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Introduction

We say that a first-order theory is categorical in a cardinal λ if every model of
the theory with cardinality λ is isomorphic. In [Mo 65] Morley proved that a
countable complete theory T which is categorical in an uncountable λ is cate-
gorical in every uncountable cardinal. Shelah, in [Sh 74], proved the following
generalization: for a complete theory T of any infinite cardinality, if it is cate-
gorical in some λ > |T | then it is categorical in every κ > |T |.

Briefly, the main idea behind the proof of Morley’s categoricity theorem is
that a countable theory that is categorical for some uncountable cardinal is to-
tally transcendental and therefore stable in all infinite cardinals. From then,
one can prove that there is a strongly minimal formula and a prime model over
a strongly minimal set, which can then be proved to be unique and therefore es-
tablish categoricity. None of these properties hold for an uncountable language,
although for each one there is a corresponding generalization which, while much
more difficult to prove, allows one to partially recover this line of attack.

This exposition follows Shelah’s originial proof in [Sh 74] for the main the-
orem of categoricity, and includes all the model-theoretic tools needed to prove
it. Shelah actually updated the proof in [Sh 90] as part of constructing the
entire spectrum of isomorphic classes for a given theory, and thus introduced
many tools in the process. Unfortunately, the updated proof depends heavily on
these tools, the exposition of which is not necessary for the original proof and
will require a much lengthier exposition. We have thus avoided the unnecessary
machinery of [Sh 90] if there is some weaker concept that is sufficient for the
current exposition.

Additionally, this exposition was written with the intent of being self-contained
with respect to model theory, and the intended audience is only assumed to be
familiar with the semantics of first order logic and elementary set theory (in
particular ordinal and cardinal arithmetic). Chapter one is thus devoted to
an introduction of elementary model theoretical concepts: signatures, models,
Skolem functions and types. The reader who is familiar with the Compactness
theorem, Löwenheim-Skolem theorems, saturated models, universal models and
ultrapowers may skip this chapter entirely. However, readers who have not en-
countered this subject before will likely find this chapter insufficient in providing
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familiarity necessary for the results to follow. Readers who have not encoun-
tered model theory before are therefore advised to consult other introductory
texts (for example, [Ho 97]) in addition to this exposition.

Chapter two introduces most of the machinery which would be needed for the
proof of the main theorem: stability and stable formulas, λ-prime models, in-
discernibles, definable types, two cardinal theorems and Ehrenfeucht-Mostowski
models. The concept of stability is the starting point to stability theory, but as
mentioned above we will be avoiding most of the powerful tools of stability the-
ory: this includes ranks, forking and dimensionality, since they are too general
for the task at hand and each require a lengthy exposition itself.

Chapter three begins the exposition proper of [Sh 74]: we first fix the nota-
tion that we will use for what is to follow (which we cannot do immediately as
pedagogically we have not yet introduced any model-theoretic concepts), then
follow step-by-step Shelah’s original proof. In particular, Shelah’s original paper
makes references to papers which only proved their respective results for count-
able languages, and the generalization of those results to uncountable languages
is not always straight forward. However, we have structured this exposition so
that the relevant generalizations are presented in chapter two.

During a first reading, the various concepts and results proved in chapter
one and two may seem unmotivated: the structure of this exposition is such
that each section contains most of the results corresponding to the theme of the
section, and the application of each result may not seem obvious immediately.
Thus it may be helpful to skip over the details of the proofs in chapter one and
two and only return to them when the exposition of Shelah’s proof in chapter
three requires a particular result.

The historical remarks are meant to be a reference to where the results first
arose in the literature, and also where the proofs given in this exposition are
from. The author has tried to trace these sources to the best of his ability, but
it is likely that some of these proofs are based on an idea which pre-dates the
cited source of the proof (especially the results in chapter one, which are now
considered classical results and found in a large number of introductory texts).
Additionally, there are a few lemmas that are unattributed, which are mostly
specific details that the original papers did not address explicitly but (in the
author’s opinion) should be made clearer. In any case, the author does not claim
any of these lemmas to be a novel result, as even those which are unattributed
are widely known in the field.

