̄2n−2(r+1)+1

0 ∇p
∥∥∥2

H2r(Ω3)
. D̄0

n + D̄+
n + Yn.

Moreover, if (6.62) holds with r = 1, then

(6.64)
n−1∑
j=0

∥∥∥∂jt u∥∥∥2

H2n−2j+1(Ω3)
+
n−1∑
j=0

∥∥∥∂jt∇p∥∥∥2

H2n−2j−1(Ω3)
. D̄0

n + D̄+
n + Yn.

Proof. We divide the proof into two steps.
Step 1 – (6.62) implies (6.63)
Throughout the proof we will write Z := D̄0

n + D̄+
n + Yn. Let ` ∈ {1, 2} and take 0 ≤ j ≤

n− 1− r and α ∈ N2 so that 0 ≤ 2j + |α| ≤ 2n− 2r+ 1− `. We apply the differential operator
∂2r−2+`

3 ∂α∂jt to the first equation in (2.23) and split into separate equations for its third and
first two components; after some rearrangement, these read

(6.65) ∂2r−1+`
3 ∂α∂jt p = −∂2r−2+`

3 ∂α∂j+1
t u3 + ∆∂2r−2+`

3 ∂α∂jt u3 + ∂2r−2+`
3 ∂α∂jtG

1
3

and

(6.66) ∆∂2r−2+`
3 ∂α∂jt ui = ∂2r−2+`

3 ∂α∂j+1
t ui + ∂i∂

2r−2+`
3 ∂α∂jt p− ∂

2r−2+`
3 ∂α∂jtG

1
i

for i = 1, 2. Notice that the constraints on r, j, |α| imply that 0 ≤ |α|+(2r−2+`)+2j ≤ 2n−1,
so we may estimate

(6.67)
∥∥∥∂2r−2+`

3 ∂α∂jtG
1
∥∥∥2

0
+
∥∥∥∂2r−2+`

3 ∂α∂jtG
2
∥∥∥2

1
≤ Yn ≤ Z.

Since 2r − 2 + ` ≥ 0, we know that

(6.68)
∥∥∥∂2r−2+`

3 ∂α∂j+1
t u

∥∥∥2

H0(Ω3)
≤
∥∥∥∂α∂j+1

t u
∥∥∥2

H2r−2+`(Ω3)
.

If ` = 2 then |α|+ 2(j + 1) ≤ 2n− 2r + 1 so that

(6.69)
∥∥∥∂α∂j+1

t u
∥∥∥2

H2r−2+`(Ω3)
=
∥∥∥∂α∂j+1

t u
∥∥∥2

H2r(Ω3)
≤
∥∥D̄2n−2r+1

0 u
∥∥2

H2r(Ω3)
≤ Z.

On the other hand, if ` = 1, then either α = 0, in which case the bound on j implies that
2(j + 1) ≤ 2n− 2r, and hence

(6.70)
∥∥∥∂α∂j+1

t u
∥∥∥2

H2r−2+`(Ω3)
=
∥∥∥∂j+1

t u
∥∥∥2

H2r−1(Ω3)
≤
∥∥D̄2n−2r+1

0 u
∥∥2

H2r(Ω3)
≤ Z,

or else |α| ≥ 1, and so α = β + (α− β) for |β| = 1, which implies that

(6.71)
∥∥∥∂α∂j+1

t u
∥∥∥2

H2r−2+`(Ω3)
=
∥∥∥∂α∂j+1

t u
∥∥∥2

H2r−1(Ω3)
≤
∥∥∥∂α−β∂j+1

t u
∥∥∥2

H2r(Ω3)

≤
∥∥D̄2n−2r+1

0 u
∥∥2

H2r(Ω3)
≤ Z.
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Then in either case,

(6.72)
∥∥∥∂2r−2+`

3 ∂α∂j+1
t u

∥∥∥2

H0(Ω3)
≤ Z.

We have written the equations (6.65)–(6.66) in this form so as to be able to employ the
estimates (6.62), (6.67), (6.72) to derive (6.63). We must consider the case of ` = 1 and ` = 2
separately, starting with ` = 1.

Let ` = 1. According to the equation div u = G2 (the second of (2.23)) and the bounds (6.62)
and (6.67) we may estimate

(6.73)
∥∥∥∂2r+1

3 ∂α∂jt u3

∥∥∥2

H0(Ω3)
=
∥∥∥∂2r

3 ∂
α∂jt (G

2 − ∂1u1 − ∂2u2)
∥∥∥2

H0(Ω3)

.
∥∥∥∂2r−1

3 ∂α∂jtG
2
∥∥∥2

1
+
∥∥∥∂α∂jt (∂1u1 + ∂2u2)

∥∥∥2

H2r(Ω3)
. Z,

and hence
(6.74)∥∥∥∆(∂2r−1

3 ∂α∂jt u3)
∥∥∥2

H0(Ω3)
.
∥∥∥∂2r+1

3 ∂α∂jt u3

∥∥∥2

H0(Ω3)
+
∥∥∥∂2r−1

3 (∂2
1 + ∂2

2)∂α∂jt u3

∥∥∥2

H0(Ω3)
. Z.

We may then use (6.67), (6.72), and (6.74) in (6.65) for the pressure estimate

(6.75)
∥∥∥∂2r

3 ∂
α∂jt p

∥∥∥2

H0(Ω3)
. Z.

Turning now to the i = 1, 2 components, we note that by (6.62)

(6.76)
∥∥∥∂i∂2r−1

3 ∂α∂jt p
∥∥∥2

H0(Ω3)
+
∥∥∥(∂2

1 + ∂2
2)∂2r−1

3 ∂α∂jt ui

∥∥∥2

H0(Ω3)

.
∥∥D̄2n−2r+1

0 ∇p
∥∥2

H2r−2(Ω3)
+
∥∥D̄2n−2r+1

0 u
∥∥2

H2r(Ω3)
. Z

for i = 1, 2. Plugging this, (6.67), and (6.72) into (6.66) then shows that

(6.77)
∥∥∥∂2r+1

3 ∂α∂jt ui

∥∥∥2

H0(Ω3)
. Z for i = 1, 2.

Upon summing (6.73), (6.75), and (6.77) over 0 ≤ j ≤ 2n−r−1 and α satisfying 0 ≤ 2j+ |α| ≤
2n− 2r, we deduce, in light of (6.62), that

(6.78)
∥∥D̄2n−2r

0 u
∥∥2

H2r+1(Ω3)
+
∥∥D̄2n−2r

0 ∇p
∥∥2

H2r−1(Ω3)
. Z.

In the case ` = 2 we may argue as in the case ` = 1, utilizing both (6.62) and (6.78) to derive
the bound

(6.79)
∥∥D̄2n−2r−1

0 u
∥∥2

H2r+2(Ω3)
+
∥∥D̄2n−2r−1

0 ∇p
∥∥2

H2r(Ω3)
. Z.

