DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION
IN HORIZONTALLY INFINITE DOMAINS

YAN GUO AND IAN TICE

ABSTRACT. We consider a viscous fluid of finite depth below the air, occupying a three-
dimensional domain bounded below by a fixed solid boundary and above by a free moving
boundary. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes
equations, and the effect of surface tension is neglected on the free surface. The long time
behavior of solutions near equilibrium has been an intriguing question since the work of Beale
[4]. This paper is the second in a series of three [13, 14] that answers this question. Here we
consider the case in which the free interface is horizontally infinite; we prove that the problem is
globally well-posed and that solutions decay to equilibrium at an algebraic rate. In particular,
the free interface decays to a flat surface.

Our framework contains several novel techniques, which include: (1) optimal a priori esti-
mates that utilize a “geometric” reformulation of the equations; (2) a two-tier energy method
that couples the boundedness of high-order energy to the decay of low-order energy, the latter of
which is necessary to balance out the growth of the highest derivatives of the free interface; (3)
control of both negative and positive Sobolev norms, which enhances interpolation estimates
and allows for the decay of infinite surface waves. Our decay estimates lead to the construction
of global-in-time solutions to the surface wave problem.

1. INTRODUCTION

1.1. Formulation of the equations in Eulerian coordinates. We consider a viscous, in-
compressible fluid evolving in a moving domain

(1.1) Q) ={ye xR | =b<ys <n(y1,y2,1)}

Here we assume that ¥ = R?. The lower boundary b is assumed to be fixed and given, but the
upper boundary is a free surface that is the graph of the unknown function 1 : ¥ x R™ — R.
We assume that b > 0 is a fixed constant so that the lower boundary is flat. For each t, the
fluid is described by its velocity and pressure functions (u, p) : Q(t) — R? x R. We require that
(u,p,n) satisfy the gravity-driven incompressible Navier-Stokes equations in Q(t) for ¢ > 0:

Ou+u-Vu+Vp=pAu  in Q(t)
divu =0 in Q(t)

(1.2) O = uz — u10y;n — u20y,n  on {ys = n(y1,y2, 1)}
0 P T )
u=0 on {y3 = —b}

for v the outward-pointing unit normal on {y3 = n}, I the 3 x 3 identity matrix, (Du);; =
O;uj + O;ju; the symmetric gradient of u, g > 0 the strength of gravity, and x> 0 the viscosity.
The tensor (pI — puD(u)) is known as the viscous stress tensor. The third equation in (1.2)
implies that the free surface is advected with the fluid. Note that in (1.2) we have shifted the
gravitational forcing to the boundary and eliminated the constant atmospheric pressure, paim,
in the usual way by adjusting the actual pressure p according to p = p + gy3 — Patm-

The problem is augmented with initial data (ug,np) satisfying certain compatibility condi-
tions, which for brevity we will not write now. We will assume that 19 > —b on X.
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Without loss of generality, we may assume that 4 = g = 1. Indeed, a standard scaling
argument allows us to scale so that 4 = g = 1, at the price of multiplying b by a positive
constant. This means that, up to renaming b, we arrive at the above problem with =g = 1.

The problem (1.2) possesses a natural physical energy. For sufficiently regular solutions, we
have an energy evolution equation that expresses how the change in physical energy is related
to the dissipation:

1 1 1 [t 1 1
(13 1 / () + 2 / (@2 + 2 / / Du(s)2ds = - / o2 + 2 / nol?.
2 Jaw) 2)s 2 Jo Jags) 2 Ja(o) 2)s

The first two integrals constitute the kinetic and potential energies, while the third constitutes
the dissipation. The structure of this energy evolution equation is the basis of the energy method
we will use to analyze (1.2).

1.2. Geometric form of the equations. In order to work in a fixed domain, we want to
flatten the free surface via a coordinate transformation. We will not use a Lagrangian coordinate
transformation, but rather a flattening transformation introduced by Beale in [5]. To this end,
we consider the fixed domain

(1.4) ={reXxR| —b<z3<0}
for which we will write the coordinates as x € 2. We will think of ¥ as the upper boundary
of Q, and we will write ¥}, := {x3 = —b} for the lower boundary. We continue to view 7 as a

function on ¥ x RT. We then define
(1.5) 7 := Pn = harmonic extension of 7 into the lower half space,

where Pn is defined by (A.17). The harmonic extension 7 allows us to flatten the coordinate
domain via the mapping

(1.6) Q> xw (1,20, 23 + 7(x,t)(1 + 23/b)) = ®(x,t) = (y1,Y2,y3) € Q2).

Note that ®(X,t) = {ys = n(y1,y2,t)} and @(-,t)|s, = Ids,, i.e. ® maps ¥ to the free surface
and keeps the lower surface fixed. We have

1 0 0 1 0 —AK
(1.7) Vo=[0 1 0] andA:=(Ve Hl'=(0 1 —-BK
A B J 00 K
for
A= 61776, B = 627767
(1.8) J=1+17/b+ b, K=J!,

b= (1+ x3/b).

Here J = det V® is the Jacobian of the coordinate transformation.

If n is sufficiently small (in an appropriate Sobolev space), then the mapping ¢ is a diffeo-
morphism. This allows us to transform the problem to one on the fixed spatial domain € for
t > 0. In the new coordinates, the PDE (1.2) becomes

Ou — OibKOsu +u-Vau— Aqu+Vap=0 in
divqu=20 in Q

(19) Sa(p, )N =nN on ¥
om=u-N on ¥
u=20 on X
u(z,0) = ug(x),n(z’,0) = no(a’).

Here we have written the differential operators V 4, div4, and A 4 with their actions given by
(Vaf)i == Aijo;f, diva X = A;;0;X;, and Ayuf = divaV4f for appropriate f and X; for
u-V qu we mean (u-V qu); := u;jAjr0pu;. We have also written N := —01ne; —0anaea+e3 for the
non-unit normal to ¥, and we write S4(p,u) = (pI —D qu) for the stress tensor, where I the 3x 3
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identity matrix and (D4u);j = AixOku;j +AjiOpu; is the symmetric A—gradient. Note that if we
extend div 4 to act on symmetric tensors in the natural way, then diva4 Sa(p,u) = Vap — Aqu
for vector fields satisfying div 4 u = 0.

Recall that A is determined by 7 through the relation (1.7). This means that all of the differ-
ential operators in (1.9) are connected to 7, and hence to the geometry of the free surface. This
geometric structure is essential to our analysis, as it allows us to control high-order derivatives
that would otherwise be out of reach.

1.3. Previous results and Beale’s non-decay theorem. Many authors have considered
problems similar to (1.2), both with and without viscosity and surface tension: [1, 3, 4, 5, 6, 7,
8,9, 11, 15, 16, 17, 18, 21, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32]. We refer the reader to the
introduction of our paper [13] for a discussion of how these results relate to ours. We will only
mention the details of those papers most relevant to the present problem.

In [4], Beale developed a local existence theory for the problem (1.2) in Lagrangian coordi-
nates, where the unknowns are replaced with v = uwo (, ¢ = p o ( for  the Lagrangian flow
map, which satisfies 9;¢ = v. The result showed that (roughly speaking), given vog € H"~! for
r € (3,7/2), there exists a unique solution on a time interval (0,7), with 7" depending on vy, so
that v € L2H" N H"/2L2. A second local existence theorem was then proved for small data near
equilibrium. It showed that for any fixed 0 < T < oo, there exists a collection of sufficiently
small data so that a unique solution exists on (0, 7).

The second result suggests that solutions should exist globally in time for small data. If global
solutions do exist, it is natural to expect the free surface to decay to 0 as t — oo. However,
Beale’s third result in [4] was a non-decay theorem that showed that a “reasonable” extension
to small-data global well-posedness with decay of the free surface fails. Among other things,
the theorem’s hypotheses require that

v e LY([0,00); H"(Q)) for r € (3,7/2),
Gsls € L?([0,00); L* (X)),
(1.10) v(z,0) =0, {(x,0) =z + £O(z),

where Q) is given by (1.4), ((z,0) is the flow map that gives the geometry of the initial fluid
domain, © is a specially chosen function satisfying certain conditions, and € > 0 is a small
parameter. Note that the third line in (1.10) implies that the system is initially close to equi-
librium, and the fourth line implies that the free surface decays to 0 as t — oo.

The proof of the non-decay theorem, which is a reductio ad absurdum, hinges on the special
conditions imposed on the map © and the fact that v € L'H". In the discussion of this
result, Beale pointed out that it does not imply the non-existence of global-in-time solutions
but rather that establishing global-in-time results requires stronger or different hypotheses than
those imposed in the non-decay theorem.

The non-decay theorem raises two intriguing questions. First, is viscosity alone capable of
producing global well-posedness? Second, if global solutions exist, do they decay as t — oo?
Our main result answers both questions in the affirmative. In order to avoid the applicability
of the non-decay theorem, we must show why its hypotheses are not satisfied. We would like
to highlight three crucial ways in which we do this. The first and most obvious is that we work
in a different coordinate system and within a different functional framework. In particular this
requires higher regularity of the initial data and imposes more compatibility conditions than
are satisfied by the data in the non-decay theorem.

Second, we will find (see (1.20)) that u decays according to |[u(t)[|3 < C/(1 + t)'** for X €
(0,1). This is not sufficiently rapid to guarantee that u belongs to the space L*([0, 00); H2(f2)),
which is in violation of a key assumption (1.10) in the non-decay result. Technically, our u is in
Eulerian coordinates, but if we formally identify u with v, then we see the difficulty clearly: we
cannot integrate the equation 0;( = v to obtain { as t — oo, which means that we cannot make
sense of the fourth equation in (1.10). One of the advantages of the Eulerian and geometric
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formulations is that the free surface function 1 may be analyzed without regard to what is
happening to the entire flow map ¢ in .

Third, we find that 1 decays in time according to ||7(t)||3 < C/(1+1)* for X € (0,1). This is
not fast enough to guarantee that 7 is in L?([0, 00); L?(X)). If we identify n with (3]s, then we
see that we cannot guarantee that the second condition in (1.10) holds.

The above decay rates should be compared to those in the problem with surface tension,
which in general allows for faster decay (see the discussion in Section 1.7) to equilibrium. In
this context, Beale-Nishida [6] showed that the decay estimates Hu(t)||§ < C/(1 +t)? and
||r](t))||3 < C/(1 +t) are sharp. As such, we should not expect v € L'H? or n € L?L? in our
problem.

1.4. Local well-posedness. The a priori estimates we develop in this paper are done in differ-
ent coordinates and in a different functional framework from those used by Beale in [4]. As such,
we need a local well-posedness theory for (1.9) in our framework. We proved this in Theorem
1.1 of our companion paper [13]. Since we will need the result here, we record it now.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We
take H*(Q) and H*(X) for k > 0 to be the usual Sobolev spaces. When we write norms we will

suppress the H and €2 or 3. When we write Hﬁg qu and Hﬁg ka we always mean that the space

is H*(Q), and when we write H@ﬁ]”k we always mean that the space is H¥(X).

In the following we write o H'(Q) := {u € HY(Q) | uls, = 0}. The compatibility conditions
for the initial data are the natural ones that would be satisfied for solutions in our functional
framework. They are cumbersome to write, so we shall not record them here. We refer the
reader to [13] for their precise definition.

Theorem 1.1. Let N > 3 be an integer. Assume that ug and 1y satisfy the bounds |juol|3y +
||r]0||421N+1/2 < 0o as well as the appropriate compatibility conditions. There exist 0 < §g, Ty < 1
so that if

1
(1.11) O<T§T0min{1,2},
H770H4N+1/2

and |lug|3y + [moll3x < o, then there exists a unique solution (u,p,n) to (1.9) on the interval
[0,T] that achieves the initial data. The solution obeys the estimates

2N—1
2
112 Jotu] o] Jote],
( iy b 4AN—2j +Z gy o | R 4N—2j+ Z 4 AN—2j—1

0<t<T 0<t<T =0 0<t<T

2
)
(0HL(Q ZH th AN—2;

T 2
Y H H82N+1
+/0 ]ZOH t 4N—2j+1+ t

2N+1

T
0 Join]
~|—/0 H77H4N+1/2+H t77||4N 12T Z tM v 2j+5/2

2 2
<C (HUOH4N ol + Tl 4/2)

and
(1.13) sup (112 < C (ol + 1+ T) moll3y12)
0<t<T

for a universal constant C > 0. The solution is unique among functions that achieve the initial
data and for which the sum of the first three sums in (1.12) is finite. Moroever, n is such that
the mapping ®(-,t), defined by (1.6), is a C*N=2 diffeomorphism for each t € [0,T].
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Remark 1.2. All of the computations involved in the a priori estimates that we develop in this
paper are justified by Theorem 1.1 and a specialization of it that we prove later, Theorem 10.7.
In this sense, Theorem 1.1 is a necessary ingredient in the global analysis of (1.9). We do not
believe that our a priori estimates could be justified within a high-reqularity modification of the
functional framework of [4].

1.5. Main result. Sylvester [25] and Tani-Tanaka [26] studied the existence of small-data
global-in-time solutions via the parabolic regularity method pioneered by Beale [4] and Solon-
nikov [23]. The results say nothing about the decay of the free surface, nor do they contradict
Beale’s non-decay theorem since they require higher regularity, more compatibility conditions,
and do not allow for € L?([0,00); L%(X)).

To state our global well-posedness result, we must first define various energies and dissipa-
tions. The exact form of some of the energies is too complicated to write out here, so we will
neglect to do so, referring to the proper definitions later in the paper, in Section 2.4. We assume
that A € (0,1) is a fixed constant and we define Zyu according to (A.7) and Zyn according to
(A.8). The high-order energy is

10 9 10
. 2 .2 . 2
e L LR 221 R W27 (S V7 e 1
=0 20—2j =0 19-2j5 =0 20—2j

and the high-order dissipation rate is

(1.15) Dy —||zwu1+ZHaﬂuH +||Vp|rlg+ZH o

21-2; 20—2;

+ ||D77”20 32t ”8”7"20 127 Z H thzo 2j+5/2

We write the high-order spatial derivatives of n as

(1.16) Fio = ||77||go+1/2'

We define the low-order energies €71 and &7 2 according to (2.52) and (2.53) with n = 7. Here
the index m in &7, is a “minimal derivative” count that is included in order to improve decay
rates in our estimates. Finally, we define the total energy

Fio(r)
1.17 g = sup & / Dio(r)dr + sup (1+7r mtAg m(r) + su .
(L17) 10(t) = 0<1£t 10( 10( Zjlo<1£t ) () Ogrlgt (1+7)

Notice that the low-order terms &7, are weighted, so bounds on Gyg yield decay estimates for
Erm.

Theorem 1.3. Suppose the initial data (ug,no) satisfy the compatibility conditions of Theorem
1.1. There exists a k > 0 so that if £10(0) + F10(0) < kK, then there exists a unique solution
(u,p,m) on the interval [0,00) that achieves the initial data. The solution obeys the estimate

(1.18) glo(oo) <y (510(0) + flo(O)) < (1K,
where C1 > 0 is a universal constant. For any 0 < p < A\, we have that
(1.19) sup (L+ 07 u(®)l|aey | < Clo)s

for C(p) > 0 a constant depending on p. Also,

1

(1.20)  sup [(L4+ 0" a@)l3 + @+ O )7 + (1 + )7 HDjn(t)Hz <Cx
t>0 :
= 7=0

for a universal constant C > 0.
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Remark 1.4. In our companion paper [14], where we analyze (1.9) in horizontally periodic
domains, we will require ng to satisfy the “zero average condition”

(1.21) /Eno =0.

For the horizontally periodic problem, this condition propagates in time (see Lemma 2.5, a
variant of which holds in the periodic case), from which one sees that (1.21) is a necessary
condition decay in L? or L™. It also serves as an obstacle to applying Beale’s non-decay
theorem. For a complete discussion, we refer to our paper [14].

In the present case, the bound E10(0) < k requires, in particular, that the initial data satisfy
||I)\170H§ < oo. This condition can be viewed as a sort of weak version of the zero average
condition in the infinite case. To see this, note that if n is sufficiently nice, say L*(X), then

(1.22) 0= / o 70(0) = 0,

for® the Fourier transform. This means that the zero average condition is equivalent to requiring
that 7o vanishes at the origin. We enforce a weak version of this by requiring that Iyny €
L2(X) = HO(X), which requires that |€]™> |[fig(€)[* is integrable near &€ = 0. Since A\ < 1, this
does not require 1o(0) = 0, but it does prevent |fg| from being “too big” at the origin. Note that
the condition Tyxng € L? is more general than (1.21).

Remark 1.5. The decay estimates (1.19) and (1.20) do not follow directly from the decay of
Er2(t) implied by (1.18). Rather, they are deduced via auziliary arguments, employing (1.18).

Remark 1.6. The decay of |[u(t)||3 given in (1.20) is not fast enough to guarantee that u €
LY([0,00); H?(S2)). Ewven if we could take X\ = 1, we would still get logarithmic blow-up of the
LYH? norm.

Remark 1.7. The surface n is sufficiently small to guarantee that the mapping ®(-,t), defined
in (1.6), is a diffeomorphism for each t > 0. As such, we may change coordinates to y € Q(t)
to produce a global-in-time, decaying solution to (1.2).

Remark 1.8. Later in the paper, we let N > 3 be an integer and perform our analysis in terms
of estimates at the 2N and N + 2 levels; we take N =5 in the present case to get the 10 and 7
appearing above. This is not optimal. With somewhat more work, we can improve our results
to N = 4 with the restriction that A € (3/5,1). It is likely that this can be further improved by
adjusting the scheme from 2N and N + 2 to something slightly different. We have sacrificed
optimality in order to simplify the presentation and make our “two-tier energy method” clearer.
The first tier is at the level 2N and the second at the level N + 2, which is meant to be roughly
half of the first tier. The extra +2 is added to aid in applying some Sobolev embeddings.

The proof of Theorem 1.3 is completed in Section 11. We now present a summary of the
principal difficulties we encounter in our analysis as well as a sketch of the key ideas used in
our proof.

Principal difficulties

In the study of the unforced incompressible Navier-Stokes equations in a fixed bounded
domain with Dirichlet boundary conditions, it is natural to use the energy method to prove
that solutions decay in time. Indeed, one may prove an analogue of (1.3) for sufficiently smooth
solutions, which relates the natural energy and dissipation:

2
(1.23) HE+D = Gt/ Wé” + ;/ IDu(t)]* = 0.
Q Q

Korn’s inequality allows us to control CE(t) < D(t) for a constant C' > 0 independent of time,
which shows that the dissipation is stronger than the energy. From this and Gronwall’s lemma
we may immediately deduce that the energy £ decays exponentially in time and that we have
the estimate £(t) < £(0) exp(—Ct).
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If one seeks to similarly use the energy method to obtain decay estimates for solutions to (1.2),
then one encounters a fundamental obstacle that may already be observed in the differential
form of (1.3),

Ju(t)|? n@®P\ | 1 2
(1.24) o (/Q(t) : +/E : >+2/Q(t) Du()[? = 0.

The difficulty is that the dissipation provides no direct control of the n—term in the energy. As
such, we must resort to using the equations (1.2) to try to control ||n(t)|, in terms of ||Du(t)|,-
From (1.2) we see that there are only two available routes: solving for 7 in the fourth equation;
or using the third equation, which is the kinetic transport equation. If we pursue the first route,
then we must be able to control

(1.25) () 7705y + IDu()v - vl 05y S DU 060 -

which is not possible. If instead we pursue the second route, then we must estimate 7 as a
solution to the kinematic transport equation. Such an estimate (see Lemma A.9) only allows
us to estimate ||n(t)||, in terms of fg |Du(s)||, ds. That is, transport estimates do not provide
control of the n—part of the energy in terms of the “instantaneous” dissipation, but rather
in terms of the “cumulative” integrated dissipation. From this we see that in our problem
the dissipation is actually weaker than the energy, so we cannot argue as above to deduce
exponential decay.

We might hope that we could avoid this problem by working with a high-regularity energy
method, but we will always encounter the same type of problem as above. Regardless of the level
of regularity in the energy, the instantaneous dissipation is always weaker than the instantaneous
energy, which prevents us from deducing exponential decay of the energy. Instead we pursue a
strategy similar to one employed in [24] for another problem where the dissipation is weaker than
the energy. We first show that high-order energies are bounded by using an integrated version
or (1.24) for derivatives of the solution. Then we consider a low-order energy and show that an
equation of the form (1.24) holds, i.e. 3;&ow + CDiow < 0. Now, instead of trying to estimate
(1.25) for low-order derivatives, we instead interpolate between low-order derivatives and high-
order derivatives, which are bounded. Instead of an estimate C'&\yy < Diow, Wwe must prove one of
the form CS&;V@ < Diow for some 0 > 0. We can then use this to derive the differential inequality
OtElow + Cé’ﬁ;f < 0, which can be integrated to see that Ejow(t) < Elow(0)/(1 + t)l/e. We would
then find that the low-order energy decays algebraically in time rather than exponentially.

To complete this program, we must overcome a pair of intertwined difficulties. First, to close
the high-order energy estimates with, say ||u|]?1 n41 for an integer N > 0 in the dissipation,

we have to control n in H*N +1/2 The only option for this is to again appeal to estimates for
solutions to the transport equation, which say (roughly speaking) that
(1.26)

T T
sup. [l < Coxp (C [ 1DuOlany ) Il + T [ T ]
0<t<T 0 0

Without knowing a priori that u decays, the right side of this estimate has the potential to grow
at the rate of (1 —|—T)e‘/f Even if u decays rapidly, the right side can still grow like (147"). This
growth is potentially disastrous in closing the high-order, global-in-time estimates. To manage
the growth, we must identify a special decaying term that always appears in products with the
highest derivatives of 7. If the special term decays quickly enough, then we can hope to balance
the growth and close the high-order estimates. Due to the growth in (1.26), we believe that it
is not possible to construct global-in-time solutions without also deriving a decay result.

This leads us to the second difficulty in this program. The decay rate of the special term is
dictated by the decay rate of the low-order energy, so we must make the low-order energy decay
sufficiently quickly. This amounts to making the constant § > 0 appearing in the interpolation
estimates above sufficiently small. We must then carefully choose the terms that will appear in
the low-order and high-order energies in order to keep # small enough. It turns out that this
requires us enforce a minimal derivative count in the low-order energy, i.e. only terms with m
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derivatives or more are allowed. It also requires us to extend the high-order energy to include
estimates of negative derivatives up to order A € (0,1). Then 6 = 6(m, \), and only by taking
m =2, A > 0 can we make # small enough to achieve the desired decay rate.

The resolution of these intertwined difficulties requires a delicate and involved analysis. We
now sketch some of the techniques we will employ.

Horizontal energy evolution estimates

In order to use the natural energy structure of the problem (given in Eulerian coordinates
by (1.3)) to study high-order derivatives, we can only apply derivatives that do not break the
structure of the boundary condition v = 0 on ;. Since ¥ is flat, any differential operator
0% = 07007057 is allowed. We apply these operators for various choices of a and sum the
resulting energy evolution equations. After estimating the nonlinear terms that appear from
differentiating (1.9), we are eventually led to evolution equations for these “horizontal” energies
and dissipations, €19, D1o, E7.m, and Dz, for m = 1,2 (see Section 2.4 for precise definitions).
Here we write bars to indicate “horizontal” derivatives. Roughly speaking, at high-order we
have the estimate

(127) glO(t) + /Ot 2_)10(T)d7" 5 510(0) + / (glo(T))eplo(T)dT + /Ot \/Dlo(T)K(T)flo(T)dT,

t
0
where I is of the form

(1.28) K = Vullgn + 1Dl 32 sy
and 6 > 0; and at the low-order we have
(1.29) atf(j?,m + ﬁ?,m 5 5190D7,ma

where D7, is the low-order dissipation. Notice that the product KFig in (1.27) multiplies
low-order norms of u against the highest-order norm of 1. Technically, the estimate (1.27) also
involves Zyu and Z,n in addition to horizontal derivatives. For the moment let us ignore these
terms and continue with the discussion of our energy method. We will discuss Z, in detail
below.

The actual derivation of bounds like (1.27)—(1.29) is rather delicate and depends crucially on
the geometric structure of the equations given in (1.9). Indeed, if we attempted rewrite (1.9)
as a perturbation of the usual constant-coefficient Navier-Stokes equations, then we would fail
to achieve the estimate (1.27) because we would be unable to control the interaction between
0{% and div 0}%u, the latter of which does not vanish in the geometric form of the equations.

Comparison estimates

The next step in the analysis is to replace the horizontal energies and dissipations with the
full energies and dissipations. We prove that there is a universal 0 < § < 1 so that if &y <9,
then

E10 S €10, Dio < Do + KFuo,
g?,m 5 g?,rm D?,m ,S @7,m

This estimate is extremely delicate and can only be obtained by carefully using the structure
of the equations. We make use of every bit of information from the boundary conditions and
the vorticity equations to establish it. There are two structural components of the estimates
that are of such importance that we mention them now. First, the equation div4u = 0 allows
us to write Osusz = —(01u1 + dauga) + G? for some quadratic nonlinearity G2. This allows us to
“trade” a vertical derivative of ug for horizontal derivatives of u; and uso, an indispensable trick
in our analysis. Second, the interaction between the parabolic scaling of u (O;u ~ Au) and the
transport scaling of 1 (9yn ~ usly) allows us to gain regularity for the temporal derivatives of
7 in the dissipation, and it also gives us control of d}'n, which is one more time derivative than
appears in the energy.

Two-tier energy method

Suppose we know that

(1.30)

(1.31) K(r)

IN

(1+7r)2+
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for some 0 < 6 < 1 and v > 0. Since 7 satisfies a transport equation, we may use Lemma A.9
to derive an estimate of the form

(1.32) wpfﬁ&)§mm<0[j¢ﬁ@ﬂﬁ[fm®)+ﬁéyhdMW]

0<r<t

Although the right side of this equation could potentially blow up exponentially in time, the
decay of K in (1.31) implies that

t
(1.33) sup Fio(r) < Fio(0) + t/ Dio(r)dr.
0<r<t 0

Note that v > 0 in (1.31) is essential; we would not be able to tame the exponential term
in (1.32) without it, and then (1.33) would not hold. This estimate allows for Fio(t) to grow
linearly in time, but in the product K(r)Fio(r) that appears in (1.27), we can use the decay of
K to balance this growth. Then if supy<,<; £10(r) < 6 with § small enough, we can combine
(1.27), (1.30), (1.31), and (1.33) to get an estimate

(1.34) glo(t) + /Ot Dlo(’l“)d’l“ S 510(0) + .7:10(0).

This highlights the first step of our two-tier energy method: the decay of low-order terms (i.e.
KC) can balance the growth of Fjg, yielding boundedness of the high-order terms. In order to
close this argument, we must use a second step: the boundedness of the high-order terms implies
the decay of low-order terms, and in particular the decay of K.

To attain this decay, we combine (1.29) and (1.30) to see that

- 1
(1.35) N+ 5 D1 <0

if £1p < § for 6 small enough. If we could show that &, < D7y, then this estimate would yield
exponential decay of 6_’77m and &7,,. An inspection of 6_’77,” and D7, (see Section 2.4) shows
that Dy, can control every term in &7, except ||77||g (and HamHg when m = 2). In a sense,
this means that exponential decay fails precisely because the dissipation fails to control n at the
lowest order. In lieu of é_'zm < D7, we instead interpolate between €19 (which can control all
the lowest-order terms of 1) and Dy

(1:36) Erm S E1"NIDLIITY,

Combining (1.35) with (1.36) and the boundedness of &g in terms of the data, (1.34), then
allows us to deduce that

(1.37) Erm + ¢

(£10(0) + F10(0)) 1/ (m+X)
Gronwall’s inequality (along with some auxiliary estimates) then leads us to the bound

< 510(0) + .'F10(0)
~o (A tmtA

We thus use the boundedness of high-order terms to deduce the decay of low-order terms,
completing the second step of the two-tier energy estimates.

Negative Sobolev estimates via 7

Notice that the decay rate in (1.38) is enhanced by A € (0,1). As we will see below, the
parameter v > 0 in the decay of K, given in (1.31), is determined by the rate m + A. If we took
A = 0, then we would not get v > 0, and we would be unable to balance the growth of Fjp.
Then estimates (1.33) and (1.34) would fail, and we would be unable to close our estimates. We
thus see the necessity of introducing the “negative Sobolev” estimates via the horizontal Riesz
potential 7).