One should be aware that the proof given here is probably not the most
efficient method of proof, and the lemmas proved along the way are not the
most general ones possible. The interested reader should consult [Sh 90] for the
details, but there are some details that are worth mentioning: it is possible to
prove that a theory which is categorical in some λ > |T | is unimodular and
superstable, and in particular µ-stable for any µ ≥ |T | (improving on Proposi-
tion 3.2.1). This simplifies the proof that every model of T is locally saturated
(Theorem 3.2.3), yields a different proof that D(x = x) < ∞ (Theorem 3.3.5)
and also gives a simpler proof of the existence of a weakly minimal formula
(Theorem 3.4.6). Furthermore, using techniques like forking and Morley se-
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quences, one can show that if T is µ-stable then there is a saturated model of T
with cardinality µ, giving a stronger result than Proposition 2.1.17 and making
Corollary 3.4.9 a trivial claim. Lastly, we proved Theorem 2.5.9 and Theorem
2.6.2 for the simplest cases, but in fact the same results can be proved for a
much larger range of cardinalities.
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Chapter 1

Model Theoretic
Preliminaries

1.1 First Order Languages and Structures

Given a variety of algebraic structures, for examples groups, rings or lattices, we
may talk about constants, operations or relations of the structure. We generalize
and formalize this using formal languages:

Definition 1.1.1. A signature τ consists of a set of constant symbols, a set of
function symbols and a set of relation symbols, all of which are pairwise disjoint.
A term in τ is defined inductively by:

1. A constant symbol c is a term

2. A variable x is a term

3. If t0, . . . , tn−1 are terms and f is a function symbol of arity n, then
f(t0, . . . , tn−1) is a term

4. There are no other terms

A closed term is a term which does not contain any variables.
The language Lτ has τ∪{(, ),¬,∨,∧,→,↔,∀,∃}∪{vi : i < ω} as symbols, with
{vi : i < ω} as variables, and is defined inductively by the following formation
clauses:

1. If t0, t1 are terms, then (t0 = t1) is a formula in Lτ (Read as “t0 equals
t1”)

2. If t0, . . . , tn−1 are terms and P is a relation symbol of arity n, then
(P (t0, . . . , tn−1)) is a formula in Lτ

3. If φ is a formula in Lτ , then (¬φ) is a formula in Lτ (Read as “not φ”)
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4. If φ, ψ are formulas in Lτ , then (φ ∧ ψ) is a formula in Lτ (Read as “φ
and ψ”)

5. If φ, ψ are formulas in Lτ , then (φ ∨ ψ) is a formula in Lτ (Read as “φ
or ψ”)

6. If φ, ψ are formulas in Lτ , then (φ→ ψ) is a formula in Lτ (Read as “if
φ then ψ”)

7. If φ, ψ are formulas in Lτ , then (φ↔ ψ) is a formula in Lτ (Read as “φ
is equivalent to ψ”)

8. If φ is a formula in Lτ and x is a variable, then (∀xφ) is a formula in Lτ
(Read as “for all x φ(x)”)

9. If φ is a formula in Lτ and x is a variable, then (∃xφ) is a formula in Lτ
(Read as “there exists x φ(x)”)

10. No other string of symbols is a formula in Lτ

An atomic formula is one which is of the forms as in clauses 1 or 2 above.
A literal formula is either atomic or one formed by clause 3 above from an
atomic φ i.e. the negation of an atomic formula.
A quantifier-free formula is one which is formed without using clauses 8 or
9 above i.e. the quantifiers ∀,∃ do not appear in the formula.
For a formula φ, a variable x is free in φ if:

1. φ is of the form (t = s) or (P (t0, . . . , tn−1)) and x occurs in φ

2. φ is of the form (¬ψ) for a formula ψ and x is free in ψ

3. φ is of the form (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) or (ϕ↔ ψ) for formulas ϕ,ψ,
and x is free in either ϕ or ψ

4. φ is of the form (∀yψ), (∃yψ), x is free in ψ and x is not y

For a formula φ ∈ L, we write φ(x0, . . . , xn−1) to emphasize that the variables
x0, . . . , xn−1 are either free in φ or do not occur in φ, though not necessarily
including ALL the free variables in φ.
A closed formula is a formula with no free variables.

Remark. We will abbreviate the formula

∃x0, . . . , xn−1((
∧

0≤i<n

φ(xi)) ∧ (
∧

0≤i<j<n

xi 6= xj))

by ∃≥nxφ(x). Similarly, we abbreviate the formula

∃x0, . . . , xn−1((
∧

0≤i<n

φ(xi)) ∧ (∀y(
∧

0≤i<n

xi 6= y)→ ¬φ(y)))

by ∃≤nxφ(x). We will abbreviate (∃≥nxφ(x)) ∧ (∃≤nxφ(x)) by ∃=nxφ(x).
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We will omit parentheses surrounding formulas when there is no ambiguity.
We will omit τ and write L when there is no ambiguity, and similarly we will
speak of constants symbols of L, function symbols of L, relation symbols of L
and terms of L without reference to τ .