Then we may add (6.78) to (6.79) to deduce (6.63).
Step 2 – The proof of (6.64)
Now we turn to the proof of (6.64), assuming that (6.62) holds with r = 1. By (6.63) we

may iterate with r = 2, . . . , n− 1 to deduce that

(6.80)
∥∥D1

0u
∥∥2

H2n(Ω3)
+

n∑
j=1

∥∥∥∂jt u∥∥∥2

H2n−2j+1(Ω3)

+
∥∥D1

0∇p
∥∥2

H2n−2(Ω3)
+
n−1∑
j=1

∥∥∥∂jt∇p∥∥∥2

H2n−2j−1(Ω3)
. D̄0

n + D̄+
n + Yn.

Let 1 ≤ ` ≤ 2n − 1. We apply the operator ∂`3 to the first equation of (2.23) and split into
components to get

(6.81) ∂`+1
3 p = −∂t∂`3u3 + ∆∂`3u3 + ∂`3G

1
3, and
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(6.82) ∂`+2
3 ui = −(∂2

1 + ∂2
2)∂`3ui + ∂t∂

`
3ui + ∂i∂

`
3p− ∂`3G1

i for i = 1, 2.

Then (6.80), together with (6.81)–(6.82) and the equation ∂3u3 = G4 − ∂1u1 − ∂2u2, allows us
to derive the estimates

(6.83)
∥∥∥∂`+2

3 u
∥∥∥2

H0(Ω3)
+
∥∥∥∂`+1

3 p
∥∥∥2

H0(Ω3)
. D̄0

n + D̄+
n + Yn.

This and (6.80) yield (6.64). �

The following result is based on an argument similar to the one used in Theorem 6.1.

Lemma 6.4. Let Yn be as defined in Theorem 6.2. Let H1,2 and H2,2 be given by (2.42), and
write

(6.84) Xn =
n−1∑
j=0

∥∥∥∂jtH1,2
∥∥∥2

2n−2j−1
+
∥∥∥∂jtH2,2

∥∥∥2

2n−2j
.

Then

(6.85)
n∑
j=0

∥∥∥∂jt (χ2u)
∥∥∥2

2n−2j+1
+
n−1∑
j=0

∥∥∥∂jt (χ2p)
∥∥∥2

2n−2j
. D̄−n + D̄0

n + Xn + Yn.

Proof. First note that by Lemma A.7 we may bound

(6.86)
n∑
j=0

∥∥∥∂jt (χ2u)
∥∥∥2

1
. D̄−n + D̄0

n.

When we localize with χ2 we find that χ2u and χ2p solve

(6.87)


∂t(χ2u)−∆(χ2u) +∇(χ2p) = χ2G

1 +H1,2 in Ω
div(χ2u) = χ2G

2 +H2,2 in Ω
((χ2p)I − D(χ2u))e3 = 0 on Σ
χ2u = 0 on Σb.

Then for any j = 0, . . . , n− 1 we may apply Lemma A.8 to see that

(6.88)
∥∥∥∂jt (χ2u)

∥∥∥2

2n−2j+1
+
∥∥∥∂jt (χ2p)

∥∥∥2

2n−2j

.
∥∥∥∂j+1

t (χ2u)
∥∥∥2

2n−2(j+1)+1
+
∥∥∥∂jt (χ2G

1 +H1,2)
∥∥∥2

2n−2j−1
+
∥∥∥∂jt (χ2G

2 +H2,2)
∥∥∥2

2n−2j

.
∥∥∥∂j+1

t (χ2u)
∥∥∥2

2n−2(j+1)+1
+ Yn + Xn.

We will use estimate (6.88) and a finite induction to prove (6.85). For j = n−1 we use (6.86)
to get

(6.89)
∥∥∂n−1

t (χ2u)
∥∥2

3
+
∥∥∂n−1

t (χ2p)
∥∥2

2
. ‖∂nt (χ2u)‖21 + Yn . D̄−n + D̄0

n + Yn + Xn.
Now suppose that the inequality

(6.90)
∥∥∥∂n−`t (χ2u)

∥∥∥2

2`+1
+
∥∥∥∂n−`t (χ2p)

∥∥∥2

2`
. D̄−n + D̄0

n + Yn + Xn

holds for 1 ≤ ` < n. We claim that (6.90) holds with ` replaced by `+ 1. We apply (6.88) with
j = n− `− 1 to get

(6.91)
∥∥∥∂n−`−1

t (χ2u)
∥∥∥2

2(`+1)+1
+
∥∥∥∂n−`−1

t (χ2p)
∥∥∥2

2(`+1)
.
∥∥∥∂n−`t (χ2u)

∥∥∥2

2`+1
+ Yn + Xn

. D̄−n + D̄0
n + Yn + Xn,

where in the last inequality we have employed the induction hypothesis (6.90). This proves the
claim, so by finite induction the bound (6.90) holds for all ` = 1, . . . , n. Summing this bound
over ` = 1, . . . , n and adding (6.86) then yields (6.85). �
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7. A priori estimates

In this section we will combine our energy evolution estimates with the comparison estimates
to derive a priori estimates for the full energy, G2N , defined by (2.52).

7.1. Estimates involving F2N and K. Our first result is an estimate of F2N .

Lemma 7.1. It holds that

(7.1) sup
0≤r≤t

F2N (r) . exp
(
C

∫ t

0

√
K(r)dr

)
×

[
F2N (0) + t

∫ t

0
(1 + E2N (r))D2N (r)dr +

(∫ t

0

√
K(r)F2N (r)dr

)2
]
.

Proof. Throughout this proof we will write u = ũ + u3e3, i.e. we write ũ for the part of u
parallel to Σ. Then η solves the transport equation ∂tη + ũ ·Dη = u3 on Σ. We may then use
Lemma A.5 with s = 1/2 to estimate

(7.2) sup
0≤r≤t

‖η(r)‖1/2 ≤ exp
(
C

∫ t

0
‖Dũ(r)‖H3/2(Σ) dr

)[
‖η0‖1/2 +

∫ t

0
‖u3(r)‖H1/2(Σ) dr

]
.

By the definition of K, (2.51), we may bound ‖Dũ(r)‖H3/2(Σ) ≤
√
K(r), but we may also use

trace theory to bound ‖u3(r)‖H1/2(Σ) . D2N (r). This allows us to square both sides of (7.2)
and utilize Cauchy-Schwarz to deduce that

(7.3) sup
0≤r≤t

‖η(r)‖21/2 . exp
(

2C
∫ t

0

√
K(r)dr

)[
‖η0‖21/2 + t

∫ t

0
D2N (r)dr

]
.

To go to higher regularity we let α ∈ N2 with |α| = 4N . Then we apply the operator ∂α to
the equation ∂tη + ũ ·Dη = u3 to see that ∂αη solves the transport equation

(7.4) ∂t(∂αη) + ũ ·D(∂αη) = ∂αu3 −
∑

0<β≤α
Cα,β∂

βũ ·D∂α−βη := Gα

with the initial condition ∂αη0. We may then apply Lemma A.5 with s = 1/2 to find that

(7.5) sup
0≤r≤t

‖∂αη(r)‖1/2 ≤ exp
(
C

∫ t

0
‖Dũ(r)‖H3/2(Σ) dr

)[
‖∂αη0‖1/2 +

∫ t

0
‖Gα(r)‖1/2 dr

]
.