The difficulty, then, is that we must apply the non-local operator 7y to a nonlinear PDE and
then study the evolution of Zyu and Z,n. The flatness of the lower boundary ¥ is essential
here since it allows us to have Zyu = 0 on Y. This means that the operator Z does not break
the boundary conditions, and we can use the natural energy structure to include ||I>\u||3 and

(5’7 m)1+1/(m+)\) <0.

(1.38) 57,m(t) 5 g?,m(t)
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HI)\an in the energy and [|Zyul|? in the dissipation. To close the estimates for these terms,
we must be able to estimate Z) acting on various nonlinearities in terms of £J,;Djo for some
0 > 0. These estimates turn out to be rather delicate, and we must again employ almost all of
the structure of the equations and boundary conditions in order to derive them. They are also
responsible for the constraint A < 1. For A > 1, the nonlinear estimates would not work as we
need them to.

We should point out that a priori, we do not know that Zyu(t) or Zxn(t) even make sense for
t > 0, since this is not provided by Theorem 1.1. To show that these terms are well-defined,
which then justifies applying 7 to the equations, we must actually prove a specialization of the
local well-posedness theorem that includes the boundedness of Zyu, Zyp, and Zyn. We do this
in Theorem 10.7.

Interpolation estimates and minimal derivative counts

The negative Sobolev estimates alone do not close the overall estimates in our two-tier energy
method. To do that, we must verify that K decays as in (1.31) for some v > 0. An inspection
of &7, shows that we cannot directly control I < &7, for either m = 1,2, so we must resort
to an interpolation argument. We show that through interpolation it is actually possible to
control K < &1, but the &1 only decays like (1 +¢)~'~*, which is not fast enough for (1.31).
The energy &7 decays at a faster rate, but we cannot show that K < &£72. Instead, we show
that if &79(t) < e(1+1)727?, then

(8420)/(8+4N) — _(842))/(8+4x) L
(1.39) K< 57,2 Se (14 1)2+V/2

so that after renaming § = Ce(8+2)/(8+40) and v = \/2 > 0 we find that (1.31) does hold.

The parameters m and A interact in an important way. The decay rate increases with m and
with A. As mentioned above, we are technically constrained to A < 1, so we must increase m to
2 in order to hit the target decay rate in (1.31). It is tempting, then, to consider abandoning
the Z, operators and simply use a third energy with m > 3, which should decay like (1 +¢)~"™.
However, if one were to do this for any m > 3, one would find that there is a corresponding
decrease in the interpolation power: K < 537%), where 6(m) decreases with m in such a way
that m@(m) < 2 so that (1.31) would fail. We thus see that the negative estimates are not just
a convenience, but rather a necessity.

The derivation of (1.39) is delicate, requiring a two-step bootstrap process to iteratively
improve the interpolation powers. We again crucially make use of the structure of the equations
and boundary conditions. We extensively interpolate between our negative Sobolev estimates
and our positive Sobolev estimates. The utility of the negative estimates is quite clear here:
the interpolation powers improve when we interpolate with negative derivatives (as opposed to
say, no derivatives).

To complete the proof of (1.39), we crucially use an estimate for Z;0,n. This corresponds
to A = 1, so we are not able to apply Z10; to the equations to attain the estimate. Rather,
the estimate comes for free from the transport equation for 7, which allows us to write d,n =
—01Uy — 02Uy for U; € H'. In our analysis of the horizontally periodic problem in [14], where we
can take ¥ = T2, this identity and (1.21) give rise to a Poincaré inequality ||17(t)||3 < ||Dn(t)|](2)
for t > 0, which is crucial in our analysis there. From this we see that the estimate for Z10,n is
of analytic importance for the problem (1.2).

The interpolation of negative and positive Sobolev estimates provides a completely new tool
in the study of time decay in dissipative PDE problems in the whole (or semi-infinite) space.
For the viscous surface wave problem, a particular advantage of the negative-positive method
is that, unlike the usual LP — L? machinery, our norms are preserved along the time evolution.
We anticipate that this method will prove useful in the analysis of other dissipative equations.

1.6. Comparison to the periodic problem. In our companion paper [14], we prove the
analogue of Theorem 1.3 for horizontally periodic domains. In this context we take N > 3
to be an integer and consider energies and dissipations &y, Doy, Fon, and Gon; these are
modifications of what we use here (with N = 5) that include temporal derivatives up to order
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2N. See the paper [14] for the precise definitions. By increasing N, we can achieve arbitrarily
fast algebraic rates for the solutions, which we identify as “almost exponential decay.”
In order to compare with Theorem 1.3, we record a version of the periodic result now.

Theorem 1.9. Suppose the initial data (ug,no) satisfy the compatibility conditions of Theorem
1.1 and that ngy satisfies the zero average condition (1.21). Let N > 3 be an integer. There exists
a0 < k= kr(N) so that if Ean(0) + Fan(0) < K, then there exists a unique solution (u,p,n) on
the interval [0,00) that achieves the initial data. The solution obeys the estimates

(1.40) Gan(00) < C1 (E2n(0) + Fan(0)) < Cik,
and
(1.41) igg(l O™ )y + 19D 5514] < Crr,

where C1 > 0 is a universal constant.

Remark 1.10. A key difference between the periodic result, Theorem 1.9, and the non-periodic
result, Theorem 1.3, is that in the periodic case, increasing N also increases the decay rate. No
such gain is possible in the non-periodic case, which is why we specialize to the case N = 5
there. In the periodic case, we do not use the same type of interpolation arguments that we use
in the infinite case. This allows us to relax to N > 3.

Remark 1.11. In [17], Hataya studied the periodic problem with a flat bottom. Using the
Beale-Solonnikov parabolic theory, it was shown that

(1.42) |+ 0 2 e+ supla 02 )2 < o

forr € (5,11/2). Our result on the periodic problem is an improvement of this in two important
ways. First, we establish faster decay rates by working in a higher reqularity context. Second,
we allow for a more general non-flat bottom geometry (see [14] for details).

Remark 1.12. The reader interested in a unified presentation of Theorems 1.1, 1.3, and 1.9
may consult [12].

1.7. Comparison to the case with surface tension. If the effect of surface tension is
included at the air-fluid free interface, then the formulation of the PDE must be changed.
Surface tension is modeled by modifying the fourth equation in (1.2) to be

(1.43) (pI — pD(u))v = gnv — ocHv,

where H = 0;(9in/1/1 + |Dn|?) is the mean curvature of the surface {y3 = n(t)} and o > 0 is
the surface tension.

In [5], Beale proved small-data global well-posedness for the problem with surface tension
in horizontally infinite domains. The flattened coordinate system we employ was introduced
in [5] and used in place of Lagrangian coordinates. However, Beale employed a change of
unknown velocities that is more complicated than just a coordinate change. Well-posedness
was demonstrated with u € L2H" and n € L2H"t1/2_ given that ug € H" "2, ny € H" are
sufficiently small for r € (3,7/2). In this context it is understood that surface tension leads to
the decay of certain modes, thereby aiding global existence.

In [6], Beale-Nishida studied the asymptotic properties of the solutions constructed in [5].
They showed that if ng € L!(X), then

2
(1.44) sup(L+1)? [lu(t)|2 + sup > (1 + )7 | DIn(t)2 < oo,
t>0 t>0 =
= = ]:1

and that this decay rate is optimal. Taking A =~ 1 in our Theorem 1.3, the estimates (1.20)
yield almost the same decay rates.
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In [20], Nishida-Teramoto-Yoshihara showed that in horizontally periodic domains with sur-
face tension and a flat bottom, if 7y has zero average, then there exists a v > 0 so that

(1.45) sup ™ [|[u(t) [} + ()] < o

In this case, the equation (1.43) gives a third way of estimating 7 in terms of the dissipation;
using this, it is possible to show that the dissipation is stronger than the energy. Thus, if surface
tension is added in the periodic case, fully exponential decay is possible, whereas without surface
tension we only recover algebraic decay of arbitrary order in Theorem 1.9.

The comparison of these two results with ours establishes a nice contrast between the surface
tension and non-surface tension cases. Without surface tension we can recover “almost” the
same decay rate as in the case with surface tension. This shows that viscosity is the basic decay
mechanism and that the effect of surface tension serves to enhance the decay rate.

1.8. Definitions and terminology. We now mention some of the definitions, bits of notation,
and conventions that we will use throughout the paper.

Einstein summation and constants

We will employ the Einstein convention of summing over repeated indices for vector and
tensor operations. Throughout the paper C' > 0 will denote a generic constant that can depend
on the parameters of the problem, N, and €2, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next.
When a constant depends on a quantity z we will write C' = C(z) to indicate this. We will
employ the notation a < b to mean that a < Cb for a universal constant C' > 0.

Norms

We write H*(Q2) with k¥ > 0 and and H*(X) with s € R for the usual Sobolev spaces. We
will typically write H? = L?; the exception to this is when we use L?([0, T]; H¥) notation to
indicate the space of square-integrable functions with values in H.

To avoid notational clutter, we will avoid writing H*(2) or H*(X) in our norms and typically
write only ||-||,. Since we will do this for functions defined on both © and ¥, this presents some
ambiguity. We avoid this by adopting two conventions. First, we assume that functions have
natural spaces on which they “live.” For example, the functions u, p, and 7 live on €2, while 7
itself lives on X. As we proceed in our analysis, we will introduce various auxiliary functions;
the spaces they live on will always be clear from the context. Second, whenever the norm of a
function is computed on a space different from the one in which it lives, we will explicitly write
the space. This typically arises when computing norms of traces onto X of functions that live

on ).

Derivatives
We write N = {0,1,2,...} for the collection of non-negative integers. When using space-time
differential multi-indices, we will write N!*™ = {a = (ag, a1, ..., )} to emphasize that the

0—index term is related to temporal derivatives. For just spatial derivatives we write N™. For
o € NI we write 9% = 970001 - - - 9%m. We define the parabolic counting of such multi-indices
by writing |a] = 2a9 + a1 + -+ - + . We will write Df for the horizontal gradient of f, i.e.
Df =01fe1 + Osfes, while Vf will denote the usual full gradient.

For a given norm |-|| and integers k,m > 0, we introduce the following notation for sums of
spatial derivatives:
2 2
2 2
(1.46) 2 R S oA A Y o S S [AT i o
aeN? aeN?
m<|a|<k m<|o|<k

The convention we adopt in this notation is that D refers to only “horizontal” spatial derivatives,
while V refers to full spatial derivatives. For space-time derivatives we add bars to our notation:

_ 2 _ 2
(1.47) 2 I S [T o A S i
aeNIT2 aeNIH3
m<|a|<k m<|a|<k
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When k£ =m > 0 we will write

way oo = fots]” sl - ot oo = il oo - o

We allow for composition of derivatives in this counting scheme in a natural way; for example,
we write

2 2
(a9)  |pohs| = |phos| = X netpsP = S 0P
a€eN aEeN?
m<|a|<k m+1<]a|<k+1

1.9. Plan of paper. Throughout the paper we assume that N > 5 and A € (0,1) are both
fixed. Notice that Theorem 1.3 is phrased with the choice N = 5.

In Section 2 we prove some preliminary lemmas and we define the energies and dissipations.
In Section 3 we perform our bootstrap interpolation argument to control various quantities in
terms of En12.m and Dy4o . In Section 4 we present estimates of the nonlinear forcing terms
G" (as defined in (2.24)—(2.31)) and some other nonlinearities. In Section 5 we use the geometric
form of the equations to estimate the evolution of the highest-order temporal derivatives. We
also analyze the natural (no derivatives) energy in this context. Section 6 concerns similar
energy evolution estimates for the other horizontal derivatives. For these we employ the linear
perturbed framework with the G forcing terms. In Section 7 we assemble the estimates of
Sections 5 and 6 into unified estimates. Section 8 concerns the comparison estimates, where we
show how to estimate the full energies and dissipations in terms of their horizontal counterparts.
Section 9 combines all of the analysis of Sections 3-8 into our a priori estimates for solutions to
(1.9). Section 10 concerns a specialized version of the local well-posedness theorem that includes
the boundedness of 7, terms. Finally, in Section 11 we record our global well-posedness and
decay result, proving Theorem 1.3.

Below, in (2.58), we will define the total energy Go that we use in the global well-posedness
analysis. For the purposes of deriving our a priori estimates, we will assume throughout Sections
3-9 that solutions are given on the interval [0,7] and that Gon(T) < § for 0 < 6 < 1 as
small as in Lemma 2.4 so that its conclusions hold. This also means that En(t) < 1 for
t € [0,7]. We should remark that Theorem 1.1 does not produce solutions that necessarily
satisfy Gon(7T') < oo. All of the terms in Gan(T') are controlled by Theorem 1.1 except those
involving the Riesz operator: HZAqu, HIM?HS, and fOT |Zou(t)||? dt. To guarantee that these
terms are well-defined, we must prove a specialized version of the local well-posedness result,
Theorem 10.7. In principle, we should record this before the a priori estimates, but the technique
we use to control the 7y terms is based on one we develop for the a priori estimates, so we present
the theorem in Section 10 after the a priori estimates. Note that the bounds of Theorem 10.7
control more than just Gon (7)) (in particular, ¥ u, 92N p, and Zyp), and the extra control it
provides guarantees that all of the calculations used in the a priori estimates are justified.

2. PRELIMINARIES FOR THE A PRIORI ESTIMATES

In this section we present some preliminary results that we will use in our a priori estimates.
We first present two forms of equations similar to (1.9) and describe the corresponding energy
evolution structure. Then we record some useful lemmas.

2.1. Geometric form. We now give a linear formulation of the PDE (1.9) in its geometric
form. Suppose that 7, u are known and that A, N, J, etc are given in terms of 1 as usual ((1.7),
etc). We then consider the linear equation for (v, g, () given by

&w—8t77(~)K83v+u-VAv—i—diVASA(q,v) =F' inQ

divqv = F? in Q
(2.1) Sa(q, V)N = (N + F3 on X
0 —N-v=F* on ¥

v=20 on Xy.
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Now we record the natural energy evolution associated to solutions v, g, of the geometric
form equations (2.1).

Lemma 2.1. Suppose that u and n are given solutions to (1.9). Suppose (v,q, () solve (2.1).
Then

(2.2) 8t<1/J\ 24 2 /\g;) /QJUD)AUQ:/Qj(v-Fl—i-qF2)+/Z—U.F3+CF4.

Proof. We multiply the i component of the first equation of (2.1) by Juv;, sum over i and
integrate over {2 to find that

(2.3) I+1I=1I1
for
(2.4) I= / o Ju; — 8t77(~)83vivi + Uj.AjkakUiJ’UZ‘,
Q
(2.5) 11 = / Aik0iSij(v,q)Jv;, and 111 = / Fl.ouJg
Q Q

In order to integrate by parts in I, 1T we will utilize the geometric identity Ok (JA;;) = 0 for
each 1.
Then

2
(2.6) =29, /'“‘ J / ol 0] a'f _ oo | + w0 (JAjk“;') =1 + Iy

Since b =1+ 3 /b, an integration by parts and an application of the boundary condition v = 0
on Y, reveals that

(2.7)

2 2 2
12:/_’”‘ O _ 5 bagﬂmjak T Az ‘”’ :/ BRIy
0 2 0 2 2 \ b

/8kujJAjk / 8,57]]1)| +u;JAjpes - ek\v]

It is straightforward to verify that 9,J = 9;77/b + batagﬁ in Q and that JA;res - e, = Nj on X.
Then since u,n satisfy Opu;Ajr =0 and Oy = u - N, we have I, = 0. Hence

2
(2.8) Iz&t/ i
o 2

A similar integration by parts shows that

(2.9) II—/Q—Aij,;j(v,q)Jﬁkvi+/EJAngij(v,q)vi

/Q —qAipOpv; J + J / Sij(v, Q) Njv;
so that
(2.10) II:/ JF2+J /g/v v4uv- F3
But )

(2.11) /g/\/ v_/gag FY = a/ ICI /E—gF‘l,

which means

D 2 2
(2.12) u_/—qJF2+J’ vl +at/ K’+/ —CF4,
Q 2 s 2 >
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Now (2.2) follows from (2.3), (2.8), and (2.12). O

In order to utilize (2.1) we apply the differential operator 9* = 9;° to (1.9). The resulting
equations are (2.1) for v = 0%, ¢ = 0%p, and ( = 9*n, where

(2.13) F'=FY 4 P2 4 P12 4 pYA 4 Y5 4 PO

for

(2.14) FM = " Copd®(0ibK)0*Pogu; + Y Copd* P0,50" (bK)dsu;

0<B<a 0<B<La

(2.15) Fl-l’2 = — Z Cap (65(ujAjk)8o“58kui + 85Aik80“58kp>
0< <

(2.16) FlP = 3" Copd® Aj0° POy AimOmuj + AjmOmu:)
<<

(2.17) M = 3" CopAjndi(0° Aigd® P ogu; + 0° A0~ 0u;)

0<f<a
(2.18) FM? = 0°0yib K d3u; and F,"% = Aj.03(0% Aiedpu; + 0% Ajedpu;).

In these equations, the terms C, g are constants that depend on o and 3. The term F 2 =
F21 4 22 for

(2.19) FQ’1 = — Z Ca,gaﬁAijéa_ﬁajui and F2’2 = —OaAijajui.
0<f<a
We write F? = 31 + 32 for
(2.20) F3 = 3" Co 0’ Dn(0° P n— 0" Pp)
0<fB<La
(2.21) F? = 3" Cop(0* (NG Ain)0* PO + 0% (NG Ajm) 0P 0u;).
0<fB<La
Finally,
(2.22) F*= Y Capd’Dn-0" " u.
0< <

2.2. Perturbed linear form. Writing the equations in the form (1.9) is more faithful to the
geometry of the free boundary problem, but it is inconvenient for many of our a priori estimates.
This stems from the fact that if we want to think of the coefficients of the equations for u,p
as being frozen for a fixed free boundary given by 7, then the underlying linear operator has
non-constant coefficients. This makes it unsuitable for applying differential operators.

To get around this problem, in many parts of the paper we will analyze the PDE in a different
formulation, which looks like a perturbation of the linearized problem. The utility of this form of
the equations lies in the fact that the linear operators have constant coeflficients. The equations
in this form are

O+ Vp — Au=G! in 0
divu = G? in
(2.23) (pI —Du—nl)es =G> on %
o —uz = G* on X
(v = 0 on Xp.

Here we have written G = GL1 + G112 + G138 + GM4 4+ G1P for
(2.24) Gyt = (85 — Aij)0;

7
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(2.25) G = uj A

(226) Gg’g = [K2(1 + A? + B2) — 1]833UZ — 2AK013u; — 2BK 09315

(2.27) GI'* = [ K3(1+ A%+ B?)93J + AK*(8,.J + 3 A) + BK?(92J + 03 B) — K (01 A+ 2 B)| D3,
(2.28) G° = 3ij(1 + 23/b) K dzu;.

G? is the function

(2.29) G? = AKd3uy + BKd3us + (1 — K)dsus,

and G? is the vector
p—n— 2(81U1 — AK&gul)
(2.30) G3:= 0y | —Oous — Oyus + BKO3uy + AKd3us
—O1u3z — Kosu1 + AKOzus

—Oquy — O1ug + BKO3uq + AKO3us (K — 1)83u1 + AKO3us
+ 8277 p—n— 2(8211,2 — BK@gUQ) + (K — 1)83162 + BK83U3
—0ousz — KO3us + BKO3us 2<K — 1)63'&3
Finally,
(2.31) G'=-Dn-u.

Remark 2.2. The appearance of the term (p —n) in the first two rows of the first two vectors
in the definition of G can cause some technical problems later when we attempt to estimate
G3. Notice though, that according to (2.23), we may write

(232) (p — 7]) = 203us3 + G3 ce3 = aln(—81u3 — Kd3uy + AKa;’u,g)
+ 827](—82%3 — KO3us + BK&;ud) + 2K 03us
on X. We may then replace the appearances of (p —n) in (2.30) with the right side of (2.32).

At several points in our analysis, we will need to localize (2.23) by multiplying by a cutoff
function. This leads us to consider the energy evolution for a minor modification of (2.23).

Lemma 2.3. Suppose (v,q,() solve

0w+ Vqg—Av=2a! imn )
dive = @2 in
(2.33) (¢ —Dv)es = ales + 3 on ¥
0y ¢ — vz = P4 on X
(v = 0 on Xy,

where either a =0 ora=1. Then

1 1 1
(2.34) O </ |v|2+/a|g|2> +/ |DU|2:/U.<1>1+q<1>2+/_v.@3+agq>4.
2 Ja 2 /s 2 Ja 0 )

Proof. We take the inner-product of the first equation in (2.33) with v and integrate over €2 to
find

2
(2.35) 8t/|v’—/(QI—D'U)IVU+/(QI—DU)63'UI/U‘(I)1.
o 2 Q D) Q
We then use the second equation in (2.33) to compute
Do|? Do
(2.36) / —(qI—]D)v):Vu:/ —qdivv—l—‘v‘:/—qqﬂ—i-w.
Q Q 2 0 2

The boundary conditions in (2.33) provide the equality

2
(2.37) /(qI—Dv)eg-v—/a(vg—i—v-@?’—@t/am+/—a§‘1>4+v-¢>3.
> s s 2 >
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Combining (2.35)—(2.37) then yields (2.34). O

2.3. Some initial lemmas. The following result is useful for removing the appearance of J
factors.

Lemma 2.4. There exists a universal 0 < d <1 so that if Han/Q <, then

1
(2.38) 1 = U7 + 147 + 1Bl < 50 and 1K |7 + A7 S 1.
Proof. According to the definitions of A, B, J given in (1.8) and Lemma A.5, we may bound
(2.39) 1 = 17 + 147 + 1Bl S 117715 S 1132 -

Then if ¢ is sufficiently small, we find that the first inequality in (2.38) holds. As a consequence
K| + || A3 < 1, which is the second inequality in (2.38). O

We now compute 0yn in terms of a pair of auxiliary functions, Ui, Us defined on X. Note

that in our analysis later, u and 7 will always be sufficiently smooth to justify the calculations
in the next Lemma, and it will always hold that U; € H*(X).

Lemma 2.5. Fori=1,2, define U; : ¥ — R by
0

(2.40) Ui(z") = / J(2' x3)ui(2, x3)dxs.
—b

Then 0yn = —01Uy — 0xUs on X.

Proof. Let ¢ € #(%). On ¥ we have that u- N = u - (JAez) = JATu - e3 = JATu - v, where
v = e3 is the unit normal to ¥. We may use the equation for 9yn in (1.9) and the divergence
theorem to compute

(2.41) /8157790:/(_Ulalﬁ—u2827)+u3)<ﬁ:/SOJAijui’/j :/8j(ngAijui)
b b b Q
= / 8jg0J.Aijuz- + (paj(J.Aij)ui + (pJAijajui = / aj(pJ.Aijui,
Q Q

where the last equality follows from the geometric identity 0;(JA;;) = 0 and the equation
A;jOju; = 0, which is the second equation in (1.9). According to the definition of A given by
(1.7), we may write A;; = 0;; + d;3Z; for 9;; the Kronecker delta and Z = K(—Ae; — Bea +e3).
Then

(2.42) /8j<pJAiju2-:/ajngui(éij—l—éngj):/8i<pJui+/83<pJuiZi:/8igoJui
Q Q Q Q Q

since J3¢ = 0, a consequence of the fact that ¢ = p(x1,x2) is independent of x3. Again because
¢ depends only on (x1,22) = 2’ € ¥, we may write

0
(2.43) /OigoJui:/&-go(x’)/ J(Jc',xg)ui(:v',acg)dxgdx':/8Z-<p(a:')Ui(aj')da:'.
Q b —b b

Now we chain together (2.41), (2.42), and (2.43) and integrate by parts to deduce that

(2.44) / Onp = / —0;U;.
by )
Since this holds for any ¢ € /(%) (resp. C*°(X)), we then have that oy = —0;U;. O
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2.4. Energies and dissipations. Below we define the energies and dissipations we will use
in our analysis. We state them in general in terms of two integers n,m € N with n > m. In
our actual analysis we will take n = 2N and n = N + 2 for N > 5 and m = 1,2. Recall
that we employ the derivative conventions described in Section 1.8. We define the horizontal
instantaneous energy with minimal derivative count m (or just horizontal energy, for short) by

(2.45) Eum = [ D2l + | DDy + | VIorl -+ | D2

Here the first three terms are split in this manner for the technical convenience of adding the
v/J term to only the highest temporal derivative.

Remark 2.6. In light of Lemma 2.4, we see that é_'mm satisfies
1 =9 2 =9 2 = 3 =9 2 =9 2
(2.46) 5 (1 D2 lly + 1DZmlly) < Eam < 5 ([D2ulo + | D2]5)
We define the horizontal dissipation rate with minimal derivative count m (horizontal dissi-
pation) by
= ~ 2
(2.47) Dy, = || DarDul|, -

Let 7, be defined by (A.7)—(A.8). The horizontal energy without a minimal derivative restriction
is

& 2 = 2 2 = 2
(2.48) En = |1Taullg + || DF"ullo + |1 Zxnllo + [| D§™ ]l .
and the horizontal dissipation without a minimal derivative restriction is
— 2 — 2
(2.49) D, := |DIyullg + || Dg"Dul|, -

In addition to the horizontal energy and dissipation, we must also define full energies and
dissipations, which involve full derivatives. We write the full energy as

n ) 2 n—1 2 n . 2
2.50) &, = |Thul? H&J H HaJ T2 HaJ H ,
(2.50) &= )\UHO-FJZ::O {u 2“2J+; 0P|y T X'?”o“‘jz:% Mgp_s,

and we define the full dissipation rate by

n 2 n-l. 9
2.51) D, = |Tyul? Haﬂ vp2 Haf
@) ow= il + ot +1vptb X b,
n+1 9
2 2 J
+ 100120372 + 19l 201 /2 + jz; Hath2n_2j+5/2'

We define a similar energy with a minimal derivative count of one by

(252) En1 = Ena + || V25, o+ En: HQ{U anj
- n-1. 5 n 212
VI, + Zl |otp],. ., +1Dnl3. . + Z ol .-
and with a minimal derivative count of two by
n C12
(253) Enz = Enp + |VPuls, L+ ]Zl Ha;:’u e
n—l n .2
R DI NI R B L4 N
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Similarly, the dissipation with a minimal derivative count of one is

(2.54) Dy = Doy + || Viul5, 2+ZH8JU

2n—2j+1

— .12 sk
I+ L L R L SVEDD Join],
j=1

n—2j+5/2

while the dissipation with a minimal derivative count of two is

(2.55) Dyz = Dua+ [ Vul},_ 3+2H8J +19°p 5, 5 + 199953,

2n—2j+1

3
+ Z |ot2],, .+ 1D*0leyo + DGR, 52+ Z G2 —
Note that by definition &, ,, > 5n,m and Dy, , > Dn,m. In all of these deﬁmtlons, the index n
counts the highest number of time derivatives used.
Certain norms of 77 and u will play a special role in our analysis; we write

(2.56) Fon = nllin41/
and
) 2
(2.57) K= |Vl + V20l + D I1Duil s -
i=1

Note that the regularity of u will always be sufficiently high for the L° norms in K to be
considered as L*°(£2) norms, where € is the closure of Q. Finally, we define the total energy we
will use in our analysis:

f
(2.58) Gan(t) = sup En(r / Doy (r)dr + Z sup (147)" A Ex o m(r) + sup an (7).
0<r<t — 0<r<t o<r<t (L+7)

2.5. Some initial estimates. We have the following Lemma that constrains V.

Lemma 2.7. If N >4, then for m = 1,2 we have that Eniom S Ean and Dyyom S Eon.

Proof. The proof follows by simply comparing the definitions of these terms. O
Now we present an estimate of Z0;7.

Lemma 2.8. We have the estimate ||118t77\|0 Hu||0 < &N

Proof. According to Lemma 2.5, we have that 0;n = —0;U;, where U;, i = 1,2, is defined in the
lemma. It is easy to see that U; € H'(X). Taking the Fourier transform, we find that

259 [zl = [ 1€ am©] s < [ 167 |e- T s < [ [ de = 10

However, Holder’s inequality and Lemma 2.4 imply that [|Ul|yos) S [l [lully S [lully, so
the desired estimate follows. (]

3. INTERPOLATION ESTIMATES AT THE N + 2 LEVEL

3.1. Initial interpolation estimates for 7,7, v and Vp. The fact that Exy2,, and Dy,
m = 1,2, have a minimal count of derivatives creates numerous problems when we try to
estimate terms with fewer derivatives in terms of Ex42,, and Dy ,. Our way around this is
to interpolate between Enyom (or Dyyo,m) and Ean. In Sections 3.1-3.5 we will prove various
interpolation inequalities of the form

(3.1) IXI1* S (En+2,m)’ (E2n)' 70 and | X* S (Dw-2,m)’(E2n)' 7,
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where 6 € (0,1], X is some quantity, and ||-|| is some norm (usually either H® or L°°).