Additionally, for any signature τ in this exposition, if C is the set of constant
symbols, F the set of function symbols and R the set of relations symbols, we
will assume that

|C|+ |F | ≥ |R|

While not necessary, this assumption will simplify certain proofs and results
about the cardinalities.

Proposition 1.1.2. For any signature τ , |Lτ | = |τ |+ ℵ0

Proof. Note that any formula in Lτ has finite length. The result then follows
by induction on formula length.

For example, the signature of the language of groups (and in fact of monoids)
consists of the constant e and the binary operation ·. The language of partial
orders consists only of the binary relation ≤, and note that the language of
simple graphs also consists only of the binary relation E (denoting the existence
of an edge). Since the actual choice of symbols is irrelevant to the language,
thus we see that the language itself is insufficient to determining what kind of
structures we are interested in. But before we can refine that, we need to first
define what a structure for an arbitrary signature is:

Definition 1.1.3. A τ-structure (or L-structure, or simply a structure
when L and τ is clear from context) M consists of a nonempty set M and an
interpretation satisfying:

1. For every constant symbol c in τ , there is a cM ∈M

2. For every function symbol f in τ of arity n, there is a function fM :
Mn −→M

3. For every relation symbol P in τ of arity n, there is a PM ⊆Mn

The domain of M is M .
Let t be a term in τ , M a τ -structure and ā ∈ Mω. Then tM (ā) is defined
inductively by:

1. If t is a constant symbol c, then tM (ā) is cM

2. If t is the variable xi for some i ∈ ω, then tM (ā) is ā(i)

3. If t is of the form f(t0, . . . , tn−1) for terms t0, . . . , tn−1 and f a function
symbol of arity n, then tM (ā) is fM (tM0 (ā), . . . , tMn−1(ā))

For ā ∈Mω, i ∈ ω and b ∈M , ā[i→ b] = (a0, . . . , ai−1, b, ai+1, . . . )
For φ a formula in L and M an L-structure, we defined φ(M ) inductively:
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1. If φ is of the form (t = s) for terms t, s, then φ(M ) = {ā ∈Mω : tM (ā) =
sM (ā)}

2. If φ is of the form (P (t0, . . . , tn−1)) for terms t0, . . . , tn−1 and P a relation
symbol of arity n, then φ(M ) = {ā ∈Mω : (tM0 (ā), . . . , tMn−1(ā)) ∈ PM}

3. If φ is of the form (¬ψ) for a formula ψ, then φ(M ) = Mω\ψ(M )

4. If φ is of the form (ϕ∧ψ) for formulas ϕ,ψ, then φ(M ) = ϕ(M )∩ψ(M )

5. If φ is of the form (ϕ∨ψ) for formulas ϕ,ψ, then φ(M ) = ϕ(M )∪ψ(M )

6. If φ is of the form (ϕ→ ψ) for formulas ϕ,ψ, then φ(M ) = (Mω\ϕ(M ))∪
(ϕ(M ) ∩ ψ(M ))

7. If φ is of the form (ϕ ↔ ψ) for formulas ϕ,ψ, then φ(M ) = (ϕ(M ) ∩
ψ(M )) ∪ ((Mω\ϕ(M )) ∩ (Mω\ψ(M )))

8. If φ is of the form (∀viψ) for a formula ψ, φ(M ) = {ā ∈Mω : for every b ∈
M, ā[i→ b] ∈ ψ(M )}

9. If φ is of the form (∃viψ) for a formula ψ, φ(M ) = {ā ∈Mω : there is some b ∈
M, ā[i→ b] ∈ ψ(M )}

We say that M satisfies φ or M is a model of φ and write M |= φ when
φ(M ) = Mω.
For Γ ⊆ L, M |= Γ if for every formula φ ∈ Γ, M |= φ. We say Γ implies φ
and also write Γ |= φ if for every L-structure M such that M |= Γ, M |= φ.
We define the L-theory of M by ThL(M ) = {φ ∈ L : M |= φ}.

We will frequently make an abuse of notation and write M in place of M
when there is no ambiguity in interpretation. For brevity, given a (possibly
infinite) tuple ā with elements from a set A we will also write as ā ∈ A.

Similarly, when the language in consideration is clear we will drop L from
subscripts. This also applies to many definitions in the upcoming sections.

Note that it is clear from the definitions that for any formula φ with n free
variables, φ(M) is actually well-defined as a subset of Mn, and we will identify
φ(M) as such. In particular, if φ has only one free variable then we will regard
φ(M) as a subset of M .