We will now estimate ‖Gα‖H1/2 .
For β ∈ N2 satisfying 2N + 1 ≤ |β| ≤ 4N we may apply Lemma A.1 with s1 = r = 1/2 and

s2 = 2 to bound

(7.6)
∥∥∥∂βũD∂α−βη∥∥∥

1/2
.
∥∥∥∂βũ∥∥∥

H1/2(Σ)

∥∥∥D∂α−βη∥∥∥
2
.

This and trace theory then imply that

(7.7)
∑

0<β≤α
2N+1≤|β|≤4N

∥∥∥Cα,β∂βũ ·D∂α−βη∥∥∥
1/2
.
∥∥D4N

2N+1u
∥∥

1

∥∥D2N
1 η

∥∥
2
.
√
D2NE2N .

On the other hand, if β satisfies 1 ≤ |β| ≤ 2N then we use Lemma A.1 to bound

(7.8)
∥∥∥∂βũD∂α−βη∥∥∥

1/2
.
∥∥∥∂βũ∥∥∥

H2(Σ)

∥∥∥D∂α−βη∥∥∥
1/2

so that

(7.9)
∑

0<β≤α
1≤|β|≤2N

∥∥∥Cα,β∂βũ ·D∂α−βη∥∥∥
1/2
.
∥∥D2N

1 u
∥∥

3

∥∥∥D4N−1
2N+1η

∥∥∥
2

+ ‖Dũ‖H2(Σ)

∥∥D4Nη
∥∥

1/2

.
√
E2ND2N +

√
KF2N .
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The only remaining term in Gα is ∂αu3, which we estimate with trace theory:

(7.10) ‖∂αu3‖H1/2(Σ) .
∥∥D4Nu3

∥∥
1
.
√
D2N .

We may then combine (7.7), (7.9), and (7.10) for

(7.11) ‖Gα‖1/2 . (1 +
√
E2N )

√
D2N +

√
KF2N .

Returning now to (7.5), we square both sides and employ (7.11) and our previous estimate
of the term in the exponential to find that

(7.12) sup
0≤r≤t

‖∂αη(r)‖21/2 ≤ exp
(

2C
∫ t

0

√
K(r)dr

)
×

[
‖∂αη0‖21/2 + t

∫ t

0
(1 + E2N (r))D2N (r)dr +

(∫ t

0

√
K(r)F2N (r)dr

)2
]
.

Then the estimate (7.1) follows by summing (7.12) over all |α| = 4N , adding the resulting
inequality to (7.3), and using the fact that ‖η‖24N+1/2 . ‖η‖

2
1/2 +

∥∥D4Nη
∥∥2

1/2
. �

Now we use this result to derive a stronger result.

Proposition 7.2. There exists a universal constant 0 < δ < 1 so that if G2N (T ) ≤ δ, then

(7.13) sup
0≤r≤t

F2N (r) . F2N (0) + t

∫ t

0
D2N

for all 0 ≤ t ≤ T .

Proof. Suppose G2N (T ) ≤ δ ≤ 1, for δ to be chosen later. Fix 0 ≤ t ≤ T . The Sobolev and
trace embeddings allow us to estimate K . EN+2. Then

(7.14)
∫ t

0

√
K(r)dr .

∫ t

0

√
EN+2(r)dr ≤

√
δ

∫ ∞
0

1
(1 + r)2N−4

dr .
√
δ.

Since δ ≤ 1, this implies that for any constant C > 0,

(7.15) exp
(
C

∫ t

0

√
K(r)dr

)
. 1.

Similarly,

(7.16)
(∫ t

0

√
K(r)F2N (r)dr

)2

.

(
sup

0≤r≤t
F2N (r)

)(∫ t

0

√
K(r)dr

)2

.

(
sup

0≤r≤t
F2N (r)

)
δ.

Then (7.14)–(7.16) and Lemma 7.1 imply that

(7.17) sup
0≤r≤t

F2N (r) ≤ C
(
F2N (0) + t

∫ t

0
D2N

)
+ Cδ

(
sup

0≤r≤t
F2N (r)

)
,

for some C > 0. Then if δ is small enough so that Cδ ≤ 1/2, we may absorb the right-hand
F2N term onto the left and deduce (7.13). �

This bound on F2N allows us to estimate the integral of KF2N and
√
D2NKF2N .

Corollary 7.3. There exists a universal constant 0 < δ < 1 so that if G2N (T ) ≤ δ, then

(7.18)
∫ t

0
K(r)F2N (r)dr . δF2N (0) + δ

∫ t

0
D2N (r)dr

and

(7.19)
∫ t

0

√
D2N (r)K(r)F2N (r)dr . F2N (0) +

√
δ

∫ t

0
D2N (r)dr

for 0 ≤ t ≤ T .
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Proof. Let G2N (T ) ≤ δ with δ as small as in Proposition 7.2 so that estimate (7.13) holds. As
in Proposition 7.2, we have that K(r) . EN+2(r) ≤ δ(1 + r)−4N+8. This and (7.13) then easily
imply (7.18). These two and Cauchy-Schwarz also imply (7.19). �

7.2. Boundedness at the 2N level.

Theorem 7.4. There exists a universal constant δ > 0 so that if G2N (T ) ≤ δ, then

(7.20) sup
0≤r≤t

E2N (r) +
∫ t

0
D2N + sup

0≤r≤t

F2N (r)
(1 + r)

. E2n(0) + F2N (0)

for all 0 ≤ t ≤ T .

Proof. Fix 0 ≤ t ≤ T . For any ε ∈ (0, 1) we may sum the bounds of Propositions 5.2 and 5.4 to
find

(7.21) Ē+
2N (t) + Ē−2N (t) +

∫ t

0
D̄+

2N + D̄−2N

≤ C1

(
E2N (0) +

∫ t

0
(E2N )θD2N +

√
D2NKF2N + εD2N + ε−8N−1D̄0

2N

)
.

for a constant C1 > 0 independent of ε. On the other hand, Proposition 4.3 provides the
estimate

(7.22) Ē0
2N (t) +

∫ t

0
D̄0

2N ≤ C2

(
E2N (0) + (E2N (t))3/2 +

∫ t

0
(E2N )θD2N

)
for a constant C2 > 0. We multiply (7.22) by 1 + C∗ for a constant C∗ > 0 (with precise value
to be chosen later) and add the resulting inequality to (7.21) for

(7.23) Ē+
2N (t) + Ē−2N (t) + (1 + C∗)Ē0

2N (t) +
∫ t

0
D̄+

2N + D̄−2N + (1 + C∗)D̄0
2N

≤ C2(1 + C∗)(E2N (t))3/2 + (C1 + C2(1 + C∗))
(
E2N (0) +

∫ t

0
(E2N )θD2N

)
+ C1

∫ t

0

√
D2NKF2N + εD2N + ε−8N−1D̄0

2N .