In the interest of brevity, we will record these estimates in tables that only list the value of
0 in the estimate. Before each table we will tell which norms are being considered and give a
rough summary of the terms X that appear in the table. For example, we might write “the
following table encodes the power in the H(X) and H®(f) interpolation estimates for  and 7
and their derivatives,” before the following table.

X En+21 Dni2a ~ Ent22 Dniop
7,7 61 02 63
Dn, Vi | 04 05 B¢

We understand this to mean that

(3.2) [Inle S (Ens2.0)" (En) % Inlly S (Dnt21)"(Ean) =%, IInllg S (Ent2.2)72(Ean) "2,

(33)  nllg £ (Dny22)” (En)' =%, IVAlFoi) S (Ent2.1)™(Ean)' ",
IVl H0) S (Pv+21)” (Ean)' %,

etc. When we write Dy421 ~ En422 in a table, it means that 6 is the same when interpolating
between Dy 21 and £y and between En422 and Ex. When we write multiple entries for X,
we mean that the same interpolation estimates hold for each item listed. Often, we will have
a 0 appearing in a table of the form § = 1/(1 4+ r). When we write this, we mean that the
desired interpolation inequality holds with this 6 for any fixed r» € (0,1), and the constant in
the inequality then depends on r.

We must record estimates for too many choices of X to allow us to write the full details of
each estimate. However, most of the estimates are straightforward, so in our proofs we will
frequently present only a sketch of how to obtain them, providing details only for the most
delicate estimates. The terms we estimate are often linear combinations of several terms, each
of which would get a different interpolation power. When this occurs, we will record the lowest
power achieved by a term in the sum. According to Lemma 2.7, this is justified by the estimate

1-60 0 11—k ok _ ecl—60c0 1—k ok—0 0
(34) &N ENvom T EN"ENvom = Eon ENvom T EoN"EN o mENT2m
1-6 08 1=k or—0 08 1-6 08
S EN ENtam T ENEN Enram S Eon ENram

for 0 < 0 < x < 1. A similar estimate holds with £x42 5, replaced by Dy . It may happen
that in estimating a product of two or more terms, we end up with estimates of the form

(3.5) X1 S (Ens2.m)® (E2n)' ™" (Enp2m) (Ean)' %
with 61 + 62 > 1. In this case, Lemma 2.7 again allows us to bound
(3.6) X117 S (Ent2m) (Ent2m) TP HEN)07" < Entomban < Entam,

where we have used the bound &y < 1. It might also happen that (3.5) occurs with ¢; < 1
and 02 = 1/(1 + ), in which case we always understand that r is chosen so that 61 + 6 = 1.

Now that our notation is explained, we turn to the estimates themselves We begin with
estimates of 7.

Lemma 3.1. The following table encodes the power in the L*°(X) and L () interpolation
estimates for n and i and their derivatives.

X Ent21 Dnyog ~ Ent22 Dyio2

n, 1 A+D/A+1+7)  (A+1)/(A+2) A+1)/(A+3)
Dn,Vn 1 A+2)/(A+2+7) A+2)/(A+3)
D?n,V?p 1 1 A+3)/(A+3+7)
D3n,V3n 1 1 1

8m, Otﬁ 1 1 2/(2 + T‘)
Daﬂ], V@tﬁ 1 1 1
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The following table encodes the power in the H*(X) and H°(Q) interpolation estimates for n
and 1 and their derivatives.

X Eni21  Dnio1 ~Eni22 Dpyyop
7,7 A/(A+1) A (A+2) A/(A+3)
Dn, V1 1 A+1)/(A+2) (A+1)/(A+3)
D?n,V?q 1 1 A+2)/(A+3)
D3n, V37 1 1 1

am, 8t77 1 1 1/2
D(?m, V@tﬁ 1 1 1

Proof. The estimates follow directly from the Sobolev embeddings and Lemmas A.6 and A.7,
using the bounds | Zynls < & and |[Z18m||2 < o, the latter of which is a consequence of

~

Lemma 2.8. O
Now we record some estimates involving .

Lemma 3.2. The following table encodes the power in the L™ (Q) and L*°(X) interpolation
estimates for u and its derivatives.

X Ent21  Dny21~Ent22 D22
u 1/(1+7r) 12 1/3
Du 1 2/(2+7) 2/3
Vu |1/(1+7) 12 1/3
D%y 1 1 1/(1+7)
DVu 1 2/(2+7) 2/3
V2u 1 1/(1+7) 1/2
V3u 1 1 1/(1+7)
Viu 1 1 1
atu 1 1 1
The following table encodes the power in the H°(Q) interpolation estimates for u and its
derivatives.
X Enta1 D421 Ent2,2 Dn+22
u A(A+1) A/ (A+1) A (A+2) A (A+2)
Du 1 1 A+ /(A+2) A+1)/(A+2)
D%y 1 1 1 1
VD%u 1 1 1 1
ou 1 1 1 1

The following table encodes the power in some improved L (X) interpolation estimates for
u and its tangential derivatives on 3. Here we restrict to r € (0,1/2).

X ENt21 Dny2.1 En+22  Dniop
w [1J0+n 1J0+r 172 1/2
Du 1 2/(2+7r) 2/(2+7r) 2/(247T)

Proof. The estimates of the first two tables follow directly from Sobolev embeddings and Lem-
mas A.8 and A.13. For the L*°(X) estimates of the last table, we use r € [0,1/2) in (A.34) of
Lemma A.7 along with trace estimates and Lemma A.13 to bound

(3.7) HUH%OO(E) < (|’uH12LIO(E))(S+T—1)/(S+T)(HDSUHHT(E))I/(S-H)
S () 447~ D+

< (lull2 ) =D/ (| DIV a2 Y 050,
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For En42,1 and D421 we choose s = 1 and r € (0,1/2), while for Ex422 and Dy 2, we choose
s =2 and r = 0. In both cases, Hqu/2 < &N and HDSVqu < EN+2,m- A similar argument

works for the Du estimates in L*>°(X). O
Now we estimate Vp in L°°.

Lemma 3.3. The following table encodes the power in the L™ () interpolation estimates for
Vp and its derivatives.

X Eni21 Dni2g ~Eni22 Dnioo

Vp 1 1/(1+r) 1/2

VZp 1 1 1/(1+7)

Vip 1 1 1

o/Vp 1 1 1
Proof. The estimates follow directly from the Sobolev embeddings and Lemma A.8. (]
3.2. Interpolation estimates for G?, i = 1,2,3,4. Now that we have some preliminary

estimates for u,7,7, and Vp (plus some of their derivatives), we can estimate the G forcing
terms defined in (2.24)—(2.31).

Lemma 3.4. The following table encodes the power in the L () interpolation estimates for

GY, i=1,...,5 and G' and their spatial derivatives.
X En+21 Dni21 ~ Ent22 Dyyop
GHl 1 1 (3A+5)/(2\ + 6)
VGHT 1 1 1
G2 1 1 2/3
DG1? 1 1 1
VG2 1 1 2/3
Gt 1 1 (BA+5)/(2A +6)
VGh3 1 1 1
G 1 1 1
vGhA 1 1 1
G 1 1 1
VG 1 1 1
G1 1 1 2/3
DGT 1 1 1
VG! 1 1 2/3

The following table encodes the power in the HY(S)) interpolation estimates for G1*, i =
1,...,5 and G' and their spatial derivatives.

X Enta1 Dni2.1 ENt22 Dn122

Ght 1 1 1 (BA+3)/(2\ + 6)
VGl 1 1 1 (3A+5)/(2\ + 6)
G172 1 BA+1)/2A+2) (BA+2)/2A+4) (BA+2)/(4)+78)
DG'? 1 1 1 (5A+4)/(3\+ 6)
G13 1 1 1 (BA+3)/(2\ + 6)
vGt3 1 1 1 (3A+5)/(2\ + 6)
Gt1 1 1 1 (4N +6)/(3A+9)
DG 1 1 1 1

G 1 1 1 5/6

VGLS 1 1 1 1

G1 1 BA+1)/2A+2) (BA+2)/2A+4) (BA+2)/(4)+38)
DG? 1 1 1 (5A+4)/(3\+6)
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Proof. The definitions of G* show that these terms are linear combinations of products of one
or more terms that can be estimated in either L> or H? by using Sobolev embeddings and
Lemmas 3.1, 3.2, and 3.3. For the L table we estimate products using the usual algebra of

L2 | XY | oo < | X |10 Y]l oo For the HY table, we estimate products with both

(3.8)

2 2 2 2
XYy < [IX[[g [Vl oo and XY l5 < V][5 1 X oo

and then take the larger value of # produced by these two bounds. O

Now we estimate G2. The proof works as in Lemma 3.4, so we omit it.

Lemma 3.5. The following table encodes the power in the L*°(Q) and L*(X) interpolation
estimates for G? and its spatial derivatives.

X En+21 Dni21 ~ Eny22 D422

G? 1 1 (4N +6)/(3X +9)
DG? 1 1 1

VG? 1 1 (BA+5)/(2\ + 6)
V2G? 1 1 1

The following table encodes the power in the H°(Q) interpolation estimates for G* and its

spatial derivatives.

X Eni21 Dnyog ~Enyop D22

G? 1 (BA+2)/2A+4) (4X+3)/(3A+9)
DG? 1 1 (AN +6)/(3X+9)
VG2 1 1 (BA+3)/(2X + 6)
V2G? 1 1 (BA+5)/(2X + 6)

Now we record G estimates. Recall that by Remark 2.2, we may remove the appearance of

(p —n) in G3. This allows us to perform the estimates of G® terms as in Lemmas 3.4 and 3.5,
so we again omit the proof.

Lemma 3.6. The following table encodes the power in the L*(X) interpolation estimates for
G? and its spatial derivatives.

X Ent21 Dnioa ~Enta22 Dyyo2

G3 1 1 (4N +6)/(3A+9)
DG? 1 1 1

D?G3 1 1 1

The following table encodes the power in the H°(X) interpolation estimates for G and its

spatial derivatives.

X Eni21 Dny21~Enyop Dni22

G3 1 BA+2)/(2A+4) (4X+3)/(3A+9)
DG3 1 1 (4N +6)/(3X+9)
D%G3 1 1 1

Now for G* estimates. We again omit the proof.

Lemma 3.7. The following table encodes the power in the L*(X) interpolation estimates for
G* and its spatial derivatives.

X En+21 Dni21 ~Ent22 Dni22
G* 1 1 1
DG* 1 1 1
D?2G? 1 1 1
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The following table encodes the power in the H°(X) interpolation estimates for G* and its
spatial derivatives.

X Ent21 Dni2i1 ~ Eniaz D22

G* 1 1 (BA+5)/(2A +6)
DG* 1 1 1

D?G* 1 1 1

3.3. Improved estimates for u, Vp. Now we will use the structure of the equations (2.23) to
improve our estimates for u, Vp, etc. Our first estimate is for Dp. It constitutes an improvement
of our existing L™ estimate, Lemma 3.3, as well as a first H" estimate.

Lemma 3.8. The following table encodes the power in an L>(Q2) interpolation estimate.

Ent21 Dnia1 ~ Engop Dn+22
Dp 1 1/(1+r) AN+2)/(A+3)

The following table encodes the power in an H°(Q) interpolation estimate.

Eni21 Dnio1~Enyop Dny22
Dp 1 A+1)/(A+2) (A+1)/(A+3)

Proof. In order to record the proof of both the H? and L™ estimates at the same time, we will
generically write ||-|| to refer to either the H%(2) or L°°() norm. Similarly, we will write |-,
to refer to the H°(X) or L°°(X) norm. The starting point is an application of Lemma A.10 to
bound

(3.9) 1DpII* < IDpll5; + 105D *

We will estimate both of the terms on the right hand side in order to prove the lemma.
In order to estimate Dp on ¥ we utilize the boundary conditions in (2.23) to write

(3.10) al'p = 8m + 20;03us3 + 81(G3 . 63)
for i = 1,2. From this we easily see that
2
(3.11) 1Dpl5 S I1Dnlls; + | DG + | Ddsus|5:

The first two terms may be estimated with Lemmas 3.1 and 3.6, but we must further exploit
the structure of the equations in order to control the last term. For the H° estimate we use
trace theory and the relation

(3.12) 8311,3 = G2 — 81u1 - 82U2
to find
(3.13) 153|305y < 1D} S [|DG?} + || Dl

Since D?u = 0 on ¥; we may use Poincaré, Lemma A.13, to bound HDQqu < HVD2UH(2), SO
that upon replacing in the previous inequality we find

(3.14) 1D0sus o) S DGy + [DVE [+ (| PPV

For the corresponding L* estimate we again use (3.12) to bound

(3.15) 1DOsus| oo 5y S HDGQHiw(Z) + HDZ“HiOO(E)'

By Lemma A.13 we know that || D%ul|} s S [|[VD?u][} g, and also Lemma 3.5 guarantees
that || DG2|[} .z S | DG?||] g s0 We may replace these to arrive at the bound

(3.16) D051 (5) S DG [ ) + [V D0 1 g

Then from (3.14) and (3.16) we know that
(3.17) 1Ddsus|% < ||DG?|)* + || DVGR|| + || D2Vul)”.
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Combining (3.11) with (3.17) yields
2 2 2 2 2 2
(3.18) IDpl$ S 1IDnl5, + || PGPS + || PG| + || DVG?||” + | D*Vul|”.
We may then employ Lemmas 3.1, 3.2, 3.3, 3.5, 3.6 to derive the interpolation power for ||Dp||22;

we record this power in the following table. Both the L> and H° powers are determined by
Dmn, but the L> estimate only improves the result of Lemma 3.3 for Dy 2.

En+21 Dngoi ~ Eny22 DN+2,2
7
| Dpl|7,0 (5 1 1/(1+7) (A+2)/(A+3)
1Dl 770 (5 1 A+1)/(A+2) (A+1)/(A+3)

Now we will estimate the term ||@3Dp||®>. For this we use (2.23) to write
(3.19) D;03p = O0;[(0F + 02 — O)uz + D3uz + G* - e3].
for i = 1,2. Again using (3.12), we may write
(3.20) 8¢8§U3 = 6¢63(G2 — O1uy — Oaug).
Combining these two equations then shows that
(3.21) IDasp|? S || D3l + || D?Vu|? + | Do) + | DG + | DVG?| .
We may then employ Lemmas 3.2, 3.3, 3.4, and 3.5 to derive the interpolation power for

| Dsp||*; we record this power in the following table. The H® powers are determined by DG?,
but note that the L estimate does not improve the result of Lemma 3.3.

En+21 Dnioi ~ Ento2 Dn+22
|DOspll7 | 1 1 1/(1+r)
| Ddspll5 1 1 (5X+4)/(3\ + 6)

Now we return to (3.9) and employ our estimates of ||Dpl|3 and ||Ddsp||®> to deduce the
desired interpolation powers for || Dp]|?. O

With this lemma in hand, we can now derive improved estimates for u.
Proposition 3.9. Let

BA4+2 A+1
AN+8" N+3

(3.22) 01(\) = min{

1
} and@z()\):min{g)\+ 0 /\+2}.

8A\+16" A+ 3

The following table encodes the improved power in the L>(S) interpolation estimate for u
and its derivatives.

En+21 Dni21 ~Ent22 Dni22
u 1 2/(2+) 2/3
Dyusi=12] 1 1 3/3
Osus 1 2/(2+7") 2/3
Vu i 3/(Z47) 573
V2u 1 2/(2+7r) 2/3
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The following table encodes the power in the H°(Q)) interpolation estimate for u and its
derivatives.

EN+21 Dn+21 EN+22 D22
u L 0T/ +2) O F)/A12) 0,())
=12 1 (A+1/0+2) O+ D/(A12) 6N
stz T (B3A+2)/2r+4) (Br+2)/2r+4) (Ar+3)/Br+9)
Du I I (27 +3)/(2r + 4) B2 (V)
Vu T 011D/ +r2) O+ D/+2) 6N
DVu i I 27 +3)/(2h + 9 Ba (V)
Yoy us i i @ 3/ 14) (3A13)/(2A+6)
V2u 1 A+1)/A+2) (A+1)/(A+2) 61 ()

The following table encodes the improved power in the L () interpolation estimate for Vp.

En+21 Dni21 ~ENy22 Dniap

Vp 1 2/(2+7) 2/3
The following table encodes the power in the H°(Q) interpolation estimate for derivatives of
D.
ENg21 Dny2.1 ENt2.2 Dny22
Osp 1 (BA+1)/2A+2) BA+2)/(2A+4) (BA+2)/(4X+38)
Vp 1 A+1)/(A+2) A+1)/(A+2) 01 ()
Proof. As in Lemma 3.8 we will write ||| and |||y to refer to both the HY and L* norms

on ) and ¥ respectively. We divide the proof into several steps, beginning with estimates of
Vu. With these established, we can extend to estimates of u, DVu, Du, Ddsus, and Vdsug by
employing Poincaré’s inequality and interpolation. This in turn leads to estimates for dsp and
VZu.

Step 1 — Estimates of Vu

To begin the Vu estimates, we split the components of Vu into those involving x1, zo deriva-
tives and those involving x3 derivatives. Indeed, we have

2
(3.23) IVul® S 1Dull” + 13susl* + ) 195w
i=1
Lemma 3.2 provides an estimate of Du but not of d3u, so we must use the structure of the
equations (2.23) to estimate the latter two terms.
To estimate Ozus we use equation (2.23) to bound

(3.24) 103us|® S ||G2|” + || Dul®.

Then Lemmas 3.2 and 3.5 provide interpolation estimates of G? and Du and hence the estimates
of Osus listed in the tables. The Du term determines the power for L°°, while the power is
determined by G2 for HY.

To estimate Oszu; for ¢ = 1,2 we first apply Lemma A.10 to get

2
(3.25) J0sucl” S 19l + |05
For the first term on the right we use equation (2.23) to bound
2 2 2
(3.26) 105uills;, S | Duslls; +[|G°|5; -

Since Du = 0 on ¥; we can use trace theory, Lemma A.13, and the equation divu = G2 for
2 2
(3.27) 1Dus|[§; < IV Dus||* < || Dul|” + || DG?|
For the second term on the right side of (3.25) we use (2.23) to bound
2 2 2
(3.28) |03us]|” < ll0wul® + || D?u||” + || Dpl* + |G|
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We may then combine estimates (3.25)—(3.28) to deduce that
(329) 195l S 9l +[|Dull” + 1Dpl + G + DG + |67

Now we use Lemma 3.2, 3.4-3.6, and 3.8 to find the interpolation powers for d3u;,i = 1, 2 listed
in the tables. For L™ the power is determined by G', while for H° the power is determined by
Dp for En42.1,EN+2.2, and Dy o1 but by the smaller of the powers of Dp and G! for Dni2.2.

With estimates for Du, Osus, and Osu; for ¢ = 1,2 in hand, we return to (3.23) to derive
the estimates for Vu listed in the tables. For the L estimate the power is determined by Du,
while for HO it is determined by Osu;, i = 1,2.

Step 2 — Extensions to estimates of u, DVu, D0sus, and VOsug

Now we apply Lemma A.13 to control u in terms of Vu:

(3.30) ]l S V7l

Our estimates for Vu then provide the estimates for u listed in the tables.

We now turn to DVu. Clearly ||DVuH(2) is conrolled by both En491 and D42 1, which yields
the powers of 1 in the tables. An application of (A.38) from Lemma A.8 with A = 0, ¢ = 1,
and s = 1 shows that

1/2 1/2
(3:31) Ipvul < (Ivald) * ([Dvally)

We employ this in conjunction with our estimate for Vu and the estimate of D?Vu from
Lemma 3.2 to get the interpolation powers for DVu listed in the tables for Ex422 and Dyyo .
The estimates for Du listed in the tables follow immediately from the estimates for DVu via
Poincaré:

(3.32) IDu))? S |DVul?.
In order to estimate Ddsuz and VOsus in H® we use that divu = G? for
2
(3.33) IVdsuslls < [[VG2[[y + 1DVullg -
and
2 2112 2 112
(3.34) |1Ddsus|g < || DG?||, + || D?ul|, -

Then our estimate for DVu and Lemmas 3.2 and 3.5 yield the estimates listed in the tables.
For VOsu3 the power is determined by DVu for Eny2.1, Dny2.1,En42,2 and by VG? for Dn42,2-
For Ddsus the power is determined by DG?2.

Step 3 — Estimates of dsp and Vp

Lemma 3.8 provides estimates for Dp, so to complete an estimate for Vp we only need to
consider Osp. For this we again use (2.23) to bound

(3.35) 10sp)® S [|03us|| + | D%u|” + 10su)® + |GV -
This and (3.33) then imply that
(3.36) 105p]1® < |DVu® + HDQUHQ + |6 + HG1H2 + ||VG2H2,

and we may use Lemmas 3.2, 3.4, and 3.5 along with our new DVu estimate to determine the
powers in the tables for 0sp. In the L*° estimate the power is determined by DVu, and in the
HO estimate the power is determined by G'. Then the estimates for Vp follow by comparing
the Dp estimates of Lemma 3.8 to the J3p estimates.

Step 4 — Estimates of VZu

Finally we consider V2?u, which we decompose according to x1, z» and x3 derivatives:

2
(3.37) [V2ull” < |D%]]” + 1DVul® + | 0us |* + 3 l|ofusl

i=1
According to our bounds (3.28) and (3.33) we may replace this with

(3.38) ||Vl S llowll® + || D*ul” + 1DVl + | Dpl* + | GH|* + || VG
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Then Lemmas 3.2, 3.4, 3.5, and 3.8 with our new estimate of DVu provide the estimates in
the table for V?u. The power in the L> estimate is determined by DVu, while for H? it is
determined by Dp for Eny2.1,EN+2,2, and Dyyo 1 but by the smaller of the powers of Dp and

Gl for DN+272.

O

3.4. Bootstrapping: first iteration. We now use the improved estimates of Proposition 3.9
to improve the estimates of G*, i = 1,...,4 recorded in Lemmas 3.4-3.7. We will only record
the improvements for the H°(Q) estimates.

Lemma 3.10. The following table encodes the power in the HO(Q) interpolation estimates for
GY,i=1,...,5 and G' and their spatial derivatives.

X Ent+21 Dni21 Engop Dn422

Gt 1 1 1 (BA+6)/(3X +9)
VGHT 1 1 1 1

G172 1 1 1 (23X +22) /(12X + 24)
VG2 1 1 1 (23X + 22) /(12X + 24)
Gt3 1 1 1 (BA+6)/(3X +9)
Va3 1 1 1 1

G2 1 1 1 1

vGhi 1 1 1 1

G1o 1 1 1 1

vGh? 1 1 1 1

G1 1 1 1 (5A+6)/(3A+9)
VG! 1 1 1 (23X +22) /(12X + 24)

Proof. We perform the estimates as in Lemma 3.4, except that now we use the improved inter-
polation estimates of Lemma 3.8 and Proposition 3.9.

O

Now for G? estimates. We omit the proof.

Lemma 3.11. The following table encodes the power in the H°(Q) interpolation estimates for

G? and its spatial derivatives.

X Ent21 Dni2i1 Ent22 Dn+22

G? 1 1 1 (TA+6)/(3\+9)
DG? 1 1 1 1

VG? 1 1 1 (51 +5)/(2\ + 6)
V2G? 1 1 1 1

Now for G? estimates. Again we omit the proof.

Lemma 3.12. The following table encodes the power in the H°(X) interpolation estimates for
G? and its spatial derivatives.

X Ent21 Dni2i1 Eni2z D22

G3 1 1 1 (5A+6)/(3\ +9)
DG? 1 1 1 (BA+6)/(3A+9)
D?G3 1 1 1 1

Now for G* estimates. The proof is omitted.

Lemma 3.13. The following table encodes the power in the H°(X) interpolation estimates for

G* and its spatial derivatives.

X Ent21 Dni21 En422 Dniop
G* 1 1 1 1
DG* 1 1 1 1
D?G* 1 1 1 1
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The improved estimates for G*, i = 1,...,4 now allow us to improve the H° estimates for u
and its derivatives in Proposition 3.9.

Theorem 3.14. The following table encodes the power in the H(Q) interpolation estimate for
u and its derivatives.

ENta1 Dy 2.1 ENt22 Dyyop
u 1 A+ /(A+2) A+1)/(A+2) (A+1)/(A+3)
Osus 1 1 2A+3)/(2 A +4) (A +2)/(A+3)
Du 1 1 2N+ 3)/(2A+4) (A +2)/(A+3)
Vu 1 A+ /A+2) A+1)/(A+2) (A+1)/(A+3)
DVu 1 1 2A+3)/(2 A +4) (A +2)/(A+3)
Vosus 1 1 2N+ 3)/(2A+4) (A +2)/(A+3)
V2u 1 A+1D)/A+2) A+1)/A+2) (A+1)/(A+3)
The following table encodes the power in the H°(Q) interpolation estimate for derivatives of
.
Enta1 Dn+21 ENt2,2 Dn+22
Osp 1 1 2A+3)/(2A+4) (A +2)/(A+3)

Vp 1 A+1)/(A+2) A+D/(A+2) A+1)/(A+3)

Proof. The argument is essentially identical to that employed in Proposition 3.9, except that
now we use Lemmas 3.10-3.13 for estimates of G* and Proposition 3.9 for estimates of Du, D?u.
As such, we will only mention which terms determine the power for each estimate.

For Vu the power is determined by Dp, and then Poincaré and interpolation give the estimates
for u, DVu, and Du. In the O3p estimate the power is determined by DVu, and in the Vp
estimate the power is determined by Dp. The power in the V?u estimate is determined by Dp.

The only estimate not modeled on one in Proposition 3.9 is the one for O3us. We employ the
equation divu = G? to bound

2 2
(3.39) 105us||”* < ||G2|” + I|1Dull® and [|Vasus|?* < ||[VG?||” + | DVu|?.
The estimates of J3ug and VOsugz in the table follow from these, with the power of the former
determined by Du and the latter determined by DVu. O

3.5. Bootstrapping: second iteration. We now use the improved estimates of Theorem 3.14
to improve the estimates of G*, ¢ = 1,2 recorded in Lemmas 3.10-3.11. We once again omit the
proof.

Theorem 3.15. The following table encodes the power in the H°(Q) interpolation estimates
for GY, i =1,...,5 and G and their spatial derivatives.

X Eni21 Dni21 Enyop Dnyop
lelll o 1 1 1 (2A+2)/(A+3)
vGaht v2ah 1 1 1 1

G2, vGh2 v2al? 1 1 1 1

01731 e 1 1 1 (2A+2)/(A +3)
VG3, V2@ 1 1 1 1

GhA vatt veght 1 1 1 1

G, VG v2ahs 1 1 1 1

Gt 1 1 1 2A+2)/(A+3)
VG, VGt 1 1 1 1

The following table encodes the power in the H°(Q) interpolation estimates for G and its
spatial derivatives.

X Ent21 Dni21 Ent22 D22
G?,VG?,V2G? 1 1 1 1

Now we make final improvements to our estimates.
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Proposition 3.16. The following table encodes the power in the H°(Q) interpolation estimates
for DOsu; fori=1,2.

X Eni21 Dni21 Eniop Dny22
Dagui,i: 1,2 1 1 1 ()\+2)/()\+3)
The following table encodes the power in an H*(X) estimates for Du; for i =1,2.
X Eni21 Dni21 Engop Dni22
Du;,i=1,2 1 1 1 AN+2)/(N+3)
The following table encodes the power in the improved H°(X) interpolation estimates for 0.
X | Eny21 Dni21 Entop2 Dn422
o 1 1 1 A+2)/(N+3)

Proof. We may argue exactly as in Lemma 3.8 to bound
(340) [[D%]" < [D*lf" + [[D*0pul” + | D ul* + | DV
DG + |G| + [0V 6| + | D605 -
We may also argue as in Proposition 3.9 to bound
(3.41) 1Ddsuil|* < | Doul® + ||DPul|” + || D%p||* + |G ||* + | DG?|* + || PGP,

for i = 1,2. Combining (3.40) and (3.41) and employing Theorems 3.14 and 3.15 and Lemmas
3.12 and 3.13, we then find the H°(Q) estimates for Ddsu;, i = 1,2 listed in the table. The
power is determined by D?n.