Lastly, it is an elementary fact of propositional logic that any formula using
the logical connectives {¬,∧,∨,→,↔} is equivalent to a formula using only the
connectives {¬,∧}. Additionally:

Proposition 1.1.4. For any formula φ with x a free variable in φ and structure
M ,

• M |= ∀xφ iff M |= ¬∃x¬φ

• M |= ∃xφ iff M |= ¬∀x¬φ
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• M |= φ iff M |= ∀xφ

Thus when we need to proceed by induction over the structure of formulas,
it is sufficient to consider only the formation clauses 1, 2, 3, either one of 4 or
5 and either one of 8 or 9 (as given above in Definition 1.1.1).

Often when discussing a model, we may wish to describe elements in the
model even if the language does not explicitly allow us to do so: for example,
the language of rings has constant symbols 0, 1 and two binary functions +, ·, so
that in Q, every element of Z is the interpretation of a term (n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n

)

whereas any element of Q − Z is not an interpretation of any term. However,
would still like to make statements such as “∃x 1

2 · x = 1” about Q. This
motivates:

Definition 1.1.5. If M is a τ -structure and A ⊆ M , we define τA = τ t A
with A as new constant symbols. We denote the language of τA by LA, and
by MA we refer to the τA-structure formed by interpreting the symbols in A as
themselves in M . We refer to the LA-theory of MA by ThA(M ).
For any formula φ(x0, . . . , xn−1) ∈ L and ā ∈ Mn, φ(ā) is the formula in Lā
formed by replacing all occurrences of xi by a(i) for every 0 ≤ i < n. If ā ∈ A,
we say that φ(ā) is a formula in L with parameters in A.
We write M |= φ(ā) if Mā |= φ(ā).

Proposition 1.1.6. If τ+ is a signature, τ+ ) τ and M + is a τ+-structure,
then there is a τ -structure M with the same domain as M + and such that:

1. For every constant symbol c in τ , cM = cM
+

2. For every function symbol f in τ , fM = fM+

3. For every relation symbol P in τ , PM = PM+

Definition 1.1.7. We call M from above the τ-reduct of M + and denote such
a reduct by M +|τ . If L = Lτ , we may also call it a L-reduct and denote it by
M +|L.
Conversely, we call M + from above the τ+-expansion or, if L+ = Lτ+ , the
L+-expansion of M .

1.2 Elementary Substructures

One often talks about subgroups, subrings or sublattices. This naturally gener-
alizes to any structure:

Proposition 1.2.1. If M is a structure, N ⊆M and N satisfies:

1. For every constant symbol c, cM ∈ N

2. For every function symbol f of arity n and for every ā ∈ Nn, fM (ā) ∈ N
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Then there is a structure N with domain N such that:

1. For every constant symbol c, cN = cM

2. For every function symbol f , fN = fM |N

3. For every relation symbol P of arity n, PN = PM ∩Nn

Definition 1.2.2. For L-structures M ,N , N is a substructure of M if it
satisfies the conditions above.
For a A ⊆M , we denote the substructure generated by A by 〈A〉L, with

〈A〉L =
⋂
{N ⊆M : A ⊆ N,N a substructure of M}

In model theory, the cardinality of a model is often an important property,
so it will be useful to establish the cardinality of substructures:

Lemma 1.2.3. For any τ -structure M and A ⊆M , |〈A〉| = |A|+ |τ |+ ℵ0

Proof. We will show this by constructing 〈A〉 explicitly. Let C,F be the set of
constant symbols and function symbols of τ respectively, and let A0 = A∪{cM ∈
M : c ∈ C}. Then inductively, if Ai is defined, let

Ai+1 = Ai ∪ {fM (ā) ∈M : f ∈ F, ā ∈ Ai}

Then let Aω =
⋃
i<ω Ai.

Claim. Aω = 〈A〉
It is clear by induction that for any N ⊆M a substructure of M with A ⊆ N ,

for every Ai, Ai ⊆ N . Thus it suffices to show that Aω is a substructure. But by
constuction, Aω satisfies the conditions of Proposition 1.2.1, and we are done.

Now, |A0| = |A|+ |C|, and for every i < ω, by construction

|Ai+1| =
∑
n<ω

|Ani | × |{f ∈ F : f has arity n}|

Thus |Aω| = |A|+ |C|+ |F |+ ℵ0 = |A|+ |τ |+ ℵ0

Corollary 1.2.4. For every b ∈ 〈A〉, there is some term t(x̄) in L and some
ā ∈ A such that 〈A〉 |= b = t(ā).