From Theorem 6.1 we know that

(7.24) E2N (t) ≤ C3

(
Ē+

2N (t) + Ē0
2N (t) + (E2N (t))1+θ

)
,

and from Theorem 6.2 we know that

(7.25)
∫ t

0
D2N ≤ C3

∫ t

0

(
D̄0

2N + D̄−2N + D̄+
2N + (E2N )θD2N +KF2N

)
for a constant C3 > 0. We may then combine (7.23)–(7.25) to see that

(7.26)
1
C3

(
E2N (t) +

∫ t

0
D2N

)
+ C∗

(
Ē0

2N (t) +
∫ t

0
D̄0

2N

)
≤ C2(1 + C∗)(E2N (t))3/2

+ (E2N (t))1+θ + (1 + C1 + C2(1 + C∗))
(
E2N (0) +

∫ t

0
(E2N )θD2N

)
+
∫ t

0
C1

√
D2NKF2N +KF2N + C1

∫ t

0
εD2N + ε−8N−1D̄0

2N .

Now we choose

(7.27) ε = min
{

1
2
,

1
2C1C3

}
⇒ ε ∈ (0, 1) and

1
2C3

≤ 1
C3
− C1ε,
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and then we choose C∗ = C1ε
−8N−1. With this choice of ε and C∗, (7.26) reduces to

(7.28)
1

2C3

(
E2N (t) +

∫ t

0
D2N

)
≤ C2(1 + C∗)(E2N (t))3/2 + (E2N (t))1+θ

+ (1 + C1 + C2(1 + C∗))
(
E2N (0) +

∫ t

0
(E2N )θD2N

)
+
∫ t

0
C1

√
D2NKF2N +KF2N .

Let us assume that δ ∈ (0, 1) is as small as in Corollary 7.3; this allows us to estimate the
integrals involving KF2N and

√
D2NKF2N in (7.28) to bound

(7.29)

E2N (t) +
∫ t

0
D2N ≤ C4

(
E2N (0) + F2N (0) + (E2N (t))1+ψ +

∫ t

0
(E2N )θD2N +

√
δ

∫ t

0
D2N

)
for C4 > 0 and ψ = min{1/2, θ} > 0. Now we further assume that δ is small enough so that

(7.30) C4

√
δ ≤ 1

4
, C4δ

θ ≤ 1
4
, and C4δ

ψ ≤ 1
2
.

Then since sup0≤r≤t EN+2(r) ≤ G2N (T ) ≤ δ, (7.29) implies that

(7.31)
1
2

(
E2N (t) +

∫ t

0
D2N

)
≤ C4 (E2N (0) + F2N (0)) .

If δ is further restricted to be as small as in Proposition 7.2, then we also have that

(7.32) sup
0≤r≤t

F2N (r)
(1 + r)

. sup
0≤r≤t

F2N (0)
(1 + r)

+ sup
0≤r≤t

r

(1 + r)

∫ r

0
D2N (s)ds

. F2N (0) +
∫ t

0
D2N (r)dr . E2N (0) + F2N (0).

Then (7.20) follows by summing (7.31) and (7.32). �

7.3. Decay at the N + 2 level. Before showing the decay estimates, we first need an interpo-
lation result.

Proposition 7.5. There exists a universal 0 < δ < 1 so that if G2N (T ) ≤ δ, then

(7.33) DN+2(t) . D̄0
N+2(t) + D̄+

N+2(t) + D̄−N+2(t), EN+2(t) . Ē0
N+2(t) + Ē+

N+2(t),

and

(7.34) EN+2 . (DN+2)(4N−8)/(4N−7)(E2N )1/(4N−7).

Proof. The bound G2N (T ) ≤ δ and Theorems 6.1 and 6.2 imply that

(7.35) DN+2 ≤ C(D̄0
N+2(t) + D̄+

N+2(t) + D̄−N+2(t)) + CEθ2NDN+2

≤ C(D̄0
N+2(t) + D̄+

N+2(t) + D̄−N+2(t)) + CδθDN+2

and

(7.36) EN+2 ≤ C(Ē0
N+2(t) + Ē+

N+2(t)) + CEθ2NEN+2 ≤ C(Ē0
N+2(t) + Ē+

N+2(t)) + CδθEN+2

for constants C > 0 and θ > 0. Then if δ is small enough so that Cδθ ≤ 1/2, we may absorb the
second term on the right side of (7.35) and (7.36) into the left to deduce the bounds in (7.33).

We now turn to the proof of (7.34), which is based on the standard Sobolev interpolation
inequality:

(7.37) ‖f‖s . ‖f‖
q/(r+q)
s−r ‖f‖r/(r+q)s+q

for s, q > 0 and 0 ≤ r ≤ s. Applying this for 0 ≤ j ≤ N + 2 with s = 2(N + 2) − 2j, r = 1/2,
and q = 2N − 4 shows that

(7.38)
∥∥∥∂jt η∥∥∥

2(N+2)−2j
.
∥∥∥∂jt η∥∥∥θ

2(N+2)−2j−1/2

∥∥∥∂jt η∥∥∥1−θ

4N−2j
. (
√
DN+2)θ(

√
E2N )1−θ,
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(7.39)
∥∥∥∂jt u∥∥∥

2(N+2)−2j
.
∥∥∥∂jt u∥∥∥θ

2(N+2)−2j−1/2

∥∥∥∂jt u∥∥∥1−θ

4N−2j
. (
√
DN+2)θ(

√
E2N )1−θ,

where

(7.40) θ =
4N − 8
4N − 7

and 1− θ =
1

4N − 7
.

Similarly, we may use 0 ≤ j ≤ N + 1 with s = 2(N + 2)− 2j − 1, r = 1/2, and q = 2N − 4

(7.41)
∥∥∥∂jt p∥∥∥

2(N+2)−2j−1
.
∥∥∥∂jt p∥∥∥θ

2(N+2)−2j−3/2

∥∥∥∂jt p∥∥∥1−θ

4N−2j−1
. (
√
DN+2)θ(

√
E2N )1−θ.

We may then sum the squares of these interpolation inequalities to deduce (7.34). �

Now we show that the extra integral term appearing in Proposition 4.4 can essentially be
absorbed into Ē0

N+2 + Ē+
N+2.

Lemma 7.6. Let F 2 be defined by (2.19) with ∂α = ∂N+2
t . There exists a universal 0 < δ < 1

so that if G2N (T ) ≤ δ, then
(7.42)
2
3

(Ē0
N+2(t) + Ē+

N+2(t)) ≤ Ē0
N+2(t) + Ē+

N+2(t)− 2
∫

Ω
J(t)∂N+1

t p(t)F 2(t) ≤ 4
3

(Ē0
N+2(t) + Ē+

N+2(t))

for all 0 ≤ t ≤ T .