We now turn to the ||DuiH§{2(E) estimate for ¢ = 1,2. We employ trace theory and the
Poincaré inequality to bound
2
0 Y

(3.42) IDus | }o(syy S 1 DOsuil§ and || D3u; | D303,

2

[rrogsy S |
and then we utilize our new estimate for Ddsu; to deduce the H?(X) estimates listed in the
table. The power is determined by DOsu; since D303u; has four derivatives and hence has a

power of 1.
Finally, for the 9,7 estimate we use (2.23), trace theory, and Lemma A.13 to bound

(3.43) 1m0y < Tusllzro sy + 160wy S 1Vusli + 6o, -

Then Theorem 3.14 and Lemma 3.13 provide the 0;n estimate for Dy9 2 listed in the table,
with the power determined by Vugs; the estimates for En42.1,Ent2,2, Dn42,1 come from Lemma
3.1. O

Now we record an interpolation estimate for I, as defined by (2.57).

Lemma 3.17. We have that K < 5](\?1227)5)/(8%)‘).

Proof. By definition, K = || V|3« + HVQUHiOO +3°2 HDuiH?{g(E). We may then use the H?(X)
interpolation estimate of Proposition 3.16 and the L* interpolation estimate of Proposition
3.9 with r = 2X/(4 + X) to bound K < 5]%,/£222T). The choice of r implies that 2/(2 + r) =
(8 +2)M)/(8 +4)), and the result follows. 7 O

3.6. Estimates at the high end. Our analysis in Sections 3.1-3.5 dealt with the problems
associated with estimating terms involving fewer derivatives than appear in Ex42m, DN+42.m-
We now turn to the problem of estimating terms involving more derivatives than are controlled
by Dn42,m. We accomplish such an estimate by interpolating between Dy 2, and &, which
controls more derivatives since N > 5. Fortunately, the only term we must concern ourselves
with is V2V+35, and to simplify things we will only estimate it in terms of DnN42,2. This suffices
since D422 S Dnyo,1-
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Lemma 3.18. We have the estimate

2 ) _ _ _
(3.44) D[+ [V S (Ea) Y AV T (Do) N/ AN,
Proof. According to Lemma A.5, with ¢ = 2N + 5, we may bound

(3.45) 1925015 < Inlensoseisy S D2 0][3 .

so it suffices to prove (3.44) with only the D?N*+4y term on the left side. To prove this, we will
use a standard Sobolev interpolation inequality:

(3.46) 1711, S IAIZSE 7S+

for s, > 0 and 0 < r < s. Applying this to f = D3y with s = 2N +3/2, » = 1, and
g =2N —9/2, we find that

(347) HD2N+4 (AN—-9)/(4N-=T7)

2N41/2

2/(AN—T)

77“1/2 S HD377H2N+3/2 <|1D% H HD377H4N—3

The desired inequality then follows by squaring and using the definitions of &2y and Dy422. U
Our next result utilizes Lemma 3.18 to estimate products such as uD?N 4y,

Lemma 3.19. Let P = P(K, Dn) be a polynomial in K, Dn. Then there ezists a 6 > 0 so that
2N+4 2 2N+4 2 0
(3.48) H(D 77)““[{1/2(2) + H(D n)PquHlﬂ(z) S EnDnta.
Let Q = Q(K,b, Vi) be a polynomial. Then exists a 0 > 0 so that
_ 2
(3.49) (VPN TP0)QVul|, S ESnDr22-
Proof. According to the bound (A.2) of Lemma A.1, we may bound
(850) (D mull oy + | (DN 0) PVl sy
N HD2N+477HH1/2(2) HU||H2 + HD2N+477HH1/2 ||PVU||H2
Trace theory implies that
2 2 2 2,112 2 2 2

(3:51)  [Jullgegsy + IVullgzes) < llullgos) + || D uHHO(E) + [ Vullfogsy + ||D VU’HHO(E)

S IVullg + [ D*Vullg + [[2ul|g + [[v*D?

but then an application of Theorem 3.14 to all the terms on the right side shows that
(3.52) lelFr2 sy + 1 VUl S (Dnaz2)HVEHY.

It is easy to see, based on the terms controlled by &, that HP||H2 < Epn < 1. We may then
combine this with (3.52) and (A.1) of Lemma A.1 to deduce that

(3.53) lulifrags) + IPVull iz S (Drga)HHE.
Then this bound, (3.50), and Lemma 3.18 imply that

2 2 .
(3.54) H(D2N+477)UHH1/2(Z) + H(D2N+477)PVUHH1/2(E) S 529NDN+2,2

for some 6 > 0 and for
4N -9 AX+1_4N-9 1 16N —-34
+ > +o=02>1
4N -7 AX+3 " 4N-7 3 12N -21
DX t92 < D22 in (3.54), which then

(3.55) K=

since N > 4. Since Dy122 < &y < 1, we may bound
yields (3.48).
To derive (3.49) we first bound

(3.56) (V2N vl < ||V 202 [ Vul2 Q)2 -
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The first term on the right is controlled with Lemma 3.18. The second term satisfies
(3.57) IVl S (Dry2p)*/?

by virtue of the L™ estimates of Proposition 3.9. The third term satisfies |Q|7« < v < 1 by
Sobolev embeddings and the definition of &y. The estimate (3.49) follows by combining these
bounds as above. (]

4. NONLINEAR ESTIMATES

4.1. Estimates of G' at the N + 2 level. We now provide estimates of G* in terms of
En+2,m and Dyio . Notice that our estimates are somewhat stronger than those stated in,
say Theorem 3.15, since we include some power of &y multiplied by Enxy2,m or Dyy2.m.

Theorem 4.1. Let m € {1,2}. Then there exists a 8 > 0 so that

2 2

(4.1) H@%NH)—QGlui I va(N+2)—2G2Hj i HD%NH)—QG:sH i HDS(N+2)—2G4H

1/2 1/2
S ENEntam
and
(4.2) H@%N+2)71G1H§+ H@S(Nw)fleHj_F HD’%ENH)IG?’H?/Q—F HDS(N+2)1G4H?/2

_ 2
+ HD2(N+2)7231&G4H1/2 < ESNDN12,m-

Proof. The estimates of these nonlinearities are fairly routine to derive: we note that all terms
are quadratic or of higher order; then we apply the differential operator and expand using the
Leibniz rule; each term in the resulting sum is also at least quadratic, and we estimate one term
in H* (k =0,1/2, or 1 depending on G%) and the other term in L or H™ for m depending on
k, using Sobolev embeddings, trace theory, and Lemmas A.1, A.5, and A.6-A.8. The derivative
count in the differential operators is chosen in order to allow estimation by Enyo, in (4.1)
and by Dy, in (4.2). There is only one difficulty that arises. Because En42,m and Dyiam
involve minimal derivative counts, there may be terms in the sum 9*G? that cannot be directly
estimated. To handle these terms, we invoke the interpolation results of Theorems 3.14 and 3.16
and Proposition 3.9, as well as the specialized interpolation results of Lemma 3.19. A detailed
proof of the estimates is quite lengthy, so for the sake of brevity we present only a sketch.

Let o € N'*3 with m < |a| < 2(N +2) —2 and consider 9*G*. Since G! involves Vp and 9%u,
0°n with |3| < 2, we find that 9*G" involves at most (with parabolic counting) 2(N + 2) — 1
derivatives of p, and at most 2(N + 2) derivatives of u and 7. We have that G' is a linear
combination of at least quadratic terms, and as such, so is 9*G'. Let us consider a generic term
in the sum 9°G!, which we write as XY with X of the form 9°u or 977 with |8 < 2(N + 2)
or else 3°p with |3] < 2(N +2) — 1, and Y a polynomial in lower-order derivatives. If |3| is
sufficiently large with respect to m, then the minimal derivative count is exceeded and we may
estimate ||X ”(2) < Ento,m- It is easy to verify, using Sobolev embeddings and Lemmas A.1, A.5,

and A.6-A.8, that we always have ||Y]|3.. < &Jy for some 6 > 0. Then
2 2 2
(4.3) IXY Nl S IX NG 1Y 1200 S EN+2.mEy-

On the other hand, if | 3| is not large, then we must resort to interpolation, using Theorems 3.14
and 3.16 and Proposition 3.9. In this case, it can be verified that we always get estimates of the
form || X5 < (Ean)' =" (Enyam)” and V|7 S (Ean)™ (En2,m)® with 61 € (0,1], 6,605 > 0,
and 61 + 03 > 1 so that

(4.4) IXY 5 S IXIGIY 12 S En+omEly

for some 6 > 0. This analysis works for every XY appearing in 9°G?, so

_ 2
(4.5) |var=2e2| S o mély
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for some € > 0. It can then be verified, through a straightforward but lengthy analysis like that
used above, that all of the estimates in (4.1) hold. We note though, that in order to estimate
the G2 terms, we must use Remark 2.2 to remove the appearance of (p —n) in G3.

Now we sketch the proof of the estimates in (4.2). We may argue as above to estimate all
terms that arise in 9*G* with two exceptions: terms involving V2V*+57 on Q or D?N*4y on
Y. These always have the form of the terms estimated in Lemma 3.19, so we may use it for
estimates in terms of ggNDN+2’2, which suffice for (4.2) since Dyy22 S Dn42,1. Then (4.2)

follows by combining the estimates of the exceptional terms with the estimates of the terms as
above. O

4.2. Estimates of G* at the 2N level. Now we derive estimates for the nonlinear G* terms
at the 2N level.

Theorem 4.2. Let m € {1,2}. Then there exists a 6§ > 0 so that

= AN—2 ~1]|? = AN—2 ~2||? ~AN—2 3H2 H_4N72 4H2 146
(46) HVO ¢ Ho+ ‘ Voo TG HlJr HDO ¢ 1/zjL Do™ 6 1/2 S b
B L e PR el
0 1 1/2 1/2
+[[VNBAG |y + [V PaGR | + |DN PG|, + DN a6,
fsgngzN’

and
(48) VNG + [V + DGR, + (DTG

5 SgND2N + IC.7:2N.

Proof. As explained in Theorem 4.1, the estimates are routine and lengthy, so we present only a
sketch. The estimates in (4.6) are straightforward since £ has no minimal derivative restric-
tions. They may be derived using Sobolev embeddings, trace theory, and Lemmas A.1, A.5,
and the L*° estimates of A.6.

The only terms with minimal derivatives in Doy are Dn and Vp. The latter presents no
problem since, owing to Remark 2.2, p itself never appears in any of the G* terms. The former
may be dealt with by using Lemmas A.6 and A.7 to produce interpolations estimates of 77 and
7 in terms of Drn. Whenever interpolation is needed to estimate these terms, there are always
other terms multiplying them that allow for the recovery of a power of 1 on Dyy. Using these
estimates with Sobolev embeddings, trace theory, and Lemmas A.1, A.5, and A.6 then yields
(4.7).

We now turn to the derivation of (4.8). Consider 9*G* with |a| = 4N — 1 and ag = 0, i.e.
purely spatial derivatives, and expand 0“G* using the Leibniz rule. With two exceptions, we
may argue as in the derivation of (4.7) to estimate the desired norms of all of the resulting
terms by 629 vDan for & > 0. The exceptional terms are ones involving either V*V*15 in Q or
DN n on X. We will now show how to estimate the exceptional terms with KFsy, as defined
by (2.57) and (2.56).

In V*V=1G there are terms of the form 9°7Qd"u, with

(4.9) Q=Q(A,B,J K,VAVB,V.J)

a polynomial and 3,y € N? with |3| = 4N + 1 and |y| = 1. To estimate such a term, we use
Lemma A.5 to bound

12 2
(4.10) HV4NH”H0 < HD4N+1/277H0 < Fon.
Sobolev embeddings imply that [|Q||? . < €9y < 1 for some 6 > 0, so

2 9 2
(1) %o < [V IVal < QI S [ D 20| IVl S Fonk.
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This estimate then yields the G! estimate in (4.8).

In V*N=1G2? there are terms of the form 9°7Q0 u with Q = Q(A, B, K) a polynomial and
B,7 € N3 with |3] = 4N, |y| = 1. Again, Sobolev embeddings imply that HQ”gcl( SENS
S0

(4.12) HaﬁanuH S 1Q12: HaﬂnmuH 5HaﬁﬁmuHZ+Ha%vam”j+Hvaﬁﬁmuﬂz

_ _112 2 2 2
< HVA‘NnHO HVuHCq(Q) + HVA‘NHUHO IVullzee S lInllin—1/2 IVulls + KFon
< EonDon + KFon,
where again we have used Lemma A.5 and Sobolev embeddings. This estimate yields the G2
estimate in (4.8).
In D*N=1G3 there are terms of the form 9°nQd7u, where 8 € N? with |3| = 4N, v € N3

with || = 1, and @ is a term for which we can estimate ||Q||%1( ) S &Yy < 1. Then Lemma
A.2 implies that

@13)  ommQora| < (o0, 10z S iy 1QUE 0l < Fonk.

where in the last inequality we have used ||Vul|2 o1y S K, which follows since Vu and V2u are

continuous on the closure of (2. This estimate yields the G estimate in (4.8).
In D*N=1G* the exceptional terms are of the form 9%u;, where 8 € N? with |3| = 4N and
i =1,2. Then Lemma A.l implies that

Souill? < |6 2
s o 5 o Wt 5 7
This estimate yields the G* estimate in (4.8). O

4.3. Estimates of other nonlinearities. The next result provides estimates for ZyG* and its
derivatives.

Proposition 4.3. We have that

(4.15) G + | TAG2 |5 + | 120G2 5 S Ean min{Ean, Don'}
and

(4.16) IZ:G3|)? + | T2 G|} S Eon min{Ean, Do}
Also,

(4.17) 7,62 < D3y

Proof. For each i = 1,2 and for o € N'*3 such that |a| < 2 we can write 9*G? = P.Q? , where
P! is polynomial in the terms 8°b, 9°K, 8%, and 8°u for 3 € N't3 with || < 4, and Q7 is
linear in the terms 9°Vu, 9°V2u, and 9°Vp for |3| < 2. Then we may employ the bound (A.9)
of Lemma A.3 to see that

o vi||2 i||2 i 2\ 2\
(118) loema (< 1PN (I@ull)” (Imail?)

It is then easily verified, using the Sobolev embedding, Lemmas A.1, A.5, and A.6 and the fact
that &pn < 1, that

(4.19) I1Pi]lg S Ean amd Q%

which, together with (4.18), implies (4.15).

For i = 3,4 and a € N? so that |a| < 1, we may similarly decompose 0°G! = P.Q!,. We
then argue as above, employing the bound (A.10) of Lemma A.3 as well as trace estimates, to
deduce (4.16). The bound (4.17) also follows from Lemma A.3 and trace estimate since

A 1-X
(420 TG Sl (10915)" (I1D%0]) " < PanDINDsR* = Di.

H2 < min{&pn, Doy},
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Now we provide some further estimates of product terms that will be useful later when we
analyze the energy evolution for Zyu and Z)n.

Lemma 4.4. It holds that

2
(4.21) |IZA[(AK)dsus + (BK)dsus] g + > _ |1 Ta[udiK]|I5 < Diy
=1
and
(4.22) IZo[(1 = K)u][2 S (Ean) Y/ OHN (D) 12D/ (1Y)
Also,
(4.23) |IZA[(1 — K)G?)|)2 S EanDiy-

Proof. We apply Lemma A.3, treating the AK, BK,J; K terms as f and the u, Vu terms as g,
to bound

2
(4.24) | ZA[(AK)dsuy + (BK)dsua]|lg + > 1ZA[udi K]|[;
i=1
S (JAK|§ + |BK|)§ + | DE|) [[ull3 -
From Lemma 2.4, the fact that 0, K = —K?29;.J, and Lemma A.5, we know that
(4.25) IAK 3+ IBE|[; + | DKl < VAT < 1Dnl} < Do

Then, since Hu||§ < Doy, we know that (4.21) holds.
Now, since 1 — K = K(1 — J), we can again use Lemmas A.3 and 2.4 to see that

(4.26) IZAI — K)ullg S 15— Dl llullz S 1717 llullz -

To control 77 we use Lemmas A.5 and A.7 to bound

@.27) |al? < nld + | Dall3

< (imald) ™ (1ot ™+ (i)™ (o)™

< (52N)1/(1+)\) (DzN))\/(1+)\) )

~

Then (4.22) follows from these two estimates and the fact that |jul|3 < Day.
For the estimate of the (1 — K)G? term, we once more use Lemma A.3 to see that

(4.28) |71 - K)G|2 < || 63211 - K 2.

By differentiating the equation JK = 1, we may compute the derivatives of K in terms of the
derivatives of J; this allows us to bound, by virtue of Lemmas 2.4 and A.5,

(4.29) 11— KI5 S 1705 < Inlls < g+ 1DnllF -
Then we may argue as in (4.27) to estimate the right side of this inequality, and we deduce that
(4.30) 11— K3 < (Ean) "0 (Do) MY
On the other hand,
2 _ _
(4.31) 1G?]5 S IVullg (171170 + 11971 700)-

We estimate the L™ norms by using (A.25) of Lemma A.6 first with ¢ =0, s =1, 7 = A2 + X
and then with ¢ =1, s = 1, r = A? 4+ 2 to see that

(4.32) NllZoe + IVllZ00

S (\IAUHS)A/(AH) <\|Dn||g)1/(”1) n (”IWH(Q))A/(AH) ({‘Dzn“?))l/(k-&-l)

S (52N))\/()\+1) (DZN)I/(/\+1) )
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Then, since HVqu < Doy, we have that

(4.33) HG2H(2) < (52N),\/(A+1) (D2N)1+1/(,\+1) ’

which yields (4.23) when combined with (4.28) and (4.30). O
Now we provide an estimate of 65/4 when j = 2N + 1 and when j = N + 3.

Lemma 4.5. We have that

(4.34) Ha,?N“AHz < Dan,

while form =1, 2,

2
(4.35) Haf?“?’AHO < Dyyo.m.

Proof. We will only prove (4.34); the bound (4.35) follows from similar analysis. Since we have
2

that H@tQN +17]H 2 < Doy and temporal derivatives commute with the Poisson integral, we may
1

employ Lemma A.5 to bound

2 2 2 2
sy [ eial, = b el vl < o], < 2o

From this we easily deduce that

(4:37) Jeisra] o+ o ] < 2o

This, the previous bound, an<~i the Sob01~ev embeddings then imply (4.34) since the components

of A are either unity, K, 010K, or 0,nbK. O
5. ENERGY EVOLUTION USING THE GEOMETRIC FORM

5.1. Estimates of the perturbations when 0% = 9, is applied to (1.9). We now present
estimates of the perturbations F?, defined by (2.13)—(2.22) when 0% = 9%V,

Theorem 5.1. Let 0% = 0} and let F', F?, 3, F* be defined by (2.13)-(2.22). Then
(5.1) [ lg + 2 TE) g+ [ E¥IG + [|E*lg < E2n Do

Proof. We first consider the F'! estimate. Each term in the sums that define F! is at least
quadratic. It is straightforward to see that each such term can be written in the form XY,
where we X involves fewer temporal derivatives than Y, and we may use the usual Sobolev
embeddings and Lemmas A.1 and A.5 along with the definitions of &x and Doy to estimate

(5.2) IX[|Zo S E2v and [[Y[[§ S Do
Then ||XY||S < ||X||%Oo ||Y||3 < EnDon, and the F! estimate in (5.1) follows by summing. A

similar argument, also employing trace estimates, yields the F> and F'** estimates in (5.1). Note
though, that to estimate the 3 = o term in F3!, we use Remark 2.2 to replace (p — 7).

The same analysis also works for ;(JF?!) and shows that H@t(JFQ’l)Hé < EnDoy. To
handle 9;(JF?%?) we must also be able to estimate H(?ENHA

to Lemma 4.5. Then a similar splitting into L> and H° estimates shows that ||9;(JF 2’Z)H(Q) <
EnDan, and then the 9;(JF?) estimate in (5.1) follows since F? = F2! 4 F22, O

2
’0 < Dy, but this is possible due

We now present estimates for these perturbations when 0% = é?tN +2,

Theorem 5.2. Let 9% = N2 and let F', F2, F3, F* be defined by (2.13)-(2.22). Then for
m = 1,2 we have

(5.3) IF)2 + [[0:(TE2)2 + | F2))2 + [|FYly S E2nDivsam.
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Also, if N > 3, then there exists a 8 > 0 so that
2
(5.4) 1F?[l; S EnEnsom
form=1,2.
Proof. The proof of (5.3) is essentially the same as that of Theorem 5.1. For the F!, F3 and F*
estimates we note that each term in their definition is of the form XY where X involves fewer

temporal derivatives than Y, which involves at least two temporal derivatives. We estimate
||X||%oo < &y and ||Y||g < Dn42,m and then sum to get (5.3). Note that since Y involves

~

at least two temporal derivatives, there is no problem estimating it in terms of Dy42,,. The
Or(JF?) estimate works similarly, except we must also use the bound (4.35) from Lemma 4.5.
Note also that in estimating the 8 = « term in F*! we must employ Remark 2.2 to remove

(p—m).
We now turn to the proof of (5.4). Recall that F? = F?! + F?2. Since the sum in F?! runs
over 1 < 3 < N + 1, we may bound

2 2
63 [Pl S [l o]
1<BSN+1

2

S 1<[;V+1 Ean HatNH /BUHQ(N+2)72(N+275) S Enéntom.
For F22 a calculation reveals that
(5.6) F*? = 0N 4;;0u; = =0} T2 Ai30su;

= N T2(O17bK ) O3uy + ON T2 (0efbK ) D3ug — O T2 K O3us.

We may use the L™ interpolation estimate of Proposition 3.9 to bound H(‘)guiH%oo S Enta,m for
i =1,2 and m = 1,2, which then implies that
(5.7) |0+ @i ) + 0 @b | < Exnniam

if we estimate d3u; in L° and the 8tN+1 terms in H%. On the other hand, the relation JK = 1,
the Leibniz rule, and Lemma A.5 imply that

2
CRINN 0 3 I S (] = S [ T S (o 07 P

1<y<N+42 1<y<N+42 1<y<N+42

2
2
= 0 G+ 02|, S Enam +||oN 4|
1<y<N+1 /

2

12

To handle the last term we must use the standard Sobolev interpolation (3.46) with s = r = 1/2
and ¢ = 2N —9/2:

oo Jorafl, = (o) (looal, ) s @i

for k = (AN —8)/(4N —9). Then

2 2
o s T B

S Eniom 103us]| 700 + (Ent2,m) (Ean)' ™ ||O5us|7 s -

For the first term on the right we bound [|93u3|7 < Ean, and for the second we use the L™
interpolation bound of Proposition 3.9 with » = 1/2 so that 2/(2 4+ r) = 5/4 > 1 — k and

|05u3 )| < 8]2\,&22;? S Sjl\,jr’gm Then these estimates and (5.10) imply that

2
(5.11) Ha,fVHK%U?)HO S Envam(Ean)' ",
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We then combine (5.6), (5.7), and (5.11) to see that

2 —K
(5.12) 1F?2||5 S Envam(Ean)' ™"
Then the estimate (5.4) follows from (5.5) and (5.12). O

5.2. Energy evolution with the highest and lowest count of temporal derivatives.
We now show the time-integrated evolution estimate for 2/N temporal derivatives.

Proposition 5.3. There exists a 8 > 0 so that

t t
(513)  [oPNu®)]o + |07 n(®)ll; + /O DOV ul[} < Ean(0) + (Ean (1)) + /0 ESNDan.
Proof. We apply 0% = 92V to (1.9). Then v = 9?Nu, ¢ = 0?"p, and ¢ = 9?"n solve (2.1)

with F?, i = 1,2,3,4 given by (2.13)-(2.22). Applying Lemma 2.1 to these functions and then
integrating in time from 0 to t gives

(5.14) 1/J\02N = /\a?N = //J\DAaZNu\ /J|62N )
/‘a?N } +// 82NU F1+82NpF2 // 82NU F3+82N7’]F4

We will estimate all of the terms involving I on the right side of this equation.
We begin with the F! term. According to Theorem 5.1 and Lemma 2.4, we may bound

t t t
(5.15) / /QJafNu F' < / 07N wl|o 171l oo || FM]l S / V' Daon v/ EnDan
0 0 0
t
= / V/EnDan.
0
Similarly, we use Theorem 5.1 and trace theory to handle the F3 and F* terms:
t t
16) [ [ <opu oo urt < [ Rl 7], + 1080l |,

t t
< [ (0l +1080l) VEDay < [ VEawDa.

For the term Q?N pF?, there is one more time derivative on p than can be controlled by Doy .
We are then forced to integrate by parts in time:

an) [ [ o¥part = [ [ 0¥ o 0rh + [ @V pIFw ~ [ (@RI 0,

Then according to Theorem 5.1 we may estimate
t ¢ t
(5.18) —/ /8t2N1p8t(JF2)§/ HalepHOHat(JFQ)HO,s/ /Don/EonDon
0 Jo 0 0
t
= / VEnDan.
0

On the other hand, it is easy to verify using the Sobolev embeddings that

(5.19) /Q (N pIF2) (1) — /Q (PN 1T F2)(0) < Ean(0) + (Ean(£)*/2.

Hence

t t
(5.20) / / 3t2NpJF2 SJ 52]\[(0) -+ (€2N(t))3/2 + / v/ EanDaon.
0 JQ 0
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Now we combine (5.15), (5.16), and (5.20) to deduce that

t
(5.21) 1/J\at2 OF + = /\a t)\2+1/ /J\DAafN
2 Ja 2Jo Ja
t
S Eax(0) + (En () + | VEnDay.
0

We now seek to replace J|}D>A8t2Nu‘2 with }]D)(?fNu‘Q and J‘(?t?Nu(t)‘z with |8t2Nu(t)}2 in
(5.21). To this end we write
(5.22)

J ‘ID)A@?NU}Q = ’]D@tzNu’z +(J-1) ‘D@?Nuf +J (ID)AOENU + ]D@,?Nu) : (ID)A@?NU - ID)@ENU)
and estimate the last three terms on the right side. For the last term we note that
(5.23) DA u £ DO u = (Aig + 031 ) 060N uj + (Ajg £ §i5) k07 us

so that Sobolev embeddings and Lemma A.5 provide the bounds
(5.24)
D0 N — DN u| < Véon |VOFNu| and |Da0Nu+DOFNu| < (14 v/ Ean) [VOFVul .

We then get
t
(5.25) / / | T (D0 u+ DN w) (D07 u — DOFVu)|
0 JQ

t t
S [ Vew+ew) [ Va5 [ VEnDa.
0 0

Similarly,

(5.26) / / |J — 1] Do u \ / V/EnDoy and / |J —1]|0FN u(t \ (Ean ()32,
We may then use (5.22) and (5.25)-(5.26) to replace in (5.21) and derive the bound (5.13). O

Now we prove a similar result for when (?tN +2 i applied. This time, however, we do not want
an inequality that is integrated in time, so we are forced to introduce an error term involving
oNFp.

Proposition 5.4. Let F? be given by (2.19) with 0% = 85\[”. Then it holds that
2 2 2
(5.27) & (Hﬁaﬁ+2uH0+ HatN“nH —2/ JagV“pF2> v HD@N”UHO < /EnDyiam.
Q

0
Proof. We apply 0% = 315\”2 to (1.9). Then v = aiVJrQu, q= 8,5\”2;0, and ¢ = 8£V+217 solve (2.1)
with F' i =1,2,3,4 given by (2.13)—(2.22). Applying Lemma 2.1 to these functions gives

(5.28) at@/ﬂj‘azm Pl /‘8N+2n’> / D0

B / J@O u - F 4 0 7 pF?) +/ —NT2y . F3 4 N2t
L b

We will estimate all of the terms involving F* on the right side of this equation as in Proposition
5.3.
We begin with the F! term. According to Theorem 5.2 and Lemma 2.4, we may bound

(5.29) /QJ(?tN“u P < H@fVHuHO [Tz |1FMo S vV DNt2m/E2NDNso,m

= \/ENDNt2,m.
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Similarly, we use Theorem 5.2 and trace theory to handle the F3 and F* terms:

(5.30) /—8{V+2u-F3+8§V+2nF4§ HatN”u‘
by

oy 10 o 11

S (HatNHuul + ‘ 85\[”77”0) VENDN12.m S VENDN 12.m-

For the term 8?7 +t2pF2?, there is one more time derivative on p than can be controlled by
Dy +2,m- We are then forced to pull out a time derivative:

(5.31) /Qag\f“pJF?:at/ﬂatN“pJF?—/Qagvﬂpat(JF?).