Proof. True by induction due to the construction of Aω above.

In algebra, we often identify an algebraic structure B with an isomorphic
copy which is a substructure of some other structure A and say that B is a
substructure of A : for example, we may consider Z as a subring of the ring of
functions R −→ R. For an arbitrary signature, we can generalize this concept
and justify it by the following:

Proposition 1.2.5. Let M,N be L-structures, and suppose h : M −→ N
satisfies:
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1. For every constant symbol c, h(cM ) = cN

2. For every function symbol f of arity n and m̄ ∈ Mn, h(fM (m̄)) =
fN (h(m0), . . . , h(mn−1))

3. For every relation symbol P of arity n and m̄ ∈ Mn, m̄ ∈ PM iff
(h(m0), . . . , h(mn−1)) ∈ PN .

Then h(M) is a substructure of N with the following interpretations:

1. For constant symbol c, ch(M) = h(cM )

2. For a function symbol f of arity n and m̄ ∈Mn, fh(M)(h(m̄)) = h(fM (m̄))

3. For a relation symbol P , Ph(M) = h(PM )

Proof. Note that h(M) satisfies the conditions of Proposition 1.2.1, and addi-
tionally all the interpretations coincide with the ones given in 1.2.1.

Definition 1.2.6. An injective h : M −→ N satisfying the above conditions
is called a L-embedding. By identifying M with the substructure which is the
image of M under h, we also say that M is a substructure of N .

Corollary 1.2.7. If M is a substructure of N , then the inclusion map i : M −→
N is an embedding.

Proof. It is straightforward to check that the conditions of the above proposition
are satisfied by i.

Proposition 1.2.8. If h : M −→ N is an embedding and φ(x̄) ∈ L is quantifier-
free, then for m̄ ∈M , M |= φ(m̄) iff N |= φ(h(m̄)).

Proof. We proceed by induction on φ ∈ L to show that M |= φ(ā) iff N |= φ(ā):

1. If φ(ā) is t(x̄, ā) = s(x̄, ā) with all free variables in x̄, then for every choice
of b̄ of the same length as x̄ in N , N |= t(b̄, ā) = s(b̄, ā). Thus for every
choice of c̄ in M , since c̄ ∈ N , M |= t(c̄, ā) = s(c̄, ā). Conversely, if
N 2 φ(ā), then N |= ∃x̄¬t(x̄, ā) = s(x̄, ā). By induction on the length of
x̄ and the assumption,there is a b̄ ∈M such that M |= ¬t(x̄, ā) = s(x̄, ā).

2. If φ(ā) is P (x̄, ā) with all free variables in x̄ and N |= φ(ā), then as above
for every choice of b̄ of the same length as x̄ in N , N |= P (b̄, ā). Thus
for every choice of c̄ in M , since c̄ ∈ N , M |= P (c̄, ā). Conversely, if
N 2 φ(ā), then N |= ∃x̄¬P (x̄, ā). By induction on the length of x̄ and the
assumption,there is a b̄ ∈M such that M |= ¬P (b̄, ā).

3. If φ is ¬ψ, ψ satisfying the induction hypothesis, then N |= φ(ā) iff N 2
ψ(ā) iff M 2 ψ(ā) iff M |= φ(ā).

4. If φ is ϕ∧ψ, ϕ,ψ both satisfying the induction hypothesis, then N |= φ(ā)
iff N |= ϕ(ā) and N |= ψ(ā) iff M |= ϕ(ā) and M |= ψ(ā) iff M |= φ(ā).
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Definition 1.2.9. M,N are isomorphic as L-structures if there is a sur-
jective embedding between them and we write M ∼=L N . Such an embedding is
called an L-isomorphism.

Proposition 1.2.10. If M,N are isomorphic, then Th(M) = Th(N).

Proof. We can interpret N as a LM -structure by mN = h(m), where h : M −→
N is an isomorphism. Then proceed by induction on formula complexity for
formulas in L.

On the other hand, we should note that being a substructure does not pre-
serve the L-theory of the structures: for example, Z is a subring of Z[

√
2], but

Z |= ¬∃xx · x = 1 + 1 while Z[
√

2] |= ∃xx · x = 1 + 1. So if we want to ensure
that a substructure has the same L-theory as it’s superstructure, we will need
a stronger condition:

Definition 1.2.11. If h : M −→ N is an embedding such that for every m̄ ∈M
and φ ∈ L, M |= φ(m̄) iff N |= φ(h(m̄)), then we say h is an elementary
embedding.
If M is a substructure of N and the inclusion may i : M −→ N is an L-
embedding, then M is an elementary substructure of N . We also call N
an elementary extension of M . We write M � N , or M �L N when we
wish to emphasize M is an elementary substructure as an L-structure.
If M,N are L-structures, we say that M and N are elementarily equivalent
and write M ≡ N if Th(M) = Th(N).