Proof. Suppose that δ is as small as in Proposition 7.5. Then we combine estimate (4.5) of
Theorem 4.2, Lemma 2.3, and estimate (7.33) of Proposition 7.5 to see that

(7.43) ‖J‖L∞
∥∥∥∂N+1

t p
∥∥∥

0

∥∥F 2
∥∥

0
.
√
EN+2

√
Eθ2NEN+2

= Eθ/22N EN+2 . Eθ/22N (Ē0
N+2 + Ē+

N+2) . δθ/2(Ē0
N+2 + Ē+

N+2)

for some θ > 0. This estimate and Cauchy-Schwarz then imply that

(7.44)
∣∣∣∣2∫

Ω
J∂N+1

t pF 2

∣∣∣∣ ≤ 2 ‖J‖L∞
∥∥∥∂N+1

t p
∥∥∥

0

∥∥F 2
∥∥

0
≤ Cδθ/2(Ē0

N+2+Ē+
N+2) ≤ 1

3
(Ē0
N+2+Ē+

N+2)

if δ is small enough. The bound (7.42) follows easily from (7.44). �

Now we prove decay at the N + 2 level.

Theorem 7.7. There exists a universal constant 0 < δ < 1 so that if G2N (T ) ≤ δ, then

(7.45) sup
0≤r≤t

(1 + r)4N−8EN+2(r) . E2N (0) + F2N (0)

for all 0 ≤ t ≤ T .

Proof. Fix 0 ≤ t ≤ T . According to Propositions 5.3, 5.5, there exist constants C1 > 0 so that
for any ε ∈ (0, 1),

(7.46) ∂t(Ē+
N+2 + Ē−N+2) + D̄+

N+2 + D̄−N+2 ≤ C1(Eθ2NDN+2 + εDN+2 + ε−4N−9D̄0
N+2).

On the other hand, Proposition 4.4 provides a constant C2 > 0 so that

(7.47) ∂t

(
Ē0
N+2 −

∫
Ω

2J∂N+1
t pF 2

)
+ D̄0

N+2 ≤ C2

√
E2NDN+2.

We multiply inequality (7.47) by 1 + C∗ for C∗ > 0 a constant to be chosen later and add the
resulting inequality to (7.46) to find

(7.48)

∂t

(
Ē+
N+2 + Ē−N+2 + (1 + C∗)Ē0

N+2 −
∫

Ω
2J∂N+1

t pF 2

)
+ (D̄+

N+2 + D̄−N+2 + D̄0
N+2) + C∗D̄0

N+2

≤ (C1 + C2C∗)(E2N )ψDN+2 + C1(εDN+2 + ε−4N−9D̄0
N+2),

where ψ = min{1/2, θ}.
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Let δ ∈ (0, 1) be as small as in both Proposition 7.5 and Lemma 7.6. Then

(7.49) DN+2 ≤ C3(D̄0
n+2 + D̄−n+2 + D̄+

n+2)

for C3 ≥ 1 (we know that C3 > 0, but we may further assume this). Then (7.49) and (7.48)
imply that

(7.50) ∂t

(
Ē+
N+2 + Ē−N+2 + (1 + C∗)Ē0

N+2 −
∫

Ω
2J∂N+1

t pF 2

)
+

1
C3
Dn+2 + C∗D̄0

2n

≤ (C1 + C2C∗)(E2N )ψDN+2 + C1(εDN+2 + ε−4N−9D̄0
N+2).

Now we choose

(7.51) ε = min
{

1
2
,

1
4C1C3

}
⇒ 3

4C3
≤ 1
C3
− C1ε

and C∗ = C1ε
−4N−9. Further, we assume δ is sufficiently small so that

(7.52) (C1 + C2C∗)δψ ≤
1

4C3
.

With this choice of ε, C∗ and the bound E2N ≤ G2N (T ) ≤ δ, the inequality (7.50) implies

(7.53) ∂t

(
Ē+
N+2 + Ē−N+2 + (1 + C∗)Ē0

N+2 −
∫

Ω
2J∂N+1

t pF 2

)
+

1
2C3
DN+2 ≤ 0.

Let δ be as small as in Theorem 7.4, Proposition 7.5, and Lemma 7.6. Then Theorem 7.4,
(7.34) of Proposition 7.5, and (7.42) of Lemma 7.6 imply that

(7.54)

0 ≤ 2
3

(Ē+
N+2 + Ē−N+2) + (1 + C∗)Ē−N+2 ≤ Ē

+
N+2 + Ē−N+2 + (1 + C∗)Ē0

N+2 −
∫

Ω
2J∂N+1

t pF 2

≤ 4
3

(Ē+
N+2 + Ē−N+2) + (1 + C∗)Ē−N+2 ≤ C4EN+2 ≤ CC4(E2N )1/(4N−7)(DN+2)(4N−8)/(4N−7)

≤ C5Z1/(4N−7)
0 (DN+2)(4N−8)/(4N−7)

for all 0 ≤ t ≤ T , where we have written Z0 := E2N (0) + F2N (0), and C4, C5 are universal
constants which we may assume satisfy C5 ≥ C4 ≥ 1. Let us write

(7.55) h(t) = Ē+
N+2(t) + Ē−N+2(t) + (1 + C∗)Ē0

N+2(t)−
∫

Ω
2J(t)∂N+1

t p(t)F 2(t) ≥ 0,

as well as

(7.56) s =
1

4N − 8
and C6 =

1
2C3C

1+s
5 Zs0

.

We may then combine (7.53) with (7.54) and use our new notation to derive the differential
inequality

(7.57) ∂th(t) + C6(h(t))1+s ≤ 0

for 0 ≤ t ≤ T .
Since (7.54) says that h(t) ≥ 0, we may integrate (7.57) to find that for any 0 ≤ r ≤ T ,

(7.58) h(r) ≤ h(0)
[1 + sC6(h(0))sr]1/s

.

Then (7.54) implies that h(0) ≤ C4EN+2(0) ≤ C4E2N (0) ≤ C4Z0, which in turn implies that

(7.59) sC6(h(0))s =
s

2C3C
1+s
5

(
h(0)
Z0

)s
≤ s

2C3C
1+s
5

Cs4 =
s

2C3C5

(
C4

C5

)s
≤ 1

since 0 < s < 1, C5 ≥ C4 ≥ 1, and C3 ≥ 1. A simple computation shows that

(7.60) sup
r≥0

(1 + r)1/s

(1 +Mr)1/s
=

1
M1/s
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when 0 ≤M ≤ 1 and s > 0. This, (7.58), and (7.59) then imply that

(7.61) (1 + r)1/sh(r) ≤ h(0)
(1 + r)1/s

[1 + sC6(h(0))sr]1/s

≤ h(0)
(

2C3C
1+s
5

s

)1/s Z0

h(0)
=
(

2C3C
1+s
5

s

)1/s

Z0.

Now we use (7.33) of Proposition 7.5 together with (7.54) to bound

(7.62) EN+2(r) . Ē0
N+2(r) + Ē+

N+2(r) . h(r) for 0 ≤ r ≤ T.

The estimate (7.45) then follows from (7.61), (7.62), and the fact that s = 1/(4N − 8) and
Z0 = E2N (0) + F2N (0). �

7.4. A priori estimates for G2N . We now collect the results of Theorems 7.4 and 7.7 into a
single bound on G2N . The estimate recorded specifically names the constant in the inequality
with C1 > 0 so that it can be referenced later.