Then according to Theorem 5.2 we may estimate

(5.32) —/Qﬁ,fvﬂpat(JFZ)S Ha&lpHOHat(JFQ)HOg VDN 2m\/EN DN r2m

=\ ENDN12,m-

Hence

t
(5.33) | [ prr® s [ o par? + Ve Drsam.
0 JQ Q

Now we combine (5.28)—(5.30) and (5.33) to deduce that

1 2 1 2 1
(5.34) 0, (2/J‘agv+2u‘ +2/ ‘@N“n} _/agVHpJF?) +2/J‘DA('3§V+2u
Q ¥ Q Q

S VENDN12,m-

’ 2

We may argue as in (5.22)—(5.26) of Theorem 5.3 to show that

1 1 2
(5.35) 2/ ‘D@tNHu 52/ J‘DAQ{V”u‘ + V/ENDNs2m.
Q Q

Then (5.27) follows from (5.34) and (5.35). O

‘ 2

Finally, we record the basic energy estimate when no derivatives are applied.

Proposition 5.5. It holds that

1 1 1
(5.36) B (/ Jyu\2+/ |n!2> +/ J D gul* = 0.
2 Jo 2 Jx 2 Jo

In particular

t t
(5.37) la®) 2 + ()] + /0 IDull? S Ean(0) + /0 V/EnDan.

Proof. Setting F' = 0 in Lemma 2.1 for i = 1,2, 3,4 yields (5.36). We may argue as in (5.22)—
(5.26) of Theorem 5.3 to estimate

1 1
(5.38) 2/ Duf? < 2/ J Dauf® + v/Esn Do
Q Q
Similarly, Lemma 2.4 allows us to estimate
1 2 _ 1 2
(5.39) / ul </J|u .
4 Q‘ 2 Jq |

Now we may integrate (5.36) in time from 0 to ¢ and use these two estimates to derive (5.37). O



DECAY OF VISCOUS SURFACE WAVES WITHOUT SURFACE TENSION 41

6. ENERGY EVOLUTION IN THE PERTURBED LINEAR FORM

6.1. Energy evolution for horizontal derivatives. We now estimate how the evolution of
the horizontal energy is coupled to the horizontal dissipation and the full energy and dissipation.

Lemma 6.1. Let a € N? be such that |a| = 4N, i.e. let 0% be 4N spatial derivatives in the
1, xo directions. Then

(6.1)

/ 2°n0°*G*| < /EanDan + VDanKFon.
>

Proof. Throughout the proof 3 will always denote an element of N, and we will write D f-0%u =
01 fOPuy + Do fOPuy for a function f defined on ¥. Then by the Leibniz rule, we have that

(6.2) 9°G* = 0%(Dn-u) = DOy - u+ Z Co s DO Pr - 0Pu + Z Co.3 DO Py - 0Pu
0<B<a 0<B<a
181=1 181=2

for constants C, g depending on o and 3. We will analyze each of the three terms on the right
separately.
For the first term, we integrate by parts to see that.

(6.3) /8“77D8°‘77-u: 1/D|8an\2‘u:—1/ 0n0*n(01u1 + daug).
> 2 Js 2 Js

This then allows us to use (A.3) of Lemma A.1 to bound

(6.4) ‘/ 0“nDIn - u
%

S |‘8a77||1/2 ||3a77(81U1 + 82“2)”1171/2(2)

S Anllans1/2 10%011 1 jo [|O1u1 + Baun| g2
< ”77”4N+1/2 1 Dnl[ 4 3/2 [[01us +82U2”H2 < v FanDanK.

Similarly, for the second term we estimate

2
©5) | [0 3 CosDo"Pn-0%u] £ D D0l S 1Dl
0‘2‘5@ i=1

< HUH4N+1/2 D0l 4 3/2 Z HDUz”H2 < VFanDanK.
=1

For the third term we first note that [[0%n[|_ 5 < ||Dnllny_5/2 < v/Dan, which allows us to
bound

(6.6) < 0°n]|_yy || DO - 07

/ 9°nDO* P . 8%y
b

H/2(%)
< /Don HD&O‘ By . 8%u H

We estimate the last term on the right using Lemma A.1, but in different ways dependmg on

16:

H1/2

[Do*Pnl], )y 070l yasy  for 2 < |B] < 2N
HD(?O‘ BT]HQ H8 UHH1/2 for 2N +1 < |B| < 4N

< 1Dnllan—s/2 lulloyys  for 2 <[B] < 2N
HD77H2N+1 ||U||4N+1 for 2N +1 < |B] < 4N

H/2(% ~

(6.7) HDBO‘ By . 8% H <{
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so that HD(‘)a_ﬂn . aﬁuHHm(Z) S VENDay for all 0 < § < a with || > 2. Hence

(6.8) [0 Y CapD*Pn-0%) S /Do v/EuxDax = VE Do
z 0<fB<La
|8|>2
The estimate (6.1) then follows from (6.4), (6.5), and (6.8). O

Now we prove an estimate for horizontal derivatives up to order 2N, excluding 9% = 92" and
no derivatives.

Proposition 6.2. Suppose that o € N2 is such that oy < 2N — 1 and 1 < || < 4N. Then
there exists a 6 > 0 so that

1 1 1
69 o (g [mu e g [10m?) + 5 [ 1DouP S Do + v/ Bank,
Q x Q

and in particular,
(6.10) HDj“V‘lqu + || DDy + HD%N‘%HE +|[DDWN 1|2

t B 2 _ 9 B t
+/ HD%N_l]D)uHO—F DD 'Du? S E;n(0) +/ £\ Don + /DanK Fax.
0 0

Proof. Let a € N'*2 satisfy ap < 2N — 1 and 1 < |a| < 4N. Note that the constraint on ag
implies that we do not exceed the number of temporal derivatives of p that we can control.
An application of Lemma 2.3 to v = 0%, q = 0%, ¢ = 0%y with ®' = 9°G!, 2 = 9°G?,
P3 = 9°G3, d* = 9°G*, and a = 1 reveals that

6.11) 9, (1/ ]8“u!2+1/ \3%\2) +1/ \]D)ao‘u\Q:/8°‘u-6°‘G1+80‘p80‘G2
2 Jo 2 s 2 Ja Q
+ / —0% - 0°G® + 9“no*G*.
b))

Assume initially that 1 < |o| < 4N — 1. Then according to the estimates (4.7)—(4.8) of
Theorem 4.2 and the definition of Dy, we have

(6.12) < [[0%ull |G|, + 19°pl, || 0*C2

ly

S VDan \/529N172N + KFon S ENDan + vV DanKFon,

where in the last equality we have written k = 6/2 for § > 0 the number provided by Theorem
4.2. Similarly, we may use Theorem 4.2 along with the trace estimate ||0%ul zo(x) < [[0%ull; <

vV DQN to find that

/ 9% - 9°G! + 8%pd*G?
Q

(6.13) < 0%ull yosy 10°G?|, + 0°nll, [|0°G*

ly

S VDan \/529]\77)21\/ + KFon S ENDan + v/ DanKFon.

Now assume that || = 4N. Since ag < 2N — 1, we may write « = § + (o — ) for some
B € N? with |8| = 1, i.e. 9“ involves at least one spatial derivative. Since |a — 3| = 4N — 1, we
can then integrate by parts and use (4.8) of Theorem 4.2 to see that

/ 9%u - 9*G!
Q

< [|0%ull, HleflGlHO N VD2N\/529ND2N + KFon S ESnDan + V DanKFon.

/ —9% - 9°G® + 9°nd*G*
¥

(6.14)

/ 8a+ﬁu . aa*ﬁGl
Q

<]

o7l |
0

!
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For the pressure term we do not need to integrate by parts:

(6.15) ‘/ O*pd*G*
Q

< 0%l o207 < 10%l, IV V161,
< VDan\ /€4y Dan + KFa S E5xDav + /DonKFan.
We integrate by parts and use the trace estimate H'(Q) — H'/?(X) to see that
/ 0%u - 0°G3| = / 9Py - 927 PG3| <
b b

S ||8aU/HH1/2(E) HD4N_1G3

(6.16)

o

<o oul |

< [l9*ull, HD‘*N G

1/2
/2 /2

S VDan \/529N172N + KFon S ENDan + vV DanKFon.

For the term 80‘7780‘G4 we must split to two cases: ag > 1 and ag = 0. In the former case, there
is at least one temporal derivative in 9%, so [|0%]|; , < v/Dan, and hence

/ e < ‘
>

< 10%nllyj |DN G, 1S \/DQN\/egNDQN + KFon < ESyDan + /DanKFan.

In the latter case, ag = 0, so that 9% involves only spatial derivatives; in this case we use Lemma
6.1 to bound

(6.17)

aa-i-ﬂnH

ol

— /8°‘+/Bn6a_ﬂG4
b

71/2‘ 1/2

(6.18)

/ 8“1780@4 5 \/ggNDQN + vV 'DQN]CfQN.
2

Now, in light of (6.11)—(6.18) we know that (6.9) holds. The bound (6.10) follows by applying
(6.9) to all 1 < |a| < 4N with ap < 2N — 1, summing, and integrating in time from 0 to ¢. O

Our next result provides some preliminary interpolation estimates for G? and G* in terms of
the dissipation at the NV + 2 level, but with a power greater than 1.

Lemma 6.3. We have the estimate

(6.19) HD2N+3G4H1/2 < (DN+2’2)1+2/(4N77) .

Also, there exists a 6 > 0 so that

6200 DG S el (Dyaa)™ VD and DGV 5 el (Dvaas) /O
Finally,

(6.21) HDG?Hi1 <&l (DN+2,1)1+)\/()\+2) and HDQGZHil <&l (DN+2,2)1+>\/()\+3) ‘

Proof. Let a € N2 be such that |a| = 2(N + 2) — 1. The Leibniz rule, Lemma A.1, and trace
theory imply that
(6.22)

o653 Dol

a—p G
S IS SR Pt I

S
|B|§N+2 N+3<|B|<2N+3

0l

lyy2 < H2(s)
S 100l na HDJQVT{?)“HI + HD377H2(N+2)—5/2 HUHHN+2(E) ‘

Trace theory, Poincaré’s inequality, and the H°(€Q) interpolation result for Vu of Lemma 3.14
imply that

(6.23)  Ilullvsamy S leldog) + DY+ 2ull oy S 190l + [ DY*2ul]

< DE@E}Q/(M?’) + (& N)(/\+2)/(/\+3) (DN+2’2)(A+1)/(>\+3) < 17](\?:217)2/“%)-
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Since N > 5 and A € (0, 1), we may define
__ 8N4+2, -8  _[8N-6 8N-8
CAN(1+XA)—9A—13 ~ |8N —22"4N — 13

Using this ¢, r = 1 and s = 2(N + 2) — 5/2 in the standard Sobolev interpolation inequality
(3.46), we find that

(6.24)

] C [1,2N —9/2).

a/( 2 1/(1+q)
(6.25) HD377H2 N+2)—5/2 ~ <HD377H2 N+2) 7/2) (HDSnHQ(N—i-Z)—5/2+q>

< (Do) D (£,)V/ 0D < (Do 5)90FD)
Our choice of ¢ implies that

A+1 q 2
6.26 —t—— =14 ——=
(6.26) "+3 Tgrl T Tav—7
so that (6.23) and (6.25) then imply that
(6.27) 1Dl 50252 NllFrvsz(sy S (Dnvaag) N0

The H°(X) interpolation result for Dn of Lemma 3.1 implies that

(6.28)  1Dnll3sq S I1D0IIE + D0l 5 1

(A+2)/(A+3)
S DU+ (10703 1) (ID%nll3..

< D](\?ii)2/(x+3) + (& N)(A+2)/(>\+3) (DN+2’2)(>\+1)/(/\+3) < D](\?\i-217)2/()\+3)‘

) (A+1)/(A+3)

On the other hand, using the same ¢ as above and Lemma A.12, we have

020) [|pR], = (oRss] )™ ([PR%E] )

< (Dni2 2)q/(1+tz) (52N)1/(1+q) < (Dn42 2)tz/(lJrq) )
Then (6.28) and (6.29) imply that

(6.30) 10013 pa [ DREL]| S (Daviz) 20N

We then combine (6.22), (6.27), and (6.30) to deduce (6.19).

We now turn to the proof of the bounds (6.20) and (6.21). The bounds (6.20) may be deduced
by applying an operator 9% with a € N'*2 satisfying either |a| = 1 or |a| = 2 to G*, and then
estimating the resulting products with one norm taken in H" and the others in L, employing
the H° and L™ interpolation estimates for n,u and their derivatives recorded in Lemma 3.1,
Proposition 3.9, and Theorem 3.14. The bounds (6.21) may be deduced similarly except that
at least two terms in the resulting products must be estimated in H° to deduce the resulting
L' bounds. This presents no problem since G2 is a linear combination of products of two or
more terms. U

With this lemma in place, we may record the estimates for the evolution of the energy at the
N + 2 level.

Proposition 6.4. Suppose that m € {1,2} and a € N2 is such that ap < N + 1 and
m < |a| <2(N +2). Then there ezists a 0 > 0 so that

(6.31) or (lo°ullg + 19°n]1§) + DO ul} S ENDs2m-
In particular,
(6.32) 0, (|| D2 +ullg + [DD*Nully + | D2 n|fs + | DD+ 0)

+ || D2V 3D + | DD Du| < EINDrs2m.
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Proof. For m € {1,2} and o € N'*2 such that ap < N + 1 and m < |a] < 2(N + 2), we argue
as in Proposition 6.2 to deduce that (6.11) holds. Let X, denote the right hand side of (6.11)
for our range of a. To bound X, we break to three cases.

Im+1<|a| <2(N+2)—1or|a] =2(N+2) with 1 <oy <N+ 1, then we know from
trace theory and the definitions of D42, that

(6.33) 10%ullg + 10°PlIG + 110Ul Fr1 /25y + 10°n1T )2 S P+2m-

This allows us to argue as in Proposition 6.2, employing Theorem 4.1 in place of Theorem 4.2,
to bound

(6.34) | Xa| S ENDv2.m

for some 6 > 0.
Now consider |a| = 2(N + 2) with ap = 0. In this case we still know that

(6.35) [0l + 19pI2 + 107wl 25y S Drv-rzm:

so we may argue as in Proposition 6.2, integrating by parts and using these bounds as well
as those from Theorem 4.1 to show that the first, second, and third integrals in the definition
of X, are bounded by EY\Dni2m. For the fourth integral, we control ||(9°‘77||?/2 through the
interpolation estimate of Lemma 3.18:

o 2 _ _ _
636 10 < (DNl S (Eax T (D) OV,

)

Then we may integrate by parts with o = 8+ (o — 3), | 5] = 1 and employ this estimate along
with (6.19) of Lemma 6.3 to see that

/ 0“no*G*
%
< ”aoan1/2 HD2N+3G4H1/2 g \/(gZN)Z/(4N_7) (DN+272)(4N_9)/(4N_7) \/(DN+2,2)1+2/(4N_7)

= (52N)1/(4N_7) Dni22 < (52N)1/(4N_7) DNi2,m.

(6.37)

/ aa+ﬁnaa75 G4
P

<]

8a+ﬂnH

-

—1/2‘ 1/2

Hence, when |a| = 2(N + 2) with ap = 0 we also have that there is a § > 0 so that
(6.38) 1 Xa| S ESNDN12m-
Finally, we consider the case of |a| = m for m = 1,2. In this case we only know that
2 2
(6.39) 10%ully + [10%ul[f1/2(2) S PN+2,m,

so only the first and third integrals of X, may be handled directly as above to be bounded by
529 NDnN42,m. For the fourth term we first use the H (%) interpolation results of Lemma 3.1 and
Theorem 3.16 to bound

2
(6.40) ”DUHS < (DN+2,1)(A+1)/(’\+2) and HD277H0 4 HamH?) < (,DN+2’2)(>\+2)/(/\+3)_
Then by (6.20) of Lemma 6.3, we know that

< l[9*nll, [|o°G*

(6.41) ’/Ea“naac:‘* I

\/(DN+2’1)(A+1)/(>\+2) \/5291\1 (DN+2’1)1+1/()\+2) for m = 1
\/(DN+2’2)()\+2)/(>\+3) \/5291\/ (DN+2’2)1+1/(>\+3) for m — 2

< ENDrs2m.

S

For the third term we first use Lemma A.8 to bound

2
(6.42) IDp|f3 o < (Dis2,0)? P2 and || D]y + [0im]13 S (Davsa,2)® AT
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Then by (6.21) of Lemma 6.3, we know that

/ 9pd*G?
Q

<

(6.43)

< H@“pHLoo HaaGQHU

\/(DN+2,1)2/(>\+2) \/529N (Dny2) VA form =1
\/(DN+2,2)3/(A+3) \/ 8 (Do) ™M for m =2

< ENDrs2m.

Hence when |a| = m for m = 1,2 it also holds that

(6.44) | Xa| S ESNDN12m-
Now, by (6.34), (6.38), and (6.44) we know that (6.31) holds. The bound (6.32) follows by
summing (6.31) over the specified range of a. O

6.2. Energy evolution for 7 u and Z,n. Before we can analyze the energy evolution for Zyu
and Z)n we must first prove a lemma that provides control of Zyp.

Lemma 6.5. It holds that

(6.45) IZ\pllg < Eon, and

(6.46) IZ3DpII5 < (E23)™ Y (Do) VO

Proof. Let o € N2 be such that |a| € {0,1}. We may apply Lemma A.10 to see that
(6.47) 10°Tapll§ S 10°Zapll o s + 11050°Tapll; -

In order to estimate each term on the right we will use the structure of the equation (2.23).
Indeed, using the boundary condition, we find that

2
(6.48) 10°Tapl oy S 0Tl + 107 Tadsus] Frogsyy + [|0°TAG?|, -
Trace theory and the divergence equation in (2.23) allow us to bound
2
(6.49)  [|0*Zxdsus| Fro(sy S 10°Tadsusll; < [|0*ZAG?([] + [|0*ZaDul}
2
< IZaDullz + [ 2625

regardless of whether || = 0 or 1. To estimate this Zy Du term we apply Lemmas A.4 and A.13
to see that

2 2 A 1-A

2 2 2

(6.50) IZDuly £ Y ||movhu| 3 (Hv’m”(]) <HkauH0> < 2.
k=1 k=1

By chaining together the bounds (6.48)—(6.50) and employing the G estimates of Proposition
4.3, we deduce that

(6.51) 10°Tap |0y < 10°Tanll + llull3 + Eon min{Ean, Dan}-
Now we estimate d30“Z\p by using the first equation in (2.23) to bound
2 2 2
(6.52) ||8O‘IA63pH§ < Haaz)\atu:),Hg + HaaZ)\DQUHO + ||8“IA8§U3HO + H(?O‘IAGlHO.

When |o| =1 we can use Lemma A.4 to see that
le' 2 < 2 < 2 A 2 1=A 2
(653)  10°Tdwsly S I1TDowusl S (I0rusllf)” (1DGrusllf) < 0}

When |a| = 0 we cannot use Lemma A.4 directly, so we first use Poincaré’s inequality and the
divergence equation in (2.23), and then use Lemma A.4:

2
(6.54) | Tadsusly S 105Tx0hus|f = | Tx0:dsusll S (| Ta0G? |y + |1 ZTxDdsulg
2
S 1220 G?| + N|Oeull; -
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Then (6.53) and (6.54) imply that, regardless of whether |a| = 0 or 1, we may bound

o 2
(6.55) 10°Txusllg S || Zx0eG|;, + [10rull; -
The term 9°Z)D?*u may be estimated as in (6.50):
o 2
(6.56) |0°Z\D?ul|; < [lull;-

To estimate the term 0°Z,03u3, we again use the divergence equation to bound
2 2 2
(6.57) |0°Z\03us||; < [|0*Tr05G2 || + 107203 Dullf S ||0*Ta0sG2 |, + llull3

where in the second inequality we have again argued as in (6.50). Then (6.52) and (6.55)—(6.57),
together with Proposition 4.3, imply that

(6.58) 10°T205pll5 < Il + 19pull} + E2 min{Eay, Dan}.
The estimates (6.51) and (6.58) may be combined with (6.47) to show that
(6.:59) [0°Tapll < 10°Zanllg + llulls + 18ull; + Exy min{Ean, Don}.

When |a] = 0 we bound the first three terms on the right side of (6.59) by £n and use the fact
that £25 < Ean < 1 to deduce (6.45). When |a| = 1, we first use Lemma A.7 to bound

)\/(1+>\)< )1/(1+A) < (EZN))\/(1+)\) (DZN)1/(1+A)'

~

(6.60) 10°Zynlly < IDTnlly S (IZanlf) 1Dl

Then we use the fact that &n < 1 to bound
(6.61) Exn min{Ean, Doy} < (min{Ean, Doy })N T (min{&on, Doy }) /Y
< (52N)>‘/(1+>‘) (DQN)I/(H’\) )
Similarly, since Hu||§ + ||8tu||f < min{&pn, Doy}, we have
(6.62) ull3 + 10eullf < (E2)™ Y (Do) /Y.
We then combine (6.59) with (6.60)—(6.62) to deduce (6.46). O

Our next lemma provides a bound for the integral of the product ZypZyG?. The estimate is
essential to analyzing the energy evolution of Zyu and Zyn.

Lemma 6.6. It holds that
(6.63)

/IAPI,\G2' S VENDan.
Q

Proof. We begin by writing

(6.64) / TLG* =1+11
Q
for
(6.65) 1 ::/IApI)\[(AK)Ogul + (BK)0d3usg], and I := / IpZx(1 — K)Osus.
Q Q

The term I is straightforward to estimate because of the bounds (4.21) of Lemma 4.4 and (6.45)
of Lemma 6.5:

(6.66) 1] < Zpllo IZA(AK)d3u1 + (BK)dsus]|| S v/EanDaw.

To estimate the term I1, we must first use the divergence equation in (2.23) to rewrite
(6.67) (1 — K)dsus3 = (1 — K)[G? — O1uy — Daus)
so that

(6.68) II = /QI)\pIA[(l - K)G* - /QI,\pI)\[(l — K)(O1uy + Oouz)] := Iy + I15.
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For the term II; we use the estimates (6.45) of Lemma 6.5 and (4.23) of Lemma 4.4 to bound

(6.69) 11| < || Zaplly || ZA[(1 = K)G?)||y S VEany/EanDEy = EanDan.

In order to control the term I1s we first integrate by parts:
(6.70) II2 = / I)\alpz')\[(l — K)uﬂ —I—I/\agpz')\[(l — K)UQ] — I,\pIA[ulé?lK + UQagK].
Q

Then we use Lemmas 6.5 and 4.4 to estimate

2
(6.71)  |[IL| < ||ZDpllo 1Z2[(1 = K)ulllg + 1 Zaplly > _ IIZx[ud: K]l
=1

< \/(gzN)/\/(1+)\) (DQN)I/(H—)\)\/(52N)1/(1+)\) (Do) IH2V/HN | fes /D§N
= /EanDapy.

Since &y < 1, we can combine (6.69) and (6.71) to find that |II| < /& nDan, which yields
(6.63) when combined with (6.66). O

With these two lemmas in hand, we can now estimate how the energies of Zyu and Z)n evolve.

Proposition 6.7. It holds that

1 1 1
(6.72) o <2 [ | |Iw\2) +5 [ IPTl? S VEDay.
Q b Q

In particular,

1
019 3 [maleg [ty [ [ pre? S0+ [ Vet

Proof. We apply Z) to the equations (2.23) and then use Lemma 2.3 to see that

(6.74) ( /|I,\u| + = /|I)\77> /]D)I)\u| /IAU-I)\GI—FI,\])I)\GQ
Q

+/ —IAU~I>\G3+I)\’I71—)\G4.
%

We will estimate each term on the right side of the equation. First we use trace theory and
(4.15) and (4.16) of Lemma 4.3 to bound the first and third terms:

(6.75) < | Zaullg | Z2G ||, + 1 Taully | T2G?,

< VDan vV ENDan = v/ EanDan.

Tyu - I)G?
Q

+ ‘/I,\U'Z)\GB
b))

For the third term we use Lemma 6.6 for

/IAPIAGQ) S VEnDan.

Q

Finally, for the fourth term we use (4.17) of Lemma 4.3:

(6.77) /I,\nI)\GA <N Zolly |20G |, S VEny/ Diy = VEanDon.
¥

The bound (6.72) follows by combining (6.74)—(6.77), and then (6.73) follows from (6.72) by
integrating in time from 0 to t. U

(6.76)
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7. ENERGY EVOLUTION ESTIMATES

We now assemble the estimates of the previous two sections into an estimate for the evolution
of 52]\[ and DQN.

Theorem 7.1. There exists a 6 > 0 so that

(7.1) En(t) + /Ot Doy (r)dr < Ean(0) + (SQN(t))3/2 + /Ot(é’gN(r))aDgN(r)dr

t
+/ v Dan (r)K(r) Fon (r)dr.
0
Proof. The result follows by summing the estimates of Propositions 5.3, 5.5, 6.2, and 6.7 and

recalling the definition of &y and Doy given by (2.48) and (2.49), respectively. O

We can also assemble the estimates of the previous two sections into a similar estimate for
the evolution of x40, and Dy g2 m,.

Theorem 7.2. Let F2 be given by (2.19) with 0% = dN 2. There exists a 6 > 0 so that
(7.2) O <5N+2,m —2 / JoN “pF?) + Dni2m < ESNDN1om.-
Q

Proof. The result follows by summing the estimates of Propositions 5.4 and 6.4 and recalling
the definition of Eny2,, and Dyiay, given by (2.45) and (2.47), respectively. O

8. COMPARISON RESULTS

We now prove a pair of estimates that compare the full dissipation and energy to the horizontal
dissipation and energy. We will show that, up to some error terms, the instantaneous energy & n
is comparable to the horizontal energy Esn and that the dissipation rate Doy is comparable to
the horizontal dissipation rate Day. We will also prove similar results for £ N+2,m and @N+2,m~
To prove results for both 2V and N + 2, we will first prove general estimates involving D,, and
&n, and then we will specialize to the cases n = N + 2 and n = 2N. The dissipation estimates
are more involved, so we begin with them.

8.1. Dissipation. We first consider the dissipation rate.

Theorem 8.1. Let m € {1,2} and

(8.1) Yum = Vo= G o+ V562

+ DGR + D5 G + | D20
If m =1, then
n 2 nl 9
2 o+ ot 17+ X o],
n+1 ) 2
+ HD277H§7L75/2 T H3t77||3n_1/2 + jz; Hagnu%—zj%m S Drn + Ynm-
If m = 2, then
n - n=lo o
83) ||V*ul2 .+ ; |0t aian T IV°pl[5,_s + 1009DI13, s + ; |0t _
n+1 ) 2
+ D%y + 100N o + ; ] L W L
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Proof. In this proof we must use a separate counting for spatial and temporal derivatives, so
unlike elsewhere in the paper, we now only use o € N? to refer to spatial derivatives. In order
to compactly write our estimates, throughout the proof we write

(8.4) Z =Dy + VYo

The proof is divided into several steps.

Step 1 — Application of Korn’s inequality

Since any horizontal or temporal derivative of u vanishes on the lower boundary ¥, we may
apply Lemma A.12 to derive the bound

(8:5) | Dreuly < 1D%Dully = Dam.

This H'(2) bound will be more useful in what follows than an H%(Q) estimate of the symmetric
gradient.
Step 2 — Initial estimates of the pressure and improvement of u estimates
Le‘50§j§n—1andaEN2 be such that

(8.6) m <2j+|af <2n—1.
Note that if 25 + || = 2n — 1, then the condition j < n — 1 implies that |a| > 1. This means
that we are free to use (8.5) to bound

(8.7) oo tul| < D2l < 2

In order to extract further information, we apply the operator 85 0% to the first two equations
n (2.23) to find that

(8.8) 0y — AOH u + VO p = 0°0) G

(8.9) div 90l u = 9°0) G2,

Because of the constraints on j, « given by (8.6) we may control

(8.10) HWWGW+¢WWGW |DZ G + || D2 @ < 2.

We will utilize the structure of (8.8)—(8.9) in conjunction with (8.7) and (8.10) in order to
improve our estimates.