Proposition 1.2.12. If M � N , then M ≡ N

Proof. Since the inclusion map preserves the truth value of each formula φ(m̄)
with parameters in M , in particular it preserves all formulas in L without pa-
rameters. That is Th(M) = Th(N).

Here is a simple example of a proper elementary substructure: the algebraic
closure Q̄ of Q in C is a proper elementary substructure of C. This can be
proven by the method of quantifier elimination, which shows that the recur-
sively axiomatizable theory of algebraically closed fields of characteristic 0 is a
complete theory in the language of rings. This is however a special case, and
in general we will use the following criteria for determining whether or not a
substructure is an elementary substructure.

Theorem 1.2.13 (Tarski-Vaught Test). For structures M,N with M a sub-
structure of N , M � N iff for every φ(x, ȳ) ∈ L and ā ∈ M , if N |= ∃xφ(x, ā)
then there is a b ∈M such that M |= φ(b, ā).

Proof. The forward direction is straightforward, as N |= ∃xφ(x, ā) iff M |=
∃xφ(x, ā) since the inclusion map is an elementary embedding.
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For the reverse direction, Corollary 1.2.7 shows that the inclusion map is
an embedding. Now, additionally, for any ā ∈ M and φ ∈ L, N |= ∃(x, ā)
iff M |= ∃(x, ā), so in fact the induction in Proposition 1.2.8 can be extended
to include all formulas in L. This shows that the inclusion map is actually an
elementary embedding.

The following lemma (actually the corollary which follows) that was intro-
duced also by Tarski and Vaught is used in the construction of elementary
extensions:

Lemma 1.2.14. Suppose (Mi : i ∈ ω) is a sequence of structures such that for
each i ∈ ω, Mi �Mi+1. Then M =

⋃
i<ωMi is a structure and M0 �M .

Remark. Note that M has a natural interpretation as an L-structure:

• For constant symbol c, cM = cMi

• For function symbol f , fM =
⋃
i<ω f

Mi

• For relation symbol P , PM =
⋃
i<ω P

Mi

Proof. It is clear by induction that for every 0 < i < ω, M0 � Mi. Now, for
φ ∈ L and ā ∈ M0, assume M |= ∃xφ(x, ā). Then there is some b ∈ M such
that M |= φ(b, ā). So there is some i < ω such that b ∈Mi i.e. Mi |= ∃xφ(x, ā).
But M0 � Mi, and so there is some c ∈ M0 such that M0 |= φ(c, ā). Then by
the Tarski-Vaught test, M0 �M .

Corollary 1.2.15. Suppose α is an limit ordinal and (Mi : i < α) is a sequence
of structures such that for each i < j, Mi � Mj. Then for each i < α, Mi �
Mα =

⋃
i<αMi.

Proof. The interpretation of Mα is as in the lemma above with α replacing ω.
The proof the Tarski-Vaught test is also as above.

Definition 1.2.16. A chain (Mi : i < α) of structures such that

• For each successor β + 1, Mβ �Mβ+1

• For each limit δ, Mδ =
⋃
i<δMi

is called an elementary chain.

As in the case of substructures, we often wish to identify a structure with an
elementary substructure of another structure. Again, this can be easily justified:

Proposition 1.2.17. If h : M −→ N is an embedding such that for every
m̄ ∈M and φ ∈ L, M |= φ(m̄) iff N |= φ(h(m̄)), then h(M) � N .

Proof. Note that M ∼= h(M). By the assumption, for φ(x, ȳ) ∈ L and m̄ ∈
M , N |= ∃xφ(x, h(m̄)) iff M |= ∃xφ(x, m̄) iff there is a b ∈ M such that
M |= φ(b, m̄) iff h(M) |= φ(h(b), h(m̄)). Thus h(M) � N by the Tarski-Vaught
test.
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In light of this proposition, we extend our notation slightly:

Definition 1.2.18. If an elementary embedding from M to N exists, then we
say M is elementarily embeddable in N and also write M � N

1.3 Skolem Functions

While the Tarski-Vaught test allows us to identify whether or not a substructure
is an elementary substructure, it does not help us in constructing one. For this
task, we need the following process called Skolemization.