Theorem 7.8. There exists a universal 0 < δ < 1 so that if G2N (T ) ≤ δ, then

(7.63) G2N (t) ≤ C1(E2N (0) + F2N (0))

for all 0 ≤ t ≤ T , where C1 > 0 is a universal constant.

Proof. Let δ be as small as in Theorems 7.4 and 7.7. Then the conclusions of the theorems
hold, and we may sum them to deduce (7.63). �

8. Specialized local well-posedness

We now record a specialized version of the local well-posedness theorem.

Theorem 8.1. Suppose the initial data satisfy the compatibility conditions of Theorem 1.1 and
‖u(0)‖24N + ‖η(0)‖24N+1/2 <∞. Let ε > 0. There exists a δ0 = δ0(ε) > 0 and a

(8.1) T0 = C(ε) min

{
1,

1
‖η(0)‖24N+1/2

}
> 0,

where C(ε) > 0 is a constant depending on ε, so that if 0 < T ≤ T0 and ‖u(0)‖24N + ‖η(0)‖24N ≤
δ0, then there exists a unique solution (u, p, η) to (1.12) on the interval [0, T ] that achieves the
initial data. The solution obeys the estimates

(8.2) sup
0≤t≤T

E2N (t) +
∫ T

0
D2N (t)dt+

∫ T

0

(∥∥∥∂2N+1
t u(t)

∥∥∥2

(0H1)∗
+
∥∥∂2N

t p(t)
∥∥2

0

)
dt ≤ C2ε

and

(8.3) sup
0≤t≤T

F2N (t) ≤ C2F2N (0) + ε

for C2 > 0 a universal constant. If η0 satisfies the zero average condition

(8.4)
∫

Σ
η0 = 0, then

∫
Σ
η(t) = 0

for all t ∈ [0, T ].

Proof. The existence, uniqueness, and estimates follow directly from Theorem 1.1. Then (8.4)
follows from (1.5) and the fact that η0 satisfies the zero average condition. �

Remark 8.2. The finiteness of the terms on the left of (8.2)–(8.3) justify all of the computations
leading to Theorem 7.8.
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9. Global well-posedness and decay: proof of Theorem 1.3

In order to combine the local existence result, Theorem 8.1, with the a priori estimates of
Theorem 7.8, we must be able to estimate G2N in terms of the estimates given in (8.2)–(8.3).
We record this estimate now.

Proposition 9.1. Suppose that N ≥ 3. Then there exists a universal constant C3 > 0 with the
following properties. If 0 ≤ T , then we have the estimate

(9.1) G2N (T ) ≤ sup
0≤t≤T

E2N (t) +
∫ T2

0
D2N (t)dt+ sup

0≤t≤T
F2N (t) + C3(1 + T )4N−8 sup

0≤t≤T
E2N (t).

If 0 < T1 ≤ T2, then we have the estimate

(9.2) G2N (T2) ≤ C3G2N (T1) + sup
T1≤t≤T2

E2N (t) +
∫ T2

T1

D2N (t)dt

+
1

(1 + T1)
sup

T1≤t≤T2

F2N (t) + C3(T2 − T1)2(1 + T2)4N−8 sup
T1≤t≤T2

E2N (t).

Proof. We will only prove the estimate (9.2); the bound (9.1) follows from a similar, but easier
argument. The definition of G2N (T2) allows us to estimate

(9.3) G2N (T2) ≤ G2N (T1) + sup
T1≤t≤T2

E2N (t) +
∫ T2

T1

D2N (t)dt

+ sup
T1≤t≤T2

F2N (t)
(1 + t)

+ sup
T1≤t≤T2

(
(1 + t)4N−8EN+2(t)

)
.

Since N ≥ 3 it is easy to verify that

(9.4)
N+2∑
j=0

∥∥∥∂j+1
t u

∥∥∥2

2(N+2)−2j
+
∥∥∥∂jt u∥∥∥2

2(N+2)−2j
+
∥∥∥∂j+1

t η
∥∥∥2

2(N+2)−2j
+
∥∥∥∂jt η∥∥∥2

2(N+2)−2j
. E2N

and

(9.5)
N+1∑
j=0

∥∥∥∂j+1
t p

∥∥∥2

2(N+2)−2j−1
+
∥∥∥∂jt p∥∥∥2

2(N+2)−2j−1
. E2N .

For j = 0, . . . , 2N , we may then integrate ∂t
[
(1 + t)(4N−8)/2∂jt u(t)

]
in time from T1 to T1 ≤

t ≤ T2 to deduce the bound

(9.6)
∥∥∥(1 + t)(4N−8)/2∂jt u(t)

∥∥∥
2N+4−2j

≤
∥∥∥(1 + T1)(4N−8)/2∂jt u(T1)

∥∥∥
2N+4−2j

+
∫ T2

T1

(1 + s)(4N−8)/2
∥∥∥∂j+1

t u(s)
∥∥∥

2N+4−2j
+

(4N − 8)
2

(1 + s)(4N−10)/2
∥∥∥∂jt u(s)

∥∥∥
2N+4−2j

.
√
G2N (T1) + (T2 − T1)(1 + T2)(4N−8)/2

√
sup

T1≤t≤T2

E2N (t).

Squaring both sides of this then yields, for j = 0, . . . , N + 2,
(9.7)

sup
T1≤t≤T2

(
(1 + t)4N−8

∥∥∥∂jt u(t)
∥∥∥2

2(N+2)−2j

)
. G2N (T1) + (T2 − T1)2(1 + T2)4N−8 sup

T1≤t≤T2

E2N (t).

Similar estimates hold for j = 0, . . . , N + 2 with ∂jt u replaced by ∂jt η and for j = 0, . . . , N + 1

with
∥∥∥∂jt u(t)

∥∥∥2

2(N+2)−2j
replaced by

∥∥∥∂jt p(t)∥∥∥2

2(N+2)−2j−1
. From these we may then estimate

(9.8) sup
T1≤t≤T2

(
(1 + t)4N−8EN+2(t)

)
. G2N (T1) + (T2 − T1)2(1 + T2)4N−8 sup

T1≤t≤T2

E2N (t).
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Then (9.2) follows from (9.3), (9.8), and the trivial bound

(9.9) sup
T1≤t≤T2

F2N (t)
(1 + t)

≤ 1
(1 + T1)

sup
T1≤t≤T2

F2N (t).

�

We now turn to our main result.

Proof of Theorem 1.3. Let 0 < δ < 1 and C1 > 0 be the constants from Theorem 7.8, C2 > 0 be
the constant from Theorem 8.1, and C3 > 0 be the constant from Proposition 9.1. According
to (9.1) of Proposition 9.1, if a solution exists on the interval [0, T ] with T < 1 and obeys the
estimates (8.2)–(8.3), then

(9.10) G2N (T ) ≤ C2κ+ ε
[
C2 + 1 + C3(2)4N−8

]
.