We begin by utilizing (8.9) to control one of the terms in the third component of (8.8). We
have

(8.11) 90 (D3us3) = 80 (—B1uy — yug + G?)
so that (8.5) and (8.10) imply

12) Jotorotus < |02l + D26 5

A further application of (8.5) to control (82 + 82)0“d usz then provides the estimate
(8.13) Hﬁmﬂwmﬁz-

Applying the bounds (8.7), (8.10), and (8.13) to the third component of (8.8), we arrive at a
partial bound for the pressure:

. 2
(8.14) H@W@Akgz

It remains to control the terms 6100‘0{ p and 8%6“8? u; for ¢ = 1,2. To accomplish this, we
employ an elliptic estimate of curlu := w. Taking the curl of (8.8) eliminates the pressure
gradient and yields

(8.15) %0 w = A8 w + curl(*9IGY).
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We only need the first two components wy = dyusz — O3usg, we = O3u; — drusg, for which we use
the ¥ boundary condition (2.23)

(8.16) dius + Ozu; = Dues -e; = —G3 - ¢; fori = 1,2

to derive the boundary conditions

(8.17)

w1 = 20qu3 + G3. €9 on X
W2 = —261’LL3 — G3 €1 on .

No similar boundary condition is available on ¥, so we must resort to a localization using a
cutoff function x = x(x3) given by x € C°(R) with x(z3) = 1 for x3 € Oy := [-2b/3,0] and
x(z3) =0 for x3 ¢ (—3b/4,1/2).

The functions yw;, i = 1,2, satisfy
(8.18) A9 (xwi) = x(8°9] T w;) + 2(33x) (830°0]w;) + (93x) (9D w;) — x curl(8°0] G1)

in Q as well as the boundary conditions

8a8£(xw1) = 2825"‘8gu;3 + 80‘8,{(;3 - e on Y
(8.19) 0°0] (xws) = —2010%0/uz — 0%9]/G® - e1 on %
99 (xw1) = 9°9] (xw2) =0 on Y.

In order to employ an elliptic estimate of 3% (xw;) we must first prove two auxiliary estimates.

First we derive an estimate of the H=(Q) = (H(Q))* norm of each term on the right side
of equation (8.18). Let » € H}(2). When a # 0 we may write a = 8+ (o — 8) with |8] =1
and integrate by parts to bound

(8.20) ‘/ @Xaaa{“wi
Q

| P exor o | < Nl DR,
since 2(j + 1) + |a — Bl =2j + |o| + 1 € [m + 1,2n]. We may use (8.5) for
(8.21) HXD?{‘w,-Hz < HDf,fquf <Z

Chaining these inequalities together when « # 0 and taking the supremum over all ¢ such that
lelly <1, we get

. 2
(8.22) ‘ oty <z
H*l

A similar argument without an integration by parts shows that (8.22) is also true when a = 0
since in this case the condition j < n — 1 implies that m + 2 < 2(j + 1) < 2n. Similarly
integrating by parts with 03 in the dual-pairing, we may estimate the second term on the right
side of (8.18):

. 2 _ _
(823)  [2@0@0°0w)| S (ol + [|08x] ) | DEwills S 1D2]; < 2.

The third term may be estimated without integration by parts in the dual-pairing:

(8.24) |@po@ w5 lo8xIG~ | D2l < |1 D2l 5 2.

2

H

The fourth term is estimated by integrating by parts with the curl operator and using (8.10):
. 2 _

(8.25) [xewt@ofah| | < (il + 105x117) [|DET'G o S 2.

Combining these four estimates of the right hand side of (8.18) yields

. 2
(8.26) HAaaag(Xwi) L SZfori=12
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Next, to complete the elliptic estimate of 98/ (xw;), we also need H/2(X) estimates for the
boundary terms on the right side of the first two equations in (8.19). We may estimate the
djug, i = 1,2, terms with the embedding H'(Q) — HY?(X):

2 2

(8.27) |0 onus + |0 0f ooy < |2 < z.

H/2(3) H/2(3)

On the other hand, estimates of G3 are already built into Z:

(8.28) racs| < D2 1G3|? < Vo < 2
' E lyyp = 1m /g = omm =

Since yw; = 0 on X for i = 1,2 we then deduce that

, 2

AT (v ;
0°0; (xw;) H1/2(00) S Zfori=1,2.

Now according to (8.26), (8.29), standard elliptic estimates, and the fact that y = 1 on
Q; = [—2b/3,0] we have

(8.29) ‘

(8.30) ’ 8“8{wiH2 0°0] (xwi)

2
S Zfori=1,2.
HY(Q) 1

<]

We may then rewrite
(8.31) D20°0)uy = 830°0 (wa + B1uz) and D29° ug = H30°8! (Dyus — w1)
and deduce from (8.30) and (8.5) that for i = 1,2 we have

< Z.

(8.32) Ha?,aaa,?ui ij(m) ~

2
HO

2
< HD?#ung + Z Hﬁaﬁgwk
(1) =

We then apply this estimate along with (8.5) and (8.10) to the first two components of equation
(8.8) to find that

(8.33) ‘ < Zfori=1,2.

aiaaagp(

2
HO(Q4)

Now we sum the estimates (8.5), (8.12), (8.14), (8.32), and (8.33) over all j <n—1 and a € N?
with m < 2j + |a| < 2n — 1 to deduce that

(8.34) D2 2 0y + 102 0l 0y S 2

Step 3 — Bootstrapping, n estimates, and improved pressure estimates
Now we make use of Lemma 8.2 to bootstrap from (8.34) to

2

2+m, |12 m,, |12 3 /
(8.35) ||V uHHanmfl(Ql) + D™l g2n-mr1(q,) + ; HaguHH2n—2j+1(Ql)

2
< Z.
H2n—2j—1(91) ~

Il + 3 o

With this estimate in hand, we may derive some estimates for n on ¥ by employing the
boundary conditions of (2.23):

(8.36) n=p—203u3 — G3,

(837) 8,577 = uz + G*.
Then (8.35) allows us to differentiate (8.36) to find that

838 (D02, s S 10Dy 1070505

+ HDH—mG?» vH—m v2+m

2
UHH%*mfl(Ql)
+||G?

2 2
H2n—m—3/2 S| pHH%*m*l(Ql) +]

2
H2n—1/2 S 2.
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Similarly, for j =2,...,n + 1 we may apply 8571 to (8.37) and estimate

(8.39) Hagn ’

S s

H2n— 2]+5/2

) 2
S LA S LS Sz
H2n=2(-1)+1(Qy) 2n—2(j—1)+1/2

2n—2j+5/2 2n—2j+5/2

It remains only to consider dyn; in this case we must consider m = 1 and m = 2 separately. For
m = 1, we again use (8.37) to see that

(8.40) ”87577”211 1/2 S HU3HH2n 1/2 + HG4H2” 1/2 ~ HU3HH2" 1/2( ) + Z,
but now we use Lemma A.11, trace theory, and the second equation in (2.23) for the estimate
(8.41) ||U3H§—12n—1/2(2) S ||U3||§{0(2) + ||DU3||§12n—3/2(z) S ||83U3||%10(Q) + ||Du3||§{2"—1(91)

2 2 2

S G2l + 1Dullg + [1Dullf2a-1(,) S 2

by (8.10) and (8.35). Chaining (8.40)—(8.41) together implies that
(8.42) H@mHzn 1/2 S Z whenm = 1.
For m = 2, we differentiate (8.37) for the bound
(8.43) 1D0mI130 s> < 1DuslFrenssoqsy + DG I3 a2 < 1DuslFrenssoqsy + 2

but then the analog of (8.41) is

(8.44) |DuslFen-s/2(sy S [IDG2[lg + [D%ullg + D%u 31202y S 2
Hence
(8.45) | Ddn|3,, 32 S 2 whenm = 2.

Summing estimates (8.38), (8.39), (8.42), and (8.45) over j =0,...,n + 1 yields

2 _
(846) | D%nll5, 50+ 0l 1/2+ZH | o aysyy S 2 Torm =1, and
n+1
3 _
(8.47) |D 77H2n T ha | D33, 3/2 —|—Z H t77 IS < Z form = 2.

The 7 estimates (8.46)—(8.47) now allow us to further improve the estimates for the pressure.
Indeed, for j =2,...,n — 1 we may use Lemma A.10 and (8.36) to bound
oa ool

S oty + N, + i+ o

HO(Q) 0(%) HO()

<[, +z52
H2(Q)

This, (8.35), and (8.46)—(8.47) allow us to improve (8.35); when m = 1 we find that

(849)  [|V%ul[n2qy, + 1 Dull3on (e + Z H@juH . 192p|[ 202

H2n 2j+1(

n—1 n+l
# 308l s+ 1P N0+ 3 0]

<Z
2n—2j+5/2 7
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and when m = 2 we get the estimate

CEDI o A oS AR +ZHMHW .

920 sy + 197Dl s +Z |

H2n— 2] Ql)
n+1
3
+ HD 77H2n 72 T HD@WH% 3/2+Z H tn n—2j+5/2 ~ 2

Step 4 — Estimates in 29

We now extend our estimates to the lower part of the domain, i.e. Qo := [—b,—b/3], by
applying Lemma 8.3 to deduce that (8.96) holds when m = 1 and (8.97) holds when m = 2. We
will now show that X}, ,,, defined by (8.95), can be controlled by Z. The key to this is that, by
construction, supp(Vyz) C Q1, which implies that the H' and H? defined in the lemma satisfy
supp(H') U supp(H?) C ;. This allows us to use the estimates (8.49) in the case m = 1 and
(8.50) in the case m = 2 to bound

(8.51) HD%LHlHlHo + |’D3:+11H2H0 S

In order to estimate O;H' - ¢; for i = 1,2, we note that it does not involve the pressure:
(8.52) 8tH1 € = —(83)(2)83815111' — (8%)(2)&51”.
Then we may again use (8.49)—(8.50) to see that

2
(8.53) So|oHt el <2

so that X, ,, S Z. Replacing in (8.96) and (8.97), we then find that

H2n—25+1(Qy)

858 [Vl Yy + [0
j=1

V28 o2y + Z |018] e, < 2
for m = 1, while for m = 2
9 n . 2 2
855 [0y + 2 [0 s+ 7P
j=
+ H@thIIHzn 3(0y) T Z H tpHH2n 2 (0n) S2

Step 5 — Synthesis and conclusion
To conclude, we note that {2 = ©; UQy, which allows us to add the localized estimates (8.49)
and (8.54) to deduce (8.2), and to add (8.50) to (8.55) to deduce (8.3). O

We now present the key bootstrap estimate used in the proof of Theorem 8.1.

Lemma 8.2. Let YV, and Q1 be as defined in Theorem 8.1. Suppose that

(8.56) 1D2 =2 0 par ) + D22 VD 2 a(yy S D + Vi
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for an integer r € [1,...,n— (m+1)/2]. Then

(8.57) Haf_ruuiﬂm @) T Han_rVPHipr—l(Ql)

_ 2 _
+ HDQ" 2Ar+1)+1 H HD%?_Q(’"“)“VpH < Dpm + Vom.

H2r+2(Ql HZ’”(Ql)

Moreover, if (8.56) holds with r = 1, then for m = 1,2 we have that

(8.58) HV2+m HHQ“ m=1(0);) + HDmu||H2" m+1(Qy) + Z HajuHHzn 2j4+1(Qy)

2 . 2 _
+ HvlerpHH2n—m—1(Ql) + Zl HagvaH2"72j71(Ql) S Dn,m -+ yn,m~
ji=

Proof. Throughout the proof we will write Z := ﬁnm + Vnm- Let £ € {1,2} and take 0 < j <
n—1—rand a € N? so that m < 2j +|a| < 2n—2r+1—£. We apply the differential operator
8%7"_2“30‘05 to the first equation in (2.23) and split into separate equations for its third and
first two components; after some rearrangement, these read

(859) a§1"71+€aaagp _ _a§r72+€aaag+lu3 + Aa§r72+€aa6gu3 + agerJrﬂaaagG:ls
and
(8.60) AGZT=2H 9ol u; = 922990 4 9,07 9l p — 939 E! G}

for i = 1,2. Notice that the constraints on r, j, || imply that m < |a|+(2r—2+£0)+2j < 2n—1,
so we may estimate

2 2

(8.61) Hagr—“faaagc;lﬂ + Hagr—waaagGZH < Vom < Z
0 1

Since 2r — 2+ £ > 0, we know that

(8.62) Ha” 2 gagitly ‘

< Jorarr,

HO Q1 H2r— 2+Z(QI)

If ¢ =2 then |a| 4+ 2(j + 1) < 2n — 2r + 1 so that

. 2 _
Q t]+1uH S ||DT2T:L727’+1 < Z
H27'(Ql)

(363 | ul[ a0 <

528t H

H2r—2+¢ (Ql) ‘

On the other hand, if £ = 1, then either o = 0, in which case the bound on j implies that
2(7 4+ 1) < 2n —2r, and hence

J+1
%

. 2
anj+1
99! H

(8.64) ‘ H2r—2+£(0;) H

T 2
e Il 2

or else || > 1, and so o =  + (a — ) for || = 1, which implies that

65) |Jorer ] = oot < 000
H2’l‘ 244 Ql H27‘ 1 Ql) HQT(Ql)
2n—2r+1_ |2
<||Dm= UHHQ"(Ql)EZ'
Then in either case,
(866) HaQr 2+€6a8]+1 H <Z
HO(Q1)

We have written the equations (8.59)—(8.60) in this form so as to be able to employ the
estimates (8.56), (8.61), (8.66) to derive (8.57). We must consider the case of / =1 and ¢ = 2
separately, starting with ¢ = 1.
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Let £ = 1. According to the equation divu = G? (the second of (2.23)) and the bounds (8.56)
and (8.61) we may estimate

(8.67) Hagrﬂaaagu;;\f

- -

HO(Qy HO(Q4)
<HaQrflaaajGQHQ_FHaaai(au +au)‘2 <
~ 3 t 1 + \U1U1 2U2 HQT(Ql)N 3
and hence
(8.68)
) 2 A 2 . 2
A 2r—1 aa ‘ < H 2r+1 qa qJ ’ H 2r—1,/92 2\ aa qJ ‘ < Z
|a@o000us) ooy S |00 s [ |[087 08 + 800 us | S

We may then use (8.61), (8.66), and (8.68) in (8.59) for the pressure estimate

(8.69) Hag’”aaa{p’

’ < Z.
HO() ™

Turning now to the i = 1,2 components, we note that by (8.56)

(8.70) ’ ’

aiagr—laaag‘pH;(m) + |83 + o310 00w,

HO(Q4)

S HD%?JTHVZ?HZ%%(Q” + HD%QTHUHZ%(QI Sz

) ~

for i = 1,2. Plugging this, (8.61), and (8.66) into (8.60) then shows that

. 2
(8.71) Hag”laaagui < Zfori=1,2.
HO(Q1)

Upon summing (8.67), (8.69), and (8.71) over 0 < j < 2n—r—1 and « satisfying m < 2j+|a| <
2n — 2r, we deduce, in light of (8.56), that

(8.72) 1022l ais gy + D22 I8 s S 2

(

In the case £ = 2 we may argue as in the case £ = 1, utilizing both (8.56) and (8.72) to derive
the bound

(8.73) }|D7%f_2’"_1uH§{2T+2(Ql) + HD?TIL_QT_lvPHiI?T(QI) Sz

Then we may add (8.72) to (8.73) to deduce (8.57).
Now we turn to the proof of (8.58), assuming that (8.56) holds with » = 1. By (8.57) we
may iterate with r = 2, r = 3, etc, until

n—1 ifm=1 1 ifm=1
8.74 - that 2n — 2(r +2) + 1 =
(8.74) " {n—Z if gy o SO that 2n = 2(r+2) + {3 it m = 2.

Summing the resulting bounds yields the estimates

2
SZ
H2n—2j-1(Qy) ~

n n—1
2 . 2 2 .
(8.75) ||DiuHH2n(Ql)+; |7l H%QjH(Ql)jLHDin||H2n_2(QI)+; |t

in the case m =1 and

2

2 2 < j
(876) HDSUHHQ"_Q(Q:[) + HD(I)atuHHQ”_Q(Ql) + JZQ Hagu‘ H2n—2j+1(Ql)

n—1
9 9 . 2
MG TR L FRSTNED DI A I

in the case m = 2.
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As a first step, we improve the estimate (8.76). Let 0 < j and o € N? be such that 2j+|a| = 2

and apply the operator 6§”_360‘8tj to the first equation of (2.23) and split into components as
above to get

(8.77) 220097 p = —0239°0] T us + A 20%0]ug + 92390 G
and
(8.78) AGI"30°0]u; = 9399y + 9,027 20%0] p — 9339”9 Gt

for i = 1,2. We may then argue as above, utilizing (8.76) and (8.56), to deduce the bounds

2
<Z’

~

(8.79) Hagn—laaa{u?,‘

HO(Qy) + HE)%”‘?’aac‘)ZuH;(Ql)

which, in turn, implies that

2 g
HO(©Q) ™

for i = 1,2. We may then use (8.79)—(8.80) with (8.76) to deduce that
(8.81)

| D30l gy + D 000
j=1

in the case m = 2.
Now we claim that if for m = 1,2 we have the inequality

(8.80) “83”‘26“8{ p)

N + Hagn—laaag'ui

2
HO(Q

S Z

~

2 9 n-l 2
H2n=2i+1(Q) + HD%VpHHQ”‘?’(Ql) T J; H@ng’ H2n=2i-1(Qy)

n
. 2
m. 12
(8.82) HDmuHHzn—mﬂ(Ql) + ; HaguHHznde(Ql)

2

9

n—1
1D Vpllgzn-m-1(0,) + Jz_:l Hang) 10y

then the inequality

(5.59) 192 s gy + 1750 sy S 2

also holds, which establishes the desired bound, (8.58), because of our inequalities (8.75) in the
case m = 1 and (8.81) in the case m = 2. We begin the proof of the claim by noting that since
2 > m we may use (8.82) to bound

(8.84) Hang2uH§{2n—m—1(Ql) + Hc’)§’"“1D2p}|22n_m_1(Ql) S22
Now we let |o| = 1 and apply 05"0% to the second equation of (2.23) to find that
(8:85) 050 us| a1y S 105 DG 20y + 105 D20l 1) S 2

Then we apply 95" *9% to the first equation of (2.23) to bound

m Qo m 6] 2
(8:86) (105" 0°Pllipon-m-1(0) S 105" 03 21y

+ 110510 D [ an-n-s gy + 19507 G [ anmos ) S 2
and
(8.87) H@g’”l@auz'!\ilznfmfl(gl) S “8?_180D%u|‘22n,m,1(91)
+ HaglflaaDpHiIQn_m_l(Ql) + HaénilaaGQHQHQn—m—l(Ql) 5 Z

for i = 1,2. Summing (8.85)—(8.87) over all |a| = 1 then yields the inequality
2
(888) ||a§n+1DuHH2n—m—1(Ql) + Ha?T)nDpH?'{?n—m—l(Ql) S Z.
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Now we use (8.88) to improve to one more d3 and one fewer horizontal derivative. We apply
95" to the second equation of (2.23) to find that

(8.89) o+ < loyia;

2
u3HH2"_m_1(Ql) ~ H2n—m— 1 Ql) + ‘}am+1Du||H2n m—1 S Z

(1)

Then we apply 05" to the first equation of (2.23) to bound

(890) Ham-ﬁ-l ’8m+2

2
us HHQ"—m—l(Ql)

—+ Haéanu?,HiI%kmfl(Ql) + HagnGQHj{%*m*l(Ql) ’S 2

[

and

2 ~9 12
(891) H8§n+2uZHH2nfmfl(Ql) S HagnD%uHH2nfmfl(Ql)
2 2
+ 105" Dp|[ g2n-m-1(0,) + HaglGQHH?n*m*l(Ql) SZ2
for i = 1,2. Summing (8.89)—(8.91) then yields the inequality

(8.92) |05+ oyt

2
UHH%*m*l(Ql) + |05 S 2

2
pHH?nfmfl(Ql)
Finally, to complete the proof of the claim, we note that
(8.93)

192472 s gy + Hv1+mpu;n,m,lml S 1Dl zn s ) + 1DV dn-mo ()

am+2-t Dty H Ham—i-l tpt H
+ZH H2n—m—1 Ql + p H2n—m— 1(Q1>

This and the bounds (8.82), (8.84), (8.88), and (8.92) prove the claim. O

The following result allows for control of the dissipation rate in the lower domain.

Lemma 8.3. Let x2 € C2°(R) be such that x2(x3) = 1 for xz € Qg := [—b, —b/3] and x2(x3) =0
for xs ¢ (—2b,—b/6). Let

(8.94) H' = d3x2(pes — 203u) — (95x2)u and H? = d3xaus.
Define
2
(8.95) Koo = || D2LH o + | D2 HR g+ - 0" - ey,
=1

and let Yy, m be as defined in Theorem 8.1. If m =1, then

(896) [ V%ul|%aggy + 0 |07
j=1

H2n—2j+1(Qy)

n—1 2 B
+ Hv2pH§{2n—2(92) + Z Hat]pHH2n72j(92) S Dum + Ynm + Xome
j=1

If m =2, then

(897) | V*ul[jzn-s(qy + Z ot .

H2n—2j+1(Qy)

3 12
+ HVSPHH2”*3(Q2)

+ HatvaHQn 3 (Q2) + Z H tpHH% 2] () 5 ﬁn,m + yn,m + Xn,m.
j_
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Proof. When we localize with x2 we find that xeu and yop solve
—A(x2u) + V(x2p) = —0i(x2u) + x2G* + H' in Q

(8 98) le(X2u> = X2G2 + H2 in
' ((x2p)I — D(x2u))ez =0 on Y
xou =0 on Xy,.

Let 0 < j <n—1and a € N?beso that m+1 < |a|+2j < 2n— 1. Then we may apply Lemma
A.14 to see that

. 2 , 2 . 2
8.99) |09} (o) |ood S [0 eaw)
(8.99) : () 2nf|a\72j+1+ : (x2p) 2n—|a|-2j = e D) 2n—|a|-2(j+1)+1
. 2 . 2
+||or ol Gt + 1Y) +|eroi e + B |
2n—|a|—25—1 2n—|a|—2j
. 2
< ool Koo
~ ’ t (XQU) m—|a]—2(j+1)+1 + yn,m + n,m

We first use estimate (8.99) and a finite induction to arrive at initial estimates for you and xop;
we will then use the structure of the equations (2.23) to improve these estimates.

Our finite induction will be performed on ¢ € [1,2n —m — 1], starting with the first two initial
values, £ = 1 and ¢ = 2. We use the definition of D, ,, and Lemma A.12 in conjunction with
the bounds on j, |a| to see that

. 2 . 2 _
(8.100) Haaag“(xgu)Ho < ) aaag“uHO < Dpm.

Then (8.99) with |a| + 25 = 2n — 1 = 2n — £ implies that
4 2
0] ) 5|
Applying this bound for all o and j satisfying |a| 4+ 25 = 2n — 1 and summing, we find

(8.102) | D3n =1 (xaw)|[;, + | D51 (2p)||; S D + Yoam + X
When ¢ = 2 and |a| + 2j = 2n — £ = 2n — 2, a similar application of Lemma A.12 implies

. 2 . 2 _
(8.101) ||0°9] (xa) | +| 01 (xaw)| +Vnem+ Xom S Do+ Ynan+Xngm.

4 2
(8.103) |o°ol* ()| < Do
so that
, 2 : 2 , 2 _
(8:104) [0°0] (xaw)| + 9707 (xam) |, S || 0 (o) ||+ Vm+ Xon S Do+ Y+
This may be summed over 2j + |a| = 2n — 2 for the estimate
(8.105) | D3 =3 (xaw) || + |1 D5n=5 0c2p)||y S Drim + Yoam + X
Then (8.102) and (8.105) imply that
(8.106)

Now suppose that the inequality

bo 2 _ 2 _
(8.107) 3 Hpgz:g(x2u)H + HD%Z:?(XQP)HK < Don + Yo + X

l+1
(=1 +

holds for 2 < ¢y < 2n—m — 1. We claim that (8.107) holds with ¢y replaced by ¢y + 1. Suppose
|| + 25 =2n — (¢g + 1) and apply (8.99) to see that

2

00} (x2u) 00 0eap)|, | S (070 (xau)

(8.108) ( ’ ‘

2
+ \ , + Vo + Xnm
0]

Lo+2
S Dn,m + yn,m + Xn,ma
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where in the last inequality we have invoked (8.107) with |a| +2(j+1) =2n— (bp+ 1) +2 =
2n — (bp — 1). This proves the claim, so by finite induction the bound (8.107) holds for all
by=2,...,2n —m — 1. Choosing ¢y = 2n — m — 1 yields the estimate

2nm1

2
(8.109) HDgg £(x2u) H

i + HD§Z f(x2 p)H < Dom + Vum + Xnm,
/=1

which implies, by virtue of the fact that xo = 1 on €9, that

2n—m—1

2 2
n2n—~ n2n—~ N
(8.110) 3 HDznfguHHMmZ) + HD2HpHHe(QQ) < Doy + Vogm + Xy

Now we will improve the estimate (8.110) by using the equations (2.23), considering the cases
m = 1,2 separately. Let m = 1. Since m+ 1 = 2, the bound (8.110) already covers all temporal
derivatives, so we must only improve spatial derivatives. First note that (8.110) implies that

s.111) 103020y + 1020y S P+ Yo +
Then we may apply the operator d3D to the divergence equation in (2.23) to bound
8.112) 08D ) S 105DC iy + 105070 S Do+ Vo +

Then applying the operator D to the first equation in (2.23) implies that

(8:113) 105 DpllFn-2(0) + 3D [ f2n-2(0y < DG gm0y + 102l 120-20
| DD a0y + 12D sy S P+ Yo +

for ¢ = 1,2. We can then iterate this process, applying 8§ to the divergence equation, then Os
to the first equation in (2.23), and using all of the bounds derived from the previous step, to
deduce that

(8.114) Ha??p!!ipn—m) + HaguHiIQ”—Q(QQ) S Do+ Yon + Xnm-
Combining (8.111)—(8.114) yields the estimate
(8.115) 1V G220y + 1922l 20220y S Do + Y + X,

which together with (8.110) implies (8.96).

In the case m = 2, we can argue as in the case m = 1 to control the spatial derivatives. That
is, we first control 93D3u, D3p, then iteratively apply operators with an increasing number of
03 powers to arrive at the bound

(8.116) HV4“H2%—3(92) - HV?’Z’HZM—%QQ) S Do+ Yo + X

It remains to control dyu and 9;Vp. For the latter we apply d30; to the divergence equation to
bound

(8-117) Ha?%atUSH?an—S(QQ) S Hai%atGZHiIQn—S(QQ) + ||838tDuH§{2n73(92) 5 Zjn,m + yn,m + Xn,m-

Then applying 0 to the third component of the first equation in (2.23) shows that

(8.118) ||638tp||%12“—3(92) S HatGdH?{Qnﬂ%(Qg) + HatD%“HiﬂnfS(m) + Hﬁg@w\@zna(%)

< Duin + Yom + Xnm,
which in turn implies that
(8.119) ||V5tp\|12q2n73(92) < ||335tp||§{2n73(92) + HDatPH?{?nfB(QQ) < Do + Yagm + Xnm.
We may control d;usg by applying d; to the divergence equation in (2.23) to find that

(8.120)  ||3sDhusllizn—2(qy) S HatGZqu%,Q(QQ) - HDg’uHi{%,Q(QQ) S Do + Yoim + Xoms
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but then since dyuz = 0 on ¥ we can use Poincaré’s inequality (Lemma A.13) to bound

n— 2
(8:121)  [|9pusl Fran-1(ay) S I1050kusliyzn-2(q,) + 19kuslFoay) + [ D1 Orus o)

5 “83815“3”%2"—2(92) + HD(z)n_latu?;H?{l(QQ) S, Dn,m + yn,m + Xn,m-
Control of the terms 0yu;, ¢ = 1,2 is slightly more delicate; for it we appeal to the first of the
localized equations (8.98) rather than (2.23). The reason for this is that using (8.98) will allow
us to control 930 (x2u;) in all of Q, which will give us control of d;(x2u;) in all of  via Poincaré
and hence control of Jyu; in . If instead we used (2.23), then control of 8§8tu,- in Q9 would
not yield the desired control of d;u; in Q29 because we could not apply Poincaré’s inequality. We

apply 0; to the i = 1,2 components of the first localized equation in (8.98) and use (8.109) to
see that

(8.122) Ha?%at(XZUi)HZ%r?r(Q) N HatHl ' 61’”?{2%3(9) + HX28tG1H12LI2n*3(Q)

— 2 —
+ HatD(XZP)H?{%*S(Q) + Hath (XQU)HHQn—s(Q) S, Dn,m + yn,m + Xn,m'

Now, since d;(xau;) and 930;(x2u;) both vanish in an open set near ¥, we may apply Poincaré’s
inequality twice and use (8.122) to find that
2 2 2
(8.123)  [19ruillren-1(y) S 10:(x2ui) [ fr2n-1(0) S 10500 (x21) | 2050
5 @n,m + yn,m + Xn,m + HatuH%-IQ”_Q(Ql) :

To conclude the analysis for m = 2 we sum (8.116), (8.119), (8.121), and (8.123) to derive
(8.97). O
8.2. Instantaneous energy. Now we estimate the instantaneous energy. The proof is based

on an argument very similar to the one used in the proof of Lemma 8.3.