Definition 1.3.1. We say that a T ⊆ L has Skolem functions if for ev-
ery φ(x̄, y) ∈ L with x̄ nonempty, there is a function symbol f such that
∀x̄(∃yφ(x̄, y)→ φ(x̄, f(x̄))) ∈ T .

Lemma 1.3.2. If T ⊆ Lτ , then there is a τ ′ ⊇ τ with a T ′ ⊆ Lτ ′ , T ′ ⊇ T such
that |τ ′| = |τ |+ ℵ0 and T ′ has Skolem functions.

Proof. For every φ(x̄, y) ∈ Lτ , let fφ be a new function symbol of arity |x̄| and
define τ1 = τ ∪{fφ : φ(x̄, y) ∈ L}. Note then that |τ1| = |τ |+ |Lτ | = |τ |+ℵ0 by
Proposition 1.1.2. Then let

T1 = T ∪ {∀x̄(∃yφ(x̄, y)→ φ(x̄, fφ(x̄))) : φ(x̄, y) ∈ Lτ}

We can repeat the construction to get (τi : i < ω) and (Ti : i < ω) with τ0 = τ
and T0 = T . Thus let τ ′ =

⋃
i<ω τi and T ′ =

⋃
i<ω Ti. Since any φ ∈ Lτ ′ is

contained in some Lτn , the corresponding Skolem function is included in Tn+1.
The cardinality requirement is satisfied by induction.

Definition 1.3.3. For a T ⊆ L, we call T ′ above the Skolemization of T and
denote it by TSk. The language of TSk is denoted by LSk.

Lemma 1.3.4. If M |= T , then there is an LSk-expansion MSk |= TSk.

Proof. For a φ(x̄, y) ∈ L with fφ the corresponding Skolem function, we define

fMSk

φ : for m̄ ∈M , if M |= ∃yφ(m̄, y), then let fMSk

φ (m̄) ∈ φ(m̄,M). Otherwise

choose fMSk

φ (m̄) arbitrarily in M . Thus MSk |= TSk.

The idea of Skolemization is that we ensure that every substructure in the
Skolemized language is in fact an elementary substructure. This is shown in the
following:

Definition 1.3.5. If M |= T and A ⊆ M , then the Skolem Hull of A is the
substructure generated by A under the language LSk. We denote it by 〈A〉Sk.

Theorem 1.3.6 (Downward Löwenheim-Skolem Theorem). Suppose T ⊆
L, M |= T with |M | ≥ |L|, and A ⊆M . Then there is a B ⊇ A such that B �M
and |B| = |A|+ |L|

13



Proof. We will show that the Skolem hull 〈A〉Sk is the desired B.

Claim. 〈A〉Sk �L M
Suppose φ(x, ȳ) ∈ L, ā ∈ 〈A〉Sk and M |= ∃xφ(x, ā). Then let fφ be the

corresponding Skolem function in LSk, and thus MSk |= φ(fφ(ā), ā). But by

definition fMSk

φ (ā) ∈ 〈A〉Sk, and so by the Tarski-Vaught test 〈A〉Sk �LSk M .
Thus in particular 〈A〉Sk �L M .

By Lemma 1.3.2 and Lemma 1.1.2, |LSk| = |L|. Therefore by Lemma 1.2.3,
|〈A〉Sk| = |A|+ |L|

In addition to constructing elementary substructures, another useful prop-
erty of Skolemization comes from the following property:

Proposition 1.3.7. Suppose T ⊆ L has Skolem functions. Then for every
formula φ ∈ L, there is a quantifier-free ψ ∈ L such that T |= φ↔ ψ.

Proof. By induction, it suffices to show that if φ(ȳ, x) is such that there exists
a quantifier-free ψ(ȳ, x) ∈ L with T |= φ ↔ ψ, then ∃xφ also satisfies the
condition. But since T has Skolem functions, there is some function symbol
such that T |= ∃xφ(ȳ, x) ↔ φ(ȳ, f(ȳ)) ↔ ψ(ȳ, f(ȳ)). Then ψ(ȳ, f(ȳ)) is the
desired quantifier-free formula.

1.4 The Compactness Theorem

Compactness is one of the most important tools in classical model theory, guar-
anteeing that models of a theory actually exists. We will divide up the proof
using the next few lemmas.

Definition 1.4.1. Let T ⊆ L.

• T is satisfiable if there is an M |= T . We call a satisfiable set of formulas
a theory.