If ε is chosen so that the latter term in (9.10) equals δ/2, then we may choose κ sufficiently
small so that C2κ < δ/2 and κ < δ0(ε) (with δ0(ε) given by Theorem 8.1); then Theorem 8.1
provides a unique solution on [0, T ] obeying the estimates (8.2)–(8.3), and hence G2N (T ) ≤ δ.
According to Remark 8.2, all of the computations leading to Theorem 7.8 are justified by the
estimates (8.2)–(8.3).

Let us now define

(9.11) T∗(κ) = sup{T > 0 | for every choice of initial data satisfying the compatibility

conditions and E2N (0) + F2N (0) < κ there exists a unique solution on [0, T ]

that achieves the data and satisfies G2N (T ) ≤ δ}.

By the above analysis, T∗(κ) is well-defined and satisfies T∗(κ) > 0 if κ is small enough, i.e.
there is a κ1 > 0 so that T∗ : (0, κ1] → (0,∞]. It is easily verified that T∗ is non-increasing on
(0, κ1]. Let us now set

(9.12) ε =
δ

3
min

{
1

1 + C2
,

1
C3

}
and then define κ0 ∈ (0, κ1] by

(9.13) κ0 = min
{

δ

3C1(C3 + 2C2)
,
δ0(ε)
C1

, κ1

}
,

where δ0(ε) is given by Theorem 8.1 with ε given by (9.12). We claim that T∗(κ0) =∞. Once
the claim is established, the proof of the theorem is complete since then T∗(κ) = ∞ for all
0 < κ ≤ κ0.

Suppose, by way of contradiction, that T∗(κ0) < ∞. We will show that solutions can ac-
tually be extended past T∗(κ0) and that these solutions satisfy G2N (T2) ≤ δ for T2 > T∗(κ0),
contradicting the definition of T∗(κ0). We begin by extending the solutions. By the definition
of T∗(κ0), we know that for every 0 < T1 < T∗(κ0) and for any choice of data satisfying the
compatibility conditions and the bound E2N (0) + F2N (0) < κ0, there exists a unique solution
on [0, T1] that achieves the initial data and satisfies G2N (T1) ≤ δ. Then by Theorem 7.8, we
know that actually

(9.14) G2N (T1) ≤ C1(E2N (0) + F2N (0)) < C1κ0.

In particular, this and (9.13) imply that

(9.15) E2N (T1) +
F2N (T1)
(1 + T1)

< C1κ0 ≤ δ0(ε) for all 0 < T1 < T∗(κ0),

where ε is given by (9.12). We view (u(T1), p(T1), η(T1)) as initial data for a new problem; since
(u, p, η) are already solutions, they satisfy the compatibility conditions needed to use them as
data. Then since E2N (T1) < δ0(ε), we can use Theorem 8.1 with ε given by (9.12) to extend
solutions to [T1, T2] for any T2 satisfying

(9.16) 0 < T2 − T1 ≤ T0 = C(ε) min{1,F2N (T1)−1}.



46 YAN GUO AND IAN TICE

In light of (9.15), we may bound

(9.17) T̄ := C(ε) min
{

1,
1

δ0(ε)(1 + T∗(κ0))

}
≤ T0.

Notice that T̄ depends on ε (given by (9.12)) and T∗(κ0), but is independent of T1. Let

(9.18) γ = min
{
T̄ , T∗(κ0),

1
(1 + 2T∗(κ0))(4N−8)/2

}
,

and then let us choose T1 = T∗(κ0)− γ/2 and T2 = T∗(κ0) + γ/2. The choice of γ implies that

(9.19) 0 < T1 < T∗(κ0) < T2 < 2T∗(κ0) and 0 < γ = T2 − T1 ≤ T̄ ≤ T0.

Then Theorem 8.1 allows us to extend solutions to the interval [0, T2], and it provides estimates
on the extended interval [T1, T2]:

(9.20) sup
T1≤t≤T2

E2N (t) +
∫ T2

T1

D2N (t)dt+
∫ T2

T1

(∥∥∥∂2N+1
t u(t)

∥∥∥2

(0H1)∗
+
∥∥∂2N

t p(t)
∥∥2

0

)
dt ≤ C2ε,

(9.21) sup
T1≤t≤T2

F2N (t) ≤ C2F2N (T1) + ε.

Having extended the existence interval, we will now show that G2N (T2) ≤ δ. We combine the
estimates (9.20)–(9.21) with (9.14)–(9.15) and the bound (9.2) of Proposition 9.1 to see that

(9.22)

G2N (T2) < C1C3κ0 + C2(ε+ C1κ0) +
C1C2κ0(1 + T1) + ε

(1 + T1)
+ εC3(T2 − T1)2(1 + T2)4N−8

≤ κ0C1(C3 + 2C2) + ε(1 + C2) + εC3γ
2(1 + 2T∗(κ0))4N−8 ≤ δ

3
+
δ

3
+
δ

3
= δ,

where the second inequality follows from (9.19) and the third follows from the choice of ε, κ0,
and γ given in (9.12), (9.13), and (9.18), respectively. Hence G2N (T2) ≤ δ, contradicting the
definition of T∗(κ0). We deduce then that T∗(κ0) =∞, which completes the proof of the claim
and the theorem. �

Appendix A. Analytic tools

A.1. Products in Sobolev spaces. We will need some estimates of the product of functions
in Sobolev spaces.

Lemma A.1. The following hold on Σ and on sufficiently smooth subsets of Rn.
(1) Let 0 ≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ Hs1, g ∈ Hs2. Then fg ∈ Hr and

(A.1) ‖fg‖Hr . ‖f‖Hs1 ‖g‖Hs2 .

(2) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ Hs1, g ∈ Hs2. Then fg ∈ Hr

and

(A.2) ‖fg‖Hr . ‖f‖Hs1 ‖g‖Hs2 .

(3) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ H−r(Σ), g ∈ Hs2(Σ). Then
fg ∈ H−s1(Σ) and

(A.3) ‖fg‖−s1 . ‖f‖−r ‖g‖s2 .

Proof. The proofs of (A.1) and (A.2) are standard; the bounds are first proved in Rn with the
Fourier transform, and then the bounds in sufficiently nice subsets of Rn are deduced by use of
an extension operator. To prove (A.3) we argue by duality. For ϕ ∈ Hs1 we use (A.2)bound

(A.4)
∫

Σ
ϕfg . ‖ϕg‖r ‖f‖−r . ‖ϕ‖s1 ‖g‖s2 ‖f‖−r ,

so that taking the supremum over ϕ with ‖ϕ‖s1 ≤ 1 we get (A.3). �

We will also need the following variant.
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Lemma A.2. Suppose that f ∈ C1(Σ) and g ∈ H1/2(Σ). Then

(A.5) ‖fg‖1/2 . ‖f‖C1 ‖g‖1/2 .

Proof. Consider the operator F : Hk → Hk given by F (g) = fg for k = 0, 1. It is a bounded
operator for k = 0, 1 since

(A.6) ‖fg‖0 ≤ ‖f‖C1 ‖g‖0 and ‖fg‖1 . ‖f‖C1 ‖g‖1 .