Theorem 8.4. Define

(8.124) Wim = H?%”Gl]‘i + Wg"—?G?Hf + HD%JGsHi/z + HDgn_zGﬂﬁ/r
Ifm=1, then

no nolooe2
(8.125) HVQUH;n& T ]Zl HatJuH2n—2j 11VPlz 2 + ]Zl H(‘?ﬁp 2n—2j—1

2

S, 7n,m + Wn,m-

n
, .
+1Dll3, 1+ Hé’in s
i=1

If m =2, then

) m 2 ) ol
(8.126) ||VPul? ,+ ; o7 s H IVl + ; Hang%%l
9 n 12 _
D%l + 2|0,y % it W,
j=1

Proof. The proof is quite similar to that of Lemma 8.3, so we will not fill in all of the details.
Throughout the proof we will employ the notation Z := &, ,, + Wy m-
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Let 0 < j <n-—1and a € N2 satisfy m < |a] +2j < 2n — 2. To begin, we utilize the
equations (2.23) with the elliptic estimate Lemma A.14 to bound

(8.127)
2 2 1|12 ST
‘aaagu +‘aaagp g(aaag u +\aaagG
2n—|a|—2j 2n—|a|—25—1 2n—|a|—25—2 2n—|a|—25—2
o2 2 - all?
+ ’ e + ) 029 ) 909l G .
2n—|a|—25—1 2n—|a|—25-3/2 2n—|a|—25-3/2
The constraints on j, a allow us to bound
a2 o2 - all?
(8.128) ]aaaga +]aaagG +‘aaagc: < Wi,
2n—|a|—25-2 2n—|a|—2j—1 2n—|a|—25-3/2 ’
and similarly
2 _
8.129 ‘ 528 < Enm,
( ) e’ on—|a|-2j-3/2 > "

so that (8.127)—(8.129) imply that

2 2 2

(8.130) ] 89 u 8% p 99

|

<z

2n—|al—2j In—|al-2j—1 In—|a|-2j—-2

As in Lemma 8.3, we argue with a finite induction on £ € [2,2n — m], beginning with £ = 2,3.
When ¢ =2 and |a| + 2j = 2n — 2 = 2n — ¢, the definition of &, ,, implies that

. 2 _
(8.131) ‘ 8“6i“uH0 S Enms

which may be inserted into (8.130) for

(8.132) Haaa@H} Haaangj <z
Summing over all « and j satisfying |a| 4+ 2j = 2n — 2 shows that
(8.133) |53 3ully + 110330l < 2.

For ¢ = 3 we note that |«| + 2j = 2n — 3 implies that j < n — 2, so that |«| > 1. This allows us
to write a« = (v — 3) + 8 for |3| = 1 and to use (8.133) to see that

. 2 . 2 _ _
(8.134) ’ 8aag+1uH1 < ’ 8“‘%?“1;”2 < ||DZ =22 < Enm.

)

Then we can plug this into (8.130) for each |a| + 25 = 2n — 3 and sum to arrive at the bound
—on_3 1|2 ~on_3 12
(8.135) 1D =5ull; + (| Pan=spll, < 2-

Now we may use finite induction as in (8.107)—(8.110) of Lemma 8.3 to ultimately deduce the
estimate

2n—m ~ 9 B 9
w159 S o Joscn, <=
=2

Now we improve the estimate (8.136) by utilizing the structure of the equations (2.23), again
arguing as in Lemma 8.3. The energy bound (8.136) in the case m = 2 is structurally similar
to the bound (8.110) for the dissipation in the case m = 1, so we may argue as in (8.111)—
(8.114), differentiating the equations (2.23) (with obvious modifications to the Sobolev indices
and number of derivatives applied) and bootstrapping until we arrive at the bound

< Z.

(8.137) V355 + [V2Pll50 s <

Then (8.136) and (8.137) imply the bound (8.125).
In the case m = 1 we apply 03 to the divergence equation in (2.23) to see that

(8.138) |0Buslly, o < [10sG2 (|5, 5 + 19sDull3, 5 < 2.
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We then use the first equation in (2.23) to bound

2
2 2
(8.139) 103p150—5 + 3 11905 0illy, o S G 5o + 195Dl + 1 0Pl 2 S 2.
i=1
Then (8.136), (8.138), and (8.139) imply that

and hence that (8.126) holds. O

8.3. Specialization: estimates at the 2NV and N + 2 levels. We now specialize the general
results contained in Theorems 8.1 and 8.4 to the specific cases of n = 2N with no minimal
derivative restriction, and to the case n = N + 2 with minimal derivative count m = 1, 2.

Theorem 8.5. There exists a 0 > 0 so that
(8.141) Doy < Doy + ESyDon + KFon.

Proof. We apply Theorem 8.1 with n = 2N and m = 1 to see that (8.2) holds. Theorem 4.2
provides the estimate

(8.142) Van S ESNDan + KFon
for some 6 > 0. We may then use this in (8.2) to find that

2N—-1
3 212
(8143> HV uH4N 2+ZH6J H4N 2j+1 Hv pH4N_2+ Jz::l H tpH4N 27

2N+1

2 0
1025y s s + 106l + > [0,y s 0 S Do+ El Doy + K P,

We can improve the estimate for u in (8.143) by using the fact that Doy does not have a
minimal derivative count. Indeed, by definition, we know that

(8.144) I1Zxull} + l[ull? < Daw-

Now, since (2 satisfies the uniform cone property, we can apply Corollary 4.16 of [2] to bound
2 2

(8.145) lulliner < lalls + [V ullg S luallf + [[V2ullyy

Then (8.143)—(8.145) imply that

(8.146) I Zaull} + [[ulliysr S Don + ESNDon + KFon.

We can use this improved estimate of u to improve the estimate of p by employing the first
equation of (2.23) to bound

(8.147) IVplin—1 S 10ulliy—s + | Aulfy_; + HG1H4N 1
The bounds (8.143) and (8.146) imply that

(8.148) ez 1 + |Auliy_ S Don + ESnDan + KFon,
while (4.7)—(4.8) of Theorem 4.2 imply that

(8.149) IG5y S E8nDon + KFan.

Hence (8.146)—(8.149) combine to show that

(8.150) ||VpH4N 1 S Doy + EINDan + KFon.
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Finally, we improve the estimate for . We use the boundary condition on ¥ of (2.23) to
bound

2
(8.151)  [[Dnlliy_s/2 S 1DPl3ran—s/2(s) + 1DDsus || Fra-ssz(sy + 1PG iy s

2 —
S HDPH?LNA + ”Da3u3||z21N—1 + HDG?’H4N—3/2 <Don + 53ND2N + KFan.

In the last inequality we have used (8.146), (8.150), and Theorem 4.2. Now (8.141) follows from
(8.143), (8.146), (8.150), and (8.151). 0

Now we perform a similar analysis for the energy at the 2N level.
Theorem 8.6. There exists a 8 > 0 so that
(8.152) Eon < Ean + EXFF.

Proof. We apply Theorem 8.4 with n = 2N and m = 1 to see that (8.125) holds. Theorem 4.2
provides the estimate

(8.153) Wana S '
for some 6 > 0. Replacing in (8.125) shows that

2

, 2N ) 2N
2
154 19wl 2 oy, + 1P+ 2 o]y

2

2N
2 j G 146
Dl + 3 o)), < a3
j=1

The definition of &y implies that
(8.155) IZxely + lells + 1Zanllg + 1nllF < Ean-

We may then sum the previous two bounds and employ Corollary 4.16 of [2] as in the proof of
Theorem 8.5 to find that

2 2

2N 2N—-1
(8.156) Tl + Y |[0Ful,  +IVPIAN+ Y |90
j=0 j=1

4AN—2j 4N—2j—1

2N
.12
2 G 0
FTanlls + 3 o], S Eon +
j=0

It remains only to estimate ||p||3,_,; since Lemma A.10 implies that

(8.157) IPliv—1 < Ipllo + IVPlin—2 < Ipllzogs) + 1 VPl 2

it suffices to estimate Hp||§{o(2). We do this by using the boundary condition in (2.23), trace
theory, and estimate (4.6) of Theorem 4.2:

8.158) bl < Il + 162+ 19suslZrogsy S Inll3 + ullsy + €457

Then the estimate (8.152) easily follows from (8.156)—(8.158). O
We now consider the dissipation at the N + 2 level.

Theorem 8.7. For m = 1,2 there exists a 6 > 0 so that

(8.159) Dniom S Dhiom + ESNDNyam.

Proof. We apply Theorem 8.1 with n = N + 2 to see that (8.2) holds for m = 1 and (8.3) holds
for m = 2. Theorem 4.1 provides the estimate

(8.160) Yniom S ESNDN+2,m
for some 6§ > 0. The bound (8.159) follows from using this in (8.2)—(8.3). O
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We now consider the energy at the N + 2 level.
Theorem 8.8. For m = 1,2 there exists a 0 > 0 so that
(8.161) Entam S ENvam + EINEN12.m-

Proof. We apply Theorem 8.4 with n = N +2 to see that (8.125) holds when m = 1 and (8.126)
holds when m = 2. Theorem 4.1 provides the estimate

(8.162) Wi s2,m < EINEN+2,m
for some 6 > 0. The bound (8.161) follows from using this in (8.125)—(8.126). O

9. A PRIORI ESTIMATES

In this section we will combine the energy evolution estimates and the comparison estimates
to derive a priori estimates for the total energy, Gon, defined by 2.58.

9.1. Estimates involving Fny and K. We begin with an estimate for Fop.

Lemma 9.1. There exists a C > 0 so that

01 s Favlo) S (€ t VK

0<r<t

t t 2
X [ng(O) +t/ (1+ &N (r))Don(r)dr + </ \/IC(r)fQN(r)dr> ] .
0 0
Proof. Throughout this proof we will write uw = @ + uges, i.e. we write @ for the part of u
parallel to 3. Then 7 solves the transport equation dyn + @ - Dy = us on 3. We may then use
Lemma A.9 with s = 1/2 to estimate

t t
02 s 110l < e (€ [ IDE sy ar) [ Il + [ Taa( sy ]

0<r<t

By the definition of K, (2.57), we may bound [|Da(r)| gs/2(sy < +/K(r), but we may also use
trace theory to bound |[uz(r)||g1/2(s;y S Dan(r). This allows us to square both sides of (9.2)
and utilize Cauchy-Schwarz to deduce that

t t
(93 sup [0(r) 1, 5 exo (2C VR ) Il + ¢ [ Daviriar].
0<r<t 0 0

To go to higher regularity we let @ € N? with |a| = 4N. Then we apply the operator 9* to
the equation 9yn + 4 - Dn = us to see that 9*n solves the transport equation
(9.4) 0:(0°n) + i - D(0°n) = 0%uz — Y Copd’ii- DO* Py :=G°

0<fB<La
with the initial condition 9%ng. We may then apply Lemma A.9 with s = 1/2 to find that
t t
03) su 10000} ],yo < 0 (C [ 1DAO ey dr) (10l + [ 1620 ]
<r<

We will now estimate ||G|| ;1/2.
For 3 € N? satisfying 2N + 1 < || < 4N we may apply Lemma A.1 with s; = 7 = 1/2 and
S9 = 2 to bound

9.6) |o7apor=ry| < |lo%| | Doy | .
1/2 H/2(%) 2
This and trace theory then imply that
(9.7) Z Hca,ﬁaﬁﬁ : D8°‘_5nH1/2 S |IDaNul|, | PV nll, S v Danéon

0<B<a
IN+1<|B|<AN
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On the other hand, if 5 satisfies 1 < |3] < 2N then we use Lemma A.1 to bound

85 D9—" 82 a—p
08 o apoen]| , < 0%, P2,
so that
99 Y Hcaﬂaﬁa-paa—ﬁnumgHDfNuH?,HDgﬁ;inH2+||Da||H2(2)HD4N77H1/2
RO

< VEnDon + VK Fon.

The only remaining term in G¢ is 9“ug, which we estimate with trace theory:
(9.10) 10%us|l 12y S |D*Nusly S v/ Dan-

We may then combine (9.7), (9.9), and (9.10) for

(9.11) IG*(ly /2 S (1 + v En)VDan + VK Fon.

Returning now to (9.5), we square both sides and employ (9.11) and our previous estimate
of the term in the exponential to find that

t
(9.12)  sup [[9°n(r)|} ), < exp (20/ \/IC(r)dr>
0<r<t 0
¢ ¢ 2
X [”804770“%/2 —l—t/o (1 + &N (r))Don(r)dr + </0 2V ]C(T)fg]\ﬂ?”)d?”) ] .
Then the estimate (9.1) follows by summing (9.12) over all || = 4N, adding the resulting
inequality to (9.3), and using the fact that H?7||ZN+1/2 S ||77||%/2 + HD4N77H?/2. O

Now we use this result and the I estimate of Lemma 3.17 to derive a stronger result.

Proposition 9.2. There exists a universal constant 0 < § < 1 so that if Gon(T') < 6, then

t
(9.13) sup Fon(r) < Fan(0) +t / Do
0

0<r<t
forall0 <t <T.

Proof. Suppose Gon(T) < § < 1, for § to be chosen later. Fix 0 < ¢ < T. Then according to
Lemma 3.17, we have that I < 5](\2;:22’\2)/(8+4/\), which means that

t t t
1
VaTany (84+2X)/(16+8)) (842X)/(16+8))
(9.14) /0 K(r)dr 5/0 (Ent2,2(r)) dr <6 /0 (1 +r)1+)\/4dr

o0 1 4
< 5(8+2A)/(16+8,\)/ dr — 2 5(E+20)/(164+8))
= o (L)t "=

Since § < 1, this implies that for any constant C' > 0,

(9.15) exp (C /Ot Mdr) <1.

Similarly,
o) (f/ VTN 5 (g 7o) ([ V)

5 <sup ng(?")) 5(8+2>\)/(8+4)\)

0<r<t
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Then (9.14)-(9.16) and Lemma 9.1 imply that

t
(9.17) sup Fan(r) <C <.7:2N(0) —l—t/ D2N> + CoBHN/(B+N) ( sup ng(r)> ,
0

0<r<t 0<r<t

for some C' > 0. Then if § is small enough so that C§E+2V/B+40) < 1/9 we may absorb the
right-hand Fyn term onto the left and deduce (9.13). O

This bound on Fsn allows us to estimate to estimate the integral of KFon and /Doy KFon.

Corollary 9.3. There exists a universal constant 0 < § < 1 so that if Gon(T') < 0, then

(9.18) /Oth(r)J-“zN(r)dr < GERN/EHN £ () 4 5EH2N)/ () /Ot Do (r)dr
and

(9.19) / Do R Fan ()dr < Fan(0) + 6EH2V/(16+8Y) / Do (r)dr
for0<t<T.

Proof. Let Gon(T) < § with 0 as small as in Proposition 9.2 so that estimate (9.13) holds.
Lemma 3.17 implies that

1

84+2))/(8+4A 8+2))/(8+4A
(9.20) K(r) < (5N+2,2(7"))( M ) S ot s )W-

This and (9.13) then imply that

1 t t dr
- - < - -
(9.21) 5(8+2>\)/(8+4)\)/0 ’C(’”)sz(T)dTNBN(U)/O (L+ 12

t r o0 dr
. < e
—l—/o (14 r)2H2 </ Dan(s ds) dr sz(O)/O 15 )

+ (/0 D2N(T)d7“> (/0 (1+f;+)\/2> < Fan(0) + /Ot Doy (r)dr

which is estimate (9.18). The estimate (9.19) follows from (9.18), Cauchy-Schwarz, and the fact
that ¢ < 1:

1/2 1/2
1/2 12
(/ Doy (r > <5(8+2A)/(8+4A)]:2N(0)) +5(8+2>\)/(16+8>\)/ Do (r)dr
0

t
< Fon(0) + (6(8+2)\)/(16+8)\) +5(8+2>\)/(8+4)\))/ Doy (r)dr
0

t
S Fa(0) + 3EVAD [ Dy
0
U

9.2. Boundedness at the 2N level. We now show bounds at the 2N level in terms of the
initial data.

Theorem 9.4. There exists a universal constant 0 < § < 1 so that if Gon(T') < 9, then

t
F
(9.23) sup SQN(T) + Don + sup 2N(T) S 52]\](0) + fQN(O)
0<r<t 0 o<r<t (1+7)

forall 0 <t <T.
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Proof. Combining the evolution equation estimate of Theorem 7.1 with the comparison esti-
mates of Theorems 8.5 and 8.6, we find that

(9.24) 52]\[ / D2N d?" < EQN( ) (ggN(t))1+0 =+ /Ot(ggN(T))GDQN(T)dT

/\/DQN r)Fon(r dr+/l€ Y Fon (r)dr

for some # > 0. Let us assume initially that § < 1 is as small as in Proposition 9.2 and
Corollary 9.3 so that their conclusions hold. We may estimate the last two integrals in (9.24)
with Corollary 9.3, using the fact that § < 1:

(9.25) /\/DQN ) Fan (r dr+/ K(r) Fon (r)dr < Fon (0)+6EF2/( 16+8A>/ Doy (r)dr.

On the other hand, supy<,<; an(r) < Goan(T) < 6, so

(9.26) (Ean ()0 + / ' (Ean (1) Doy (1) < 8 Ean (£) + 67 / Doy (1)
0 0

We may then combine (9.24)—(9.26) and write ¢ = min{#, (8 + 2X)/(16 + 8\)} > 0 to deduce
the bound

(9.27)  Enl(t / Doy (r)dr < C (Ean(0) + Fan (0)) + C6%Ean(t) + C3Y / Doy (r)dr

for a constant C' > 0. Then if § is sufficiently small so that C'6? < 1/2 and C6¥ < 1/2, we may
absorb the last two terms on the right side of (9.27) into the left, which then yields the estimate

(9.28) sup Eon(r / Doy (r)dr < Ean(0) + Fan(0).

0<r<t

We then use this and Proposition 9.2 to estimate

(9.29) Fon(r) o gup 28O |
o<r<t (L+7) ~o<re (1+ T) 0eret (
S ~7:2N(0) + / DQN(’I“)dT S 52]\[(0) + sz(O).
0
Then (9.23) follows by summing (9.28) and (9.29). O

9.3. Decay at the N + 2 level. Before showing the decay estimates, we first need an interpo-
lation result.

Proposition 9.5. There exists a universal 0 < § < 1 so that if Gon(T') < 9, then

(9'30) DN+2,m(t) /S ,DN+2,m(t)y 5N+2,m(t) 5 gN—&-Q,m(ﬂa
and
(9.31) Ensam(t) S (Ean ()Y MDDy (1)) AN/ (mEA+D)

form=1,2and 0 <t <T.
Proof. The bound Gon(T') < ¢ and Theorems 8.159 and 8.161 imply that

(9.32) Dy io2.m < CDnyom + CENDN+2.m < CDN1o.m + C8'Dyiom
and
(9.33) Entom < CENtom + CESNENTom < CENyom + COEN1om

for constants C' > 0 and > 0. Then if § is small enough so that C'6? < 1/2, we may absorb the
second term on the right side of (9.32) and (9.33) into the left to deduce the bounds in (9.30).
We now turn to the proof of (9.31). According to Remark 2.6, we have that

(9.34) Ensom S || DN H 0
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and by Lemma A.12, we also know that
(9.35) D2V |2 < || D2V HDul|; = Dyv-o,m-

On the other hand, the definition of Dy9,y,, given by (2.54) when m = 1 and (2.55) when
m = 2, together with (9.30) implies that

(9.36) HDgﬁ‘*nHz < Dyiom < Dyszm.
We may then combine (9.34)—(9.36) to see that
(9.37) En+2m S DNyam + HDman :
In the case m = 1 we use the H? interpolation estimates of Lemma 3.1 to bound
(9.38) 1D™nllg = 1Dnll5 £ (E25)" ) (D) W/ EHY,

In the case m = 2 we use the H” interpolation estimates of D?n from Lemma 3.1 and the H°
estimate of 0;n from Proposition 3.16 to bound

039 [D"all = 0P + 101 S (B (Do) BV
Together, (9.38) and (9.39) may be written as

(9.40) HDmnHé < (82N)1/(m+)\+1)(DN+2’1)(m+/\)/(m+)\+1)'

Now, according to Lemma 2.7, we can bound

(9.41) DNtom < Dnsom < (Eon) TV (Dy o )N/ (241

Then we use the estimates (9.40) and (9.41) to bound the right side of (9.37); the bound (9.31)
follows from the resulting inequality and (9.30). O

Now we show that the extra integral term appearing in Theorem 7.2 can essentially be
absorbed into En42,m.

Lemma 9.6. Let F? be defined by (2.19) with 0% = 0N 2. There exists a universal 0 < § < 1
so that if Gon(T) < 9, then

(9.42) sExs2m(0) < Evian(t) 2 |

TOON T pOF (1) < Lot
Q

forall 0 <t <T.

Proof. Suppose that ¢ is as small as in Proposition 9.5. Then we combine estimate (5.4) of
Theorem 5.2, Lemma 2.4, and estimate (9.30) of Proposition 9.5 to see that

(943) 11 08| (17211, S VENTZm EnEnsam

0/2 0/2 5 25
= 028N om S EN2EN Lo < 692N yom

~

for some 6 > 0. This estimate and Cauchy-Schwarz then imply that

_ 1_
(9.44) \2 3010?20 [0 8] 172y < O82E a0 < iz

-3
if ¢ is small enough. The bound (9.42) then follows easily from (9.44). O

Now we prove decay at the N + 2 level.
Theorem 9.7. There exists a universal constant 0 < 6 < 1 so that if Gon(T') < 8, then

(9.45) sup (14 7)™ Enyo.m (1) < Ean(0) + Fan(0)
0<r<t

for all0 <t <T and for m € {1,2}.
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Proof. Let § be as small as in Theorem 9.4, Proposition 9.5, and Lemma 9.6. Theorem 7.2 and
the estimate (9.30) of Proposition 9.5 imply that

_ _ _ 1_
(9.46) 0, (SM,m -2 / Joy “pF2> + Dntom < CENDN12.m < CO'Dniom < =Dnyom
Q

-2
if 9 is small enough (here # > 0). On the other hand, Theorem 9.4, (9.31) of Proposition 9.5,
and (9.42) of Lemma 9.6 imply that

2 . 4
(947) 0< ZEnpom < Envam —2 / JONTIpF? < 3
Q

< C(gQN)l/(m+)\+1)(@N+27m)(m+)\)/(m+)\+1) < Cozé/(mﬂﬂ)(ﬁmrz m)(m+/\)/(m+)\+1)

)

5N+2,m

for all 0 <t < T, where we have written Zy := x5 (0) + Fon(0), and Cj is a universal constant
which we may assume satisfies Cy > 1. Let us write

(9.48) h(t) = Exsam(®) ~ 2 [ JOXROF() 2 0
Q
as well as
1 1
(949) S = — b\ and Cl = m

In these three terms we should distinguish between the cases m = 1 and m = 2, but to avoid
notational clutter we will abuse notation and only write h(t), s, and C;. We may then combine
(9.46) with (9.47) and use our new notation to derive the differential inequality

(9.50) dth(t) + C1(h(t))1 T <0
for0<t<T.
Since h(t) > 0, we may integrate (9.50) to find that for any 0 < r < T,
h
(9.51) hr) < )

= [1+ sCL(h(0))sr]1/s

Notice that Remark 2.6 implies that Enjom < (3/2)€n. Then (9.47) implies that h(0) <
(4/3)ENn+2.m(0) < 2En(0) < 22y, which in turn implies that

s h(0)\® s S el
9.52 Ci(h(0))* = =) < 2= 2 9l <
(9.52) ) = s (52) < g = g2 <

since 0 < s < 1 and Cy > 1. A simple computation shows that

(L4r)l/s 1
9.53 : _
(9.53) S0 (L M)~ Ms

when 0 < M <1 and s > 0. This, (9.51), and (9.52) then imply that

e (14 ) 206\ "* 20 _ (205"
(9.54) (1+r)/°h( )Sh(O)[lJrSCl(h(o))sT]l/s 5h(0)< 2 ) h(0) _< 2 > .

Now we use (9.30) of Proposition 9.5 together with (9.47) to bound
(9.55) Entam(r) S ENtom(r) Sh(r) for0<r <T.

The estimate (9.45) then follows from (9.54), (9.55), and the fact that s = 1/(m + \) and
Z ZgzN(O)-i-fQN(O). O
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9.4. A priori estimates for Gony. We now collect the results of Theorems 9.4 and 9.7 into
a single bound on Goy, as defined by (2.58). The estimate recorded specifically names the
constant in the inequality with C; > 0 so that it can be referenced later.

Theorem 9.8. There exists a universal 0 < 0 < 1 so that if Gan(T') <6, then
(9.56) Gan (t) < C1(Ean(0) + Fan(0))
for all 0 <t <T, where C1 > 0 is a universal constant.

Proof. Let 6 be as small as in Theorems 9.4 and 9.7. Then the conclusions of the theorems
hold, and we may sum them to deduce (9.56). O

10. SPECIALIZED LOCAL WELL-POSEDNESS

10.1. Propagation of 7, bounds. To prove Theorem 1.3, we will combine our a priori esti-
mates, Theorem 9.8, with a local well-posedness result. Theorem 1.1 is not quite enough since
it does not address the boundedness of HI,\u(t)Hg, ||I,\17(t)||(2), and ||I)\p(t)||§ for ¢ > 0. In order
to prove these bounds, we will first study the cutoff operators ZV*, which we define now. Let
m > 1 be an integer. For a function f defined on (2, we define the cutoff Riesz potential Z\" f
by

0 -
(10.1) B = [ [ (el e Sy
—bJ{l¢]=1/m}
Similarly, for f defined on 3., we set
(10.2) I f(2) :/ F&) g7 e 4.
{I€[>1/m}

The operator Z}" is clearly bounded on H%(2) and H°(X), which allows us to apply it to our
solutions and then study the evolution of Z{'u and Z}"n.

Before doing so, we will record some estimates for terms involving Z}* that are analogous
to the 7y estimates in Sections 4.3 and 6.2 and Appendix A.2. We begin with the analog of
Lemmas A.3 and A.4, which were the starting point for our Z) estimates.

Lemma 10.1. If Tyh € H°(Q), then HI;\”hHS < ||I,\h||g. A similar estimate holds if Txh €
HO(X). As a consequence, the results of Lemmas A.3 and A.4 hold with T replaced by V' and
with the constants in the inequalities independent of m.

Proof. Suppose that Zyh € H°(Q) for some h. Then, writing " for the horizontal Fourier trans-
form, we easily see that

0 R 2 B
(10.3) izt = [ i) e dedes < ITanlE.

—b J{[¢[=1/m}
The corresponding estimate in case Zyh € H°(X) follows similarly. Then the estimates of
Lemmas A.3 and A.4 may be combined with these inequalities to replace Z, with Z}". U

We do not want our estimates for 71" to be given in terms of £ since this energy contains
7T, terms. Instead, we desire estimates in terms of a modified energy, which we write as

(10.4) Can = Ean — [ Toullg — |1 Zanllp

Lemma 10.1 allows us prove the following modification of Proposition 4.3. The proof is a simple
adaptation of the one for Proposition 4.3, and is thus omitted.

Proposition 10.2. We have that
(105)  [TET B+ T+ 1Z0ER | + 1ZR6 ) S €
Here the constant in the inequality does not depend on m.

We may similarly modify the proof of Lemma 4.4.
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Lemma 10.3. We have that

2
(10.6) IZ3 ((AK)d5u1 + (BK)dsusllly + Y TR [ud:i K][[§ < €3y
i=1
and
m 2
(10.7) IZ3[(1 = K)u]|l§ + [|Z0[(1 = K)G?]||, < €3n

Here the constants in the inequalities do not depend on m.
Then Lemma 10.3 leads to a modification of Lemma 6.5.
Lemma 10.4. It holds that
(10.8) IZ2pl2 < T3l + Ea and T3 Dpl2 S Ean.
Here the constants in the inequalities do not depend on m.
In turn, Lemma 10.4 gives a variant of Lemma 6.6.
Lemma 10.5. [t holds that

(10.9) ] [ B0 5 eax Izl + ax

Here the constant in the inequality does not depend on m.