Then the theory of interpolation of operators implies that F is bounded from H1/2 to itself,
with operator norm less than a constant times

√
‖f‖C1

√
‖f‖C1 = ‖f‖C1 , which is the desired

result. �

A.2. Poisson integral. Suppose that Σ = (L1T) × (L2T). We define the Poisson integral in
Ω− = Σ× (−∞, 0) by

(A.7) Pf(x) =
∑

n∈(L−1
1 Z)×(L−1

2 Z)

e2πin·x′e2π|n|x3 f̂(n),

where for n ∈ (L−1
1 Z)× (L−1

2 Z) we have written

(A.8) f̂(n) =
∫

Σ
f(x′)

e−2πin·x′

L1L2
dx′.

It is well known that P : Hs(Σ)→ Hs+1/2(Ω−) is a bounded linear operator for s > 0. We now
show that how derivatives of Pf can be estimated in the smaller domain Ω.

Lemma A.3. Let Pf be the Poisson integral of a function f that is either in Ḣq(Σ) or
Ḣq−1/2(Σ) for q ∈ N. Then

(A.9) ‖∇qPf‖20 . ‖f‖
2
Ḣq−1/2(Σ)

and ‖∇qPf‖20 . ‖f‖
2
Ḣq(Σ)

.

Proof. Since Pf is defined on Σ×(−∞, 0), it suffices to prove the estimates on Ω̃ := Σ×(−b+, 0)
since Ω ⊂ Ω̃. By Fubini and Parseval,

(A.10) ‖∇qPf‖2
H0(Ω̃)

.
∑

n∈(L−1
1 Z)×(L−1

2 Z)

∫ 0

−b+
|n|2q

∣∣∣f̂(n)
∣∣∣2 e4π|n|x3dx3

.
∑

n∈(L−1
1 Z)×(L−1

2 Z)

|n|2q
∣∣∣f̂(n)

∣∣∣2(1− e−4πb+|n|

|n|

)
.

However,

(A.11)
1− e−4πb+|n|

|n|
≤ min

{
4πb+,

1
|n|

}
,

which means we are free to bound the right hand side of (A.10) by either ‖f‖2
Ḣq−1/2(Σ)

or

‖f‖2
Ḣq(Σ)

. �

We will also need L∞ estimates.

Lemma A.4. Let Pf be the Poisson integral of a function f that is in Ḣq+s(Σ) for q ≥ 1 an
integer and s > 1. Then

(A.12) ‖∇qPf‖2L∞ . ‖f‖
2
Ḣq+s .

The same estimate holds for q = 0 if f satisfies
∫

Σ f = 0.
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Proof. We estimate

(A.13) ‖∇qPf‖L∞ .
∑

n∈(L−1
1 Z)×(L−1

2 Z)

∣∣∣f̂(n)
∣∣∣ |n|q

. ‖f‖Ḣq+s

 ∑
n∈(L−1

1 Z)×(L−1
2 Z)\{0}

|n|−2s

1/2

. ‖f‖Ḣq+s

if s > 1. The same estimate works with q = 0 if f̂(0) = 0. �

A.3. Transport estimate. Let Σ be either periodic or non-periodic. Consider the equation

(A.14)

{
∂tη + u ·Dη = g in Σ× (0, T )
η(t = 0) = η0

with T ∈ (0,∞]. We have the following estimate of the transport of regularity for solutions to
(A.14), which is a particular case of a more general result proved in [9]. Note that the result in
[9] is stated for Σ = R2, but the same result holds in the periodic setting Σ = (L1T) × (L2T),
as described in [10].

Lemma A.5 (Proposition 2.1 of [9]). Let η be a solution to (A.14). Then there is a universal
constant C > 0 so that for any 0 ≤ s < 2

(A.15) sup
0≤r≤t

‖η(r)‖Hs ≤ exp
(
C

∫ t

0
‖Du(r)‖H3/2 dr

)(
‖η0‖Hs +

∫ t

0
‖g(r)‖Hs dr

)
.

Proof. Use p = p2 = 2, N = 2, and σ = s in Proposition 2.1 of [9] along with the embedding
H3/2 ↪→ B1

2,∞ ∩ L∞. �

A.4. Poincaré-type inequalities. Let Σ and Ω be as above.

Lemma A.6. It holds that

(A.16) ‖f‖2L2(Ω) . ‖f‖
2
L2(Σ) + ‖∂3f‖2L2(Ω)

for all f ∈ H1(Ω). Also, if f ∈W 1,∞(Ω), then

(A.17) ‖f‖2L∞(Ω) . ‖f‖
2
L∞(Σ) + ‖∂3f‖2L∞(Ω) .

Proof. By density we may assume that f is smooth. Writing x = (x′, x3) for x′ ∈ Σ and
x3 ∈ (−b(x′), 0), we have

(A.18)
∣∣f(x′, x3)

∣∣2 =
∣∣f(x′, 0)

∣∣2 − 2
∫ 0

x3

f(x′, z)∂3f(x′, z)dz

≤
∣∣f(x′, 0)

∣∣2 + 2
∫ 0

−b(x′)

∣∣f(x′, z)
∣∣ ∣∣∂3f(x′, z)

∣∣ dz.
We may integrate this with respect to x3 ∈ (−b(x′), 0) to get

(A.19)
∫ 0

−b(x′)

∣∣f(x′, x3)
∣∣2 dx3 .

∣∣f(x′, 0)
∣∣2 + 2

∫ 0

−b(x′)

∣∣f(x′, z)
∣∣ ∣∣∂3f(x′, z)

∣∣ dz.
Now we integrate over x′ ∈ Σ to find

(A.20)
∫

Ω
|f(x)|2 dx . ‖f‖2L2(Σ) + 2

∫
Ω
|f(x)| |∂3f(x)| dx

≤ ‖f‖2L2(Σ) + ε ‖f‖2L2(Ω) +
1
ε
‖∂3f‖2L2(Ω)

for any ε > 0. Choosing ε > 0 sufficiently small then yields (A.16). The estimate (A.17) follows
similarly, taking suprema rather than integrating. �

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 [3].
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Lemma A.7. It holds that ‖u‖1 . ‖Du‖0 for all u ∈ H1(Ω; R3) so that u = 0 on Σb.

A.5. An elliptic estimate. The proof of the following estimate may be found in [3] for hori-
zontally infinite domains. The same proof holds in the periodic case with obvious modification.

Lemma A.8. Suppose (u, p) solve

(A.21)


−∆u+∇p = φ ∈ Hr−2(Ω)
div u = ψ ∈ Hr−1(Ω)
(pI − D(u))e3 = α ∈ Hr−3/2(Σ)
u|Σb

= 0.

Then for r ≥ 2,

(A.22) ‖u‖2Hr + ‖p‖2Hr−1 . ‖φ‖2Hr−2 + ‖ψ‖2Hr−1 + ‖α‖2Hr−3/2 .
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