These results now allow us to study the boundedness of Zyu, etc. We first apply the operator
T3 to the equations (2.23), which is possible since Z}" is bounded on H°(Q2) and H°(X). Then
the energy evolution for Z{'u and I\ allows us to derive bounds for these quantities, which
yield bounds for Zyu and Zyn after passing to the limit m — oco.

Proposition 10.6. Suppose (u,p,n) are solutions on the time interval [0, T and that || Tyuol|5+
||I)\170H3 < 00 and Supg<i<r Eon(t) < 1. Then

T
(10.10) sup (IZau®ls + 1Zsp Ol + 1230 0)]3) + | imaoi a
T (IZxuoll§ + |Zamolly) + € sup Ean(d).
0<t<T

Proof. Since Z}" is a bounded operator on H°(Q) and H°(X), we are free to apply it to the
equations (2.23). After doing so we then use Lemma 2.3 to see that

1
on) o (5 [ mu g [imwal)+ 5 [ o7k = [ muempet v mvmpe?
Q Q
+ /E IV IVGP + TI G

We will estimate each term on the right side of this equation. First, we use Cauchy-Schwarz
and Lemma 10.2 to estimate the first and fourth terms:

/Q TU-ITG’I‘ + ‘ /E I GH

1 , 1 s 1
< Izl + ¢ Izl + 5 |76

(10.12)

<Nl 230Gl + 123l 123G

Vs es

2 1 2 ]. 2
s < STl + ¢ I + Oy

Iy <

for C > 0 independent of m. For the second term we use Lemma 10.5 and Cauchy’s inequality
for

013) | [ Zume| < CImlly eay + Ctan < {ITIR + Cleay + )
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where again C' > 0 is independent of m. Finally, for the third term we use trace theory, Lemma
10.2, and Lemma A.12 to bound

1) | [ zpu e < C |zl |36
>

<NZRull o sy || TR G

lo lo

1
< O|DIY'ully €2v < IDZS ully + C €3y,

with C' > 0 independent of m. Now we use (10.12)—(10.14) to estimate the right side of (10.11);
after rearranging the resulting bound, we find that

1
(10.15) o (Il + 1TnlE) + 5 IDTul? < T3l + 1T )3 + C(Eay + €y)

for a constant C' > 0 that does not depend on m.
The inequality (10.15) may be viewed as the differential inequality

1
(10.16) O m + §D)\,m < Exnm + O(Ean + E3y),

where we have written &y, = HI;\”qu + HI;\”UHS and Dy, = HID)I/’\”UH?) Applying Gronwall’s
lemma to (10.16) and using the fact that Eyn(t) < 1 then shows that

t t
(10.17) Exnlt) + 5 / Dam(8)ds < Expm(0)e! + C / g (s)ds
0 0

< Exm(0)e! + Ce! — 1) sup Ean(s)
0<s<t

where again C > 0 is independent of m. It is a simple matter to verify, using the definitions of
I{* and 7, the Fourier transform in (z1,22), and the monotone convergence theorem, that as
m — o0,

(10.18) Exm(8) = T3 u() g + IZ5 () g — 1 Zau(s)llo + I Zan(s)llg

for both s =0 and s =, and

t t
(10.19) | antsrs = [ pTao)lias

Now, according to these two convergence results, we may pass to the limit m — oo in (10.17);
the resulting estimate and Lemma A.12 then imply that

T
(1020) swp (1B + Ta@IR) + [ 1)
0<t<T 0

< (IZxuollg + 1Zamoll§) € + (7 = 1) sup_ Ean(@).
0<t<T

On the other hand, from Lemma 10.4, we know that
(10.21) IZ P15 S NZX 001G + Ean(?).

We may then argue as above, employing the monotone convergence theorem, to pass to the
limit m — oo in this estimate. We then find that

(10.22) sup || Zap()|lg < sup | Tn(t)|g + sup Ean(t).
0<t<T 0<t<T 0<t<T

The estimate (10.10) then follows by combining (10.20) and (10.22). O
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10.2. Local well-posedness. We now record the specialized version of the local well-posedness
theorem. We include estimates for Zyu, Zxn, and Zyp. We also separate estimates for &5y and
Doy from estimates for Fon and Eap, the latter of which is defined by (10.4).

Theorem 10.7. Suppose that initial data are given satisfying the compatibility conditions of
Theorem 1.1 and |[u(0)|3y + HW(O)HZNH/z + |1 Zau(0)]12 + |Zan(0)[|2 < co. Let e > 0. There
exists a 8o = dp(e) > 0 and a

1
(10.23) To = C(e) min {1, 2} > 0,
”77(0)”4N+1/2

where C(g) > 0 is a constant depending on €, so that if 0 < T < Ty and |u(0)|35 + |7(0)]3 5 <
do, then there exists a unique solution (u,p,n) to (1.9) on the interval [0,T] that achieves the
wnatial data. The solution obeys the estimates

T
(10.24)  sup En(t) + sup [Tap(t)II? + / Do (1)t
0<t<T 0<t<T 0

T 2
+ (Ha?N“u@)H F H@?Npu)Hi) dt < Gy (= + | Zxul0) [ + T (0) )
0 (oH™)

(10.25) sup Con(t) <e, and sup Fan(t) < CoFon(0) +¢€
0<t<T 0<t<T

for C2 > 0 a universal constant. Here Eap is as defined by (10.4).
Proof. The result follows directly from Proposition 10.6 and Theorem 1.1. O

Remark 10.8. The finiteness of the terms in (10.24)—(10.25) justifies all of the computations
leading to Theorem 9.8. In particular, it shows that 6t2N+1u and 02N p are well-defined.

11. GLOBAL WELL-POSEDNESS AND DECAY: PROOF OF THEOREM 1.3

In order to combine the local existence result, Theorem 10.7, with the a priori estimates of
Theorem 9.8, we must be able to estimate Gay in terms of the estimates given in (10.24)—(10.25).
We record this estimate now.

Proposition 11.1. Let €y be as defined by (10.4). There exists a universal constant Cs > 0
with the following properties. If 0 < T, then we have the estimate
T3
(11.1) Gon(T) < sup En(t) + Don(t)dt + sup Fon(t) + C3(1+T)* sup En(t).
0<t<T 0 0<t<T 0<t<T
If 0 < T1 <T5, then we have the estimate

T

(11.2) gQN(TQ) < nggN(Tl) + sup EQN(t) + DQN(t)dt
T1<t<T3 T

1
+——— sup Fon(t) + Cs(Tr — T1)*(1+ T2)*** sup  En(t).
(1+T1) my<i<m Ty <t<Tp

Proof. We will only prove the estimate (11.2); the bound (11.1) follows from a similar, but
easier argument. The definition of Gon(75) allows us to estimate

Ty

(11.3) Gon(To) < Gon(Ty) + sup Exn(t) + Doy (t)dt
T <t<T> UA

Fonl(t) <

+ sup
n<<n (L+1) = n<<n
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Since N > 3 it is easy to verify that

N+2 - L
11.4 H6J+ H Haj H H H H H < .
(11.4) ]Z:; U 2N 42)-2 + (|dru S(N42)—2] + 17 2(N12) /1) . -~
and
N+1 A 9
11.5 Haj-ﬁ-l H H H <e
( ) J:ZO t p 2(N+2)—2j 1 tp N+2 9j 1 IN-

For j =0,...,2N, we may then integrate 0y [(1 + t)(m+’\)/26gu(t)} in time from T} to 17 <t <
T5 to deduce the bound

(11.6) H(1 + t)(m+)‘)/28gu(t)H H(1 1) mEN 20 1)H

2IN+4-2j IN+4-2j

+ /T2(1 + 5)mAN/2 HB,?JFIU(S)H + m+X) (14 5)m+A=2)/2 H@gu(s)H

T AN+4-2j 2 2N +4—2j

Gon(T1) + (Th — TV)(1 +To)2 | sup  Eon(t).
T <t<T>

Squaring both sides of this then yields, for j =0,..., N + 2,

(11.7)
A 2
sup ((1 + )™ A H@fu(t)” > < Gon(Th) + (To — T1)2(1 + To)*™ sup  Con(t).
Ty <t<T» 2(N+2)—2j T <t<T»

Similar estimates hold for j = 0,..., N + 2 with 6ju replaced by ng and for j =0,...,N+1
with H@ju H

, p H . From these we may then estimate
2(N+2)—2j—1

2(N+2)—

2

(118) 3 swp ((1 FOT e ,0(0) S Gon () + (T~ L+ TP sup Ean(h).
1 h<i<T T1<t<T>

Then (11.2) follows from (11.3), (11.8), and the trivial bound

Fon(t)
11.9 sup < sup F
(11.9) n<<r, 1+t = (14+T1) ny<i<ny 2w (b).

We now turn to our main result.

Theorem 11.2. Suppose the initial data (ug,no) satisfy the compatibility conditions of Theorem
1.1. There ezists a k > 0 so that if Ean(0) + Fan(0) < k, then there exists a unique solution
(u,p,m) on the interval [0,00) that achieves the initial data. The solution obeys the estimate

(11.10) Gan(00) < C1 (E2n(0) + Fan(0)) < Cir,
where C1 > 0 is given by Theorem 9.8.

Proof. Let 0 < 6 < 1 and C7 > 0 be the constants from Theorem 9.8, C5 > 0 be the constant
from Theorem 10.7, and C3 > 0 be the constant from Proposition 11.1. According to (11.1) of

Proposition 11.1, if a solution exists on the interval [0, 7] with 7' < 1 and obeys the estimates
(10.24)—(10.25), then

(11.11) Gon(T) < Cok +¢ |Co + 1+ C3(2)*™|.

If £ is chosen so that the latter term in (11.11) equals §/2, then we may choose k sufficiently
small so that Cak < §/2 and k < dp(e) (with dp(e) given by Theorem 10.7); then Theorem
10.7 provides a unique solution on [0,7] obeying the estimates (10.24)—(10.25), and hence
Gon(T) < §. According to Remark 10.8, all of the computations leading to Theorem 9.8 are
justified by the estimates (10.24)—(10.25).
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Let us now define

(11.12) Ti(k) = sup{T > 0| for every choice of initial data satisfying the compatibility
conditions and En(0) + Fan(0) < k there exists a unique solution on [0, 7]
that achieves the data and satisfies Gon (7)) < 6}.

By the above analysis, Ti(r) is well-defined and satisfies Tx(x) > 0 if x is small enough, i.e.
there is a k1 > 0 so that T : (0, k1] — (0, 00]. It is easily verified that T is non-increasing on
(0, k1]. Let us now set

0 1 1
11.1 = _—mind ——— —
( 3) c 3111111{1_'_02703}
and then define kg € (0, k1] by
: 5 Jo(¢)
11.14 =
( ) Ko mln{3cl(03+202), @) ,Iﬂ},

where dg(e) is given by Theorem 10.7 with € given by (11.13). We claim that T\ (ko) = oc.
Once the claim is established, the proof of the theorem is complete since then T, (k) = oo for
all 0 < k < Ky.

Suppose, by way of contradiction, that Ty (ko) < co. We will show that solutions can ac-
tually be extended past Ty (ko) and that these solutions satisfy Gon(T2) < 6 for To > Ti(ko),
contradicting the definition of Ty (ko). We begin by extending the solutions. By the definition
of Ty(ko), we know that for every 0 < T7 < Ty(ko) and for any choice of data satisfying the
compatibility conditions and the bound & (0) + Fon(0) < Ko, there exists a unique solution
on [0,7}] that achieves the initial data and satisfies Gon(71) < 6. Then by Theorem 9.8, we
know that actually

(11.15) Gon (Th) < C1(En(0) + Fan(0)) < Ciko.

In particular, this and (11.14) imply that

(11.16) 82N(T1) + m < Cll'i() < 50(8) for all 0 < Ty < T*(K}()),
1

where ¢ is given by (11.13). We view (u(T1),p(T1),n(T1)) as initial data for a new problem;
since (u, p,n) are already solutions, they satisfy the compatibility conditions needed to use them
as data. Then since En(T1) < do(g), we can use Theorem 10.7 with e given by (11.13) to extend
solutions to [T, T3] for any T5 satisfying

(11.17) 0<Ty— Ty <Tp=C(e)min{l, Fon(T1) '}

In light of (11.16), we may bound
1
<Tp.
()1 + T*(/*”vo))} -
Notice that T depends on ¢ (given by (11.13)) and T (ko), but is independent of T;. Let
— 1

11.19 — min{ T, T, (o), :

( ) Y min { (K/O) (1 + 2T*(/€0))1+)‘/2 }
and then let us choose T1 = T\ (ko) — v/2 and T> = T\ (ko) + /2. The choice of v implies that
(1120) 0<T < T*(I-io) <T) < 2T*(KJU) and 0 <~y=Tr, —T1 < T <Tp.

Then Theorem 10.7 allows us to extend solutions to the interval [0, 75|, and it provides estimates
on the extended interval [T7, T5]:

(11.18) T := C(¢) min {1, 5
0

Ts
(12) s e+ s [Tw@li+ [ Do
T <t<T> Th<t<T» UA

T 2
+ (HafN“u@)H 1*+H@?Np(t)Hz)dtécz(€+IIIAU(T1)II3+IIIw(T1)II§),
Ty (OH)
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(11.22) sup En(t) <e, and sup Fon(t) < CoFon(Th) +e.
T, <t<T> T1<t<T3

Having extended the existence interval, we will now show that Gon(7) < §. We combine the
estimates (11.21)—(11.22) with (11.15)—(11.16) and the bound (11.2) of Proposition 11.1 to see
that

(11.23)
CC 14+T1y)+¢
Gon (Ty) < C1Csig 4 Ca(e + Cirg) + — 2’2& Tl)l) +eC3(Ty — T1)%(1 + Tp)2 T
5 5 6
< koC1(C3+2Cy) +e(1+ Cy) + 503’72(1 + QT*(Ho))2+/\ < 3 + 3 + 3 =9,

where the second inequality follows from (11.20) and the third follows from the choice of ¢, ko,
and «y given in (11.13), (11.14), and (11.19), respectively. Hence Gan(T2) < §, contradicting the
definition of T, (ko). We deduce then that 7% (ko) = oo, which completes the proof of the claim
and the theorem. O

With this result in hand, it is a simple matter to prove Theorem 1.3.

Proof of Theorem 1.3. We set N = 5 in Theorem 11.2 to deduce all of the conclusions of
Theorem 1.3 except the estimates (1.19)—(1.20). Proposition 3.9 implies that

(11.24) fullZe gy < Cr)(E)7/EH) (E2)/ )

for any r € (0, 1), where C(r) > 0 is a constant depending on r. Let 0 < p < A and then choose
r € (0,1) so that

24\
(11.25) 0<r§2<+
2+p

Then C(r) = C(p) and the bound Gg(oco) < Cix implies that

)—2é(2+p)§(2+)\)<zir>.

1 2/(2+r)
<u%>wguﬂ“wwwé@scwamwu+wﬂ(( ) < C(p)Cir,

> >0 1+ t)?-i-/\

which is (1.19). The estimate (1.20) follows similarly by using the interpolation estimates of
Lemma 3.1 for the n terms and the interpolation estimates of Theorem 3.14 for Hu||§ In this case,
though, no use of r € (0, 1) is necessary because it does not appear in the interpolations. O

APPENDIX A. ANALYTIC TOOLS

A.1. Products in Sobolev spaces. We will need some estimates of the product of functions
in Sobolev spaces.

Lemma A.1. The following hold for sufficiently smooth subsets of R™.
(1) Let 0 <1 < s1 < 89 be such that s1 >n/2. Let f € H*', g € H*2. Then fg € H" and

(A1) N gl SNl gren 119l grse -
(2) Let 0 <r < s1 < sy be such that so > r+mn/2. Let f € H*', g € H%>. Then fg € H"
and
(A.2) I gl S NSl grsn 119l s -

(3) Let 0 < r < s1 < sy be such that sy > r+n/2. Let f € H"(X), g € H?2(X). Then
fg € H (%) and

(A.3) 19l s, S WA= Mlglls, -
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Proof. The proofs of (A.1) and (A.2) are standard; the bounds are first proved in R™ with the
Fourier transform, and then the bounds in sufficiently nice subsets of R™ are deduced by use of
an extension operator. To prove (A.3) we argue by duality. For ¢ € H*' we use (A.2)bound

(A4) /wag S llegly 1= S Hlells, lglls, 171 -

so that taking the supremum over ¢ with |||, <1 we get (A.3). O
We will also need the following variant.

Lemma A.2. Suppose that f € C(X) and g € HY*(X). Then

(A.5) 1fgllise S WFller llgllyye -

Proof. Consider the operator F': H* — H* given by F(g) = fg for k = 0,1. It is a bounded
operator for k = 0, 1 since

(A.6) 1fallo < [[fllcr llglly and (I fglly S 1 Fllen llglls -

Then the theory of interpolation of operators implies that F' is bounded from H/2 to itself,

with operator norm less than a constant times /|| f||c1 /| fllcr = || f]lc1, which is the desired
result. O

A.2. Estimates of the Riesz potential Z,. Consider Q = R? x (—b,0) for b > 0. For a
function f, defined on €2, we define the Riesz potential Zy f by

0
(A.7) Inf(a' x3) = / /2 F(&, a3) €] 2T Ede das.
- JR
Similarly, for f defined on 3, we set
(A8) Tuftel) = [ F(€) I e e

We have a product estimate that is a fractional analog of the Leibniz rule.

Lemma A.3. Let A € (0,1). If f € H(Q) and g,Dg € H'(Q), then

(A.9) IZ2(F)llo S N1 £llo llgll3 1Dglli
If f € HY(X) and g € HY(X), then
(A.10) 1ZA(F 9oy S I F oy 19130y 1 Dgll 70 -

Proof. The Hardy-Littlewood-Sobolev inequality (see, for example, Theorem 4.3 of [19]) implies
that Zy : L¥+M(R?) — L?(R?) is a bounded linear operator for A € (0,1). We may then
employ Fubini and apply this result on each slice {x3 = z} for z € (—b,0) to estimate

14+A
(1) [ @l / [, mro) da'dn, < / ( |fg|2/““>d:c’> dis
]R2
<[ ([ e ( |g|2/*dx') dzs < swp (gl [ 177
—b R2 R2 —b<x3<0 Q

where in the second inequality we have applied Holder’s inequality. By the Gagliardo-Nirenberg
interpolation inequality on R? we may bound

(A12) g3l gy S 9Csa3)l ey I1D9Cws)llEa e,
but by trace theory we also have

(A.13) lgCs23)ll L2 mey < llglly and [|Dg(; 23)ll L2 ge) S [1Dglly
so that

(A.14) sup g, 23) [ 2e e < lgll} I1Dgl1

—b<x3<0
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Chaining together (A.11) and (A.14) then yields the estimate (A.9). A similar argument, not
employing Fubini or trace theory, provides the estimate (A.10). O

Our next result shows how 7, interacts with horizontal derivatives in €).

Lemma A.4. Let A € (0,1). If f € H¥(Q) for k > 1 an integer, then
k k=1 | M | ok gl
(A-15) HIAD fHo S HD ) fHo HD fHo '

Proof. On a fixed horizontal slice {z3 = z} for z € (—b,0), Parseval’s theorem implies that

(A.16) /R 2

I)\Dkf(x”x:s)‘Q dz' < /2 1|20 ‘f(é»ﬂfg)rdg
. 2\ A o\ 1-A
= /R2 (\§|2(k—1) ‘f(ﬁ,xg)’ ) <‘§’2k ‘f(g,l'g)’ ) d¢

(Lt (]

Here in the second inequality we have used Holder and Parseval. Integrating both sides of
this inequality with respect to z3 € (—b,0) and again applying Holder’s inequality yields the
estimate (A.15). O

k / 2 /1_)\
DY f(z', x3)| dx .

A.3. Poisson integral. For a function f defined on ¥ = R?, the Poisson integral in R? x
(—00,0) is defined by

(A.17) Pf(a!, xs) = f(&)e2mlélzs 2miz’E ge
RQ

Although Pf is defined in all of R? x (—o00,0), we will only need bounds on its norm in the
restricted domain 2 = R? x (—b,0). This yields a couple improvements of the usual estimates
of Pf on the set R? x (—o0,0).

Lemma A.5. Let Pf be the Poisson integral of a function f that is either in HYY) or
HYY2(%) for g € N (here H® is the usual homogeneous Sobolev space of order s). Then

L2 [ 1 = e—4mblel
(A.18) Vet s [ e |fo) (S ) de
R? €]
and in particular
(A.19) IVIPAIG S 101720y and [VOPAIG S 1 1 Fagss -

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

a0 1viRs [ [ | e emsmenas < [ | fef ([ emoieaen) e

s [ welief (“M“) p

This is (A.18). To deduce (A.19) from (A.18), we simply note that
1 — e—4mble]

1
€] Smm{ ”’al}’

which means we are free to bound the right hand side of (A.20) by either | f H12ﬁlrl/2(z:) or
1By O

(A.21)
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A.4. Interpolation estimates. Assume that ¥ = R? and Q = ¥ x (—b,0). We begin with an

interpolation result for Poisson integrals, as defined by A.17.

Lemma A.6. Let Pf be the Poisson integral of f, defined on 3. Let A > 0, q,s € N, and
r > 0. Then the following estimates hold.

(1) Let
S q-+A
A.22 = adl1-60=—"—.
( ) q+$+)\ an q+8+)\
Then
0 5,12 1-60
(A.23) Ivopsiz < (lms12)” (Ipeer)s)
(2) Letr+s>1,
-1 1
(A.24) L el P S 0 G
qg+s+r+A gt+s+r+A
Then
0 o2\ 10
(A.25) 19913 < (ITf12) (ID7s)2)
(3) Let s > 1. Then
(A.26) IVPf |7 S IIDSI.

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

w2 1vprRs [ [ er]ief enemana s [ o) ae

= [ (e s} (e rof) e

for 6 and 1— 6 defined by (A.22). An application of Holder’s inequality and a second application
of Parseval’s theorem then provides the estimate (A.23).

For the L estimate (A.25), we use the definition of Pf in conjunction with the trivial
estimate exp(27 |€| z3) < 1 in Q to bound

(4.28) VP Sl 5 [ le] 6| e

For R > 0 we split into high and low frequencies to see that

a20) [ e |fo)as= [ e i@+ [ e ene e

1/2 1/2
<< / £|2<‘I“>d£) HIAf||0+< / |§r‘28<s>—”d£> | De* |
Br B%,

S RIPHTA g + RV DT

The condition r 4 s > 1 guarantees that integral over Bf% is finite. Minimizing the right side
with respect to R € (0,00) then yields (A.25).
The estimate (A.26) follows from the easy bound

G

X 1/2
(A.30) [ ev|e]ae s upra, ([ @-a) s io,.
which holds when s > 1. O
The next result is a similar interpolation result for functions defined only on X.

Lemma A.7. Let f be defined on . Let A > 0. Then the following estimates hold.
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(1) Let q,s € (0,00) and

S q+A
A.31 =——andl—0=———.
( ) q+s+)\ an q+8+)\
Then
q 2 < 2 0 q+s 2 1-0
(A.32) 10775 s (I3 f13) (I rlls)
(2) Letq,se N, r>0,r+s>1,
-1 1
(A.33) o— TSl g1og- 4TATL
qgts+r+A gts+r+A
Then
qr(2 2" g+s |2} 0
(A34) 107713 < (1T 12)” (Irerll?)
Proof. For the H? estimate we use
.2
(A35) 101 s [ e | ae
and argue as in Lemma A.6. For the L™ estimate we bound
(A36) 1D 5 €| Fee)] e
and again argue as in Lemma A.6. U

Now we record a similar result for functions defined on €2 that are not Poisson integrals. The
result follows from estimates on fixed horizontal slices.

Lemma A.8. Let f be a function on Q). Let A >0, q,s € N, and r > 0. Then the following
estimates hold.

(1) Let
_ 5 g _atA
(A.37) —q+$+)\and1 e_q—i—s—i—)\'
Then
0 1-60
(A.38) 107512 < (1) (o))
(2) Letr+s>1,
g+s+r+A qt+s+r+A
Then
0 1-60
(A.40) 107113 < (IZ3012) (07512, ,)
and
9 1-60
(A1) 1D iy S (IT1R) (127111,

Proof. We employ the horizontal Fourier transform and Parseval in conjunction with Fubini to
bound

0 . 2
(4.42) R i G VG
For a fixed 3 we may argue as in Lemma A.6 to show that

(A3 [ 6P| de < (1zsoanlR)” (1077 )

1-6
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for 6 and 1 — 6 given by (A.37). Combining these two inequalities with Hélder’s inequality then
shows that

0 _
(A.44) HquHg < /b (||I>\f(-,:v3)||3>9 (HDq-FSf(-,:LB)H(Q))l 9dm3

< (1zs12)" (10w r2) ™

which is (A.38).
Now for the L™ estimate we first work on a horizontal slice {x3 = z} for some z € [-b,0].
Indeed, using the horizontal Fourier transform on the slice, we have

(A45) 1Dl S [ 117 |6 e
We may then argue as in Lemma A.6 to show that
5 s 1-6
(A.46) Lt || de S zsanly)” (107 as),)
for @ and 1 — 6 given by (A.39). By the usual trace theory
(A.47) 1T f (o as)llo S WDl and [ D75 F(as)], < D77, -
Combining (A.45)—(A.47) and taking the supremum over x3 € [—b,0] then gives (A.40). A
similar argument yields (A.41). O

A.5. Transport estimate. Consider the equation
on+u-Dnp=g inXx(0,T)
n(t=0)=mno

with 7" € (0, 00]. We have the following estimate of the transport of regularity for solutions to
(A.48), which is a particular case of a more general result proved in [10].

(A.48)

Lemma A.9 (Proposition 2.1 of [10]). Let n be a solution to (A.48). Then there is a universal
constant C > 0 so that for any 0 < s < 2

t t
(A49)  sup [n()lge < exp (c / uDu<r>\H3/2dr) <|rnouHs+ / ||g<r>\|Hsdr).
0<r<t 0 0

Proof. Use p =p9 =2, N =2, and 0 = s in Proposition 2.1 of [10] along with the embedding
H3% < B} NL>. O
A.6. Poincaré-type inequalities. Let ¥ and 2 be as before.

Lemma A.10. [t holds that

(A.50) 11720y S 1172y + 105F 11720
for all f € HY(Q). Also, if f € WH™(Q), then
(A.51) 1 7oy S N 1700 sy + 105 1700y -

Proof. By density we may assume that f is smooth. Writing z = (2/,23) for 2/ € ¥ and
xzg € (=b(2'),0), we have

0
(A.52) ‘f(x’,xg)‘2 = ‘f(x',O)‘Q — 2/ f(@',2)03f(2',2)dz

0
<lsaof +2 [ (5] 0ssw )

We may integrate this with respect to z3 € (—b(2’),0) to get

0 0
(A.53) / ‘f(a:',xg)}2dm3 < ’f(z:/,())‘g + 2/ ’f(:v',z)‘ ‘agf(m’,zﬂ dz.

—b(z’) —b(z’)
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Now we integrate over 2’ € ¥ to find
(A58 [ 1@ de S 1w +2 [ £ 03f()| do

1
< 1f 172y + € 1f 1 72y + Z 103 £1172 (0

for any € > 0. Choosing € > 0 sufficiently small then yields (A.50). The estimate (A.51) follows
similarly, taking suprema rather than integrating. O

A simple modification of the proof of Lemma A.10 yields the following estimates.

Lemma A.11. It holds that || f|| o) < 105 || goqy for f € HY(Q) so that f = 0 on . It
also holds that || f|| pec sy S |05f || oo () for [ € W1 (Q) so that f =0 on Xp.

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 [4].
Lemma A.12. It holds that |jul|; < |[Dull for all w € H'(;R3) so that uw =0 on Xy

We also record the standard Poincaré inequality, which applies for functions taking either
vector or scalar values.

Lemma A.13. It holds that ||fllo S Iflly S IV Flly for all f € HY(Q) so that f =0 on .
Also, | fll ey S I fllwroe) S IV Fllpoo(qy for all f € WH(Q) so that f =0 on .

A.7. An elliptic estimate. The proof of the following estimate may be found in [4].

Lemma A.14. Suppose (u,p) solve

—~Au+Vp=¢ec H2(Q)
divu = € H1(Q)

A.55
(4.55) (pI — D(u))ez = a € H3/2(X)
uly, = 0.
Then for r > 2,
(A.56) lallzgr + ol S Sl + 1Mz + i —s/e -
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