• T is finitely satisfiable if for every finite subset ∆ ⊆ T , ∆ is satisfiable

• T has the witness property if for every φ(x) ∈ L with one free variable,
there is a constant symbol c such that T |= φ(c)↔ ∃xφ(x)

• T is complete over L (or simply complete when L is clear from context)
if for every φ ∈ L, either φ ∈ T or ¬φ ∈ T .

Lemma 1.4.2. Suppose T ∈ Lτ is finitely satisfiable. Then there is a τ∗ ⊇ τ
and a T ∗ ⊆ Lτ∗ such that:

1. T ⊆ T ∗

2. T ∗ is finitely satisfiable

3. |τ∗| = |τ |+ ℵ0

14



4. If Γ is such that T ∗ ⊆ Γ ⊆ Lτ∗ , then Γ has the witness property

Proof. For every φ(x) ∈ Lτ in one free variable, let cφ be a new constant symbol
and define τ1 = τ t {cφ : φ ∈ Lτ has one free variable}. Then define θφ ∈ Lτ1
to be (φ(cφ)↔ ∃xφ(x)), and let

T1 = T ∪ {θφ ∈ Lτ1 : φ ∈ Lτ has one free variable}

Claim. T1 is finitely satisfiable.
For any finite ∆1 ⊆ T1, if ∆1 = ∆ ∪ {θφ1

, . . . , θφn}, ∆ ⊆ T , then as T is
finitely satisfiable there is an M |= ∆. We will define, for 1 ≤ i ≤ n, cMφi : if

M |= ∃v0φi(v0), then interpret cMφi = b ∈ φi(M). Else if M 2 ∃v0φi(v0), then

interpret arbitrarily cMφi = b ∈M = M\φi(M). Thus M |= ∆1.

Repeat the above construction to form (τi : i < ω) and (Ti : i < ω) (with
τ0 = τ , T0 = T ), and define τ∗ =

⋃
i<ω τi, T

∗ =
⋃
i<ω Ti. Since every finite

∆ ⊆ T ∗ is contained in some Tn which is finitely satisfiable by induction, T ∗

is finitely satisfiable. Further, note that at every stage, |τi+1| = |τi| + |Lτi | =
|τi|+ ℵ0 (by Proposition 1.1.2). Therefore |τ∗| = |τ |+ ℵ0.

Finally, let φ ∈ Lτ∗ be a formula in one variable. Since φ is finite, there is
some i < ω such that φ ∈ Lτi . Then there is a cφ in τi+1 such that (φ(cφ) ↔
∃xφ(x)) ∈ Ti+1 ⊆ T ∗. Thus T ∗ satisfies the witness property, and further any
extension of T ∗ over τ∗ must also satisfy the witness property.

Lemma 1.4.3. If T is finitely satisfiable and φ is a formula, then either T ∪{φ}
or T ∪ {¬φ} is finitely satisfiable.

Proof. Let ∆ ⊆ T be finite, and satisfied by M . Then either M |= φ or M |=
¬φ.

Lemma 1.4.4. If T ⊆ L is finitely satisfiable then there is a finitely satisfiable
T ′ ⊇ T which is complete over L.

Proof. Consider {Γ ⊆ L : Γ ⊇ T,Γ finitely satisfiable} under ordering by in-
clusion. If C is a chain, then

⋃
C is finitely satisfiable (as any finite subset is

contained in some Γ ∈ C) and contains T . Thus Zorn’s lemma applies and there
is some maximal element T ′.

We claim that T ′ is complete. For if not then there is a φ such that φ,¬φ /∈
T ′. But then by the above lemma T ′ is not maximal, a contradiction.

Lemma 1.4.5. If T is complete and finitely satisfiable, ∆ ⊆ T is finite and
∆ |= φ, then φ ∈ T .

Proof. If φ /∈ T , then as T is complete ¬φ ∈ T and thus ∆ ∪ {¬φ} is finitely
satisfiable, contradicting ∆ |= φ.

Lemma 1.4.6. If T is finitely satisfiable, complete and has the witness property,
then T is satisfiable.
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Proof. Let C be the constants in the language L. Let ∼ be the equivalence
relation on C defined by c ∼ d iff (c = d) ∈ T . We note:

Claim. For a function symbol f of arity n and c̄ ∈ Cn, there is a d ∈ C such
that (f(c̄) = d) ∈ T .

Since T |= ∃x(f(c̄) = x) and T has the witness property, there is a d as
required.

Claim. For a relation symbol P of arity n and c̄, d̄ ∈ Cn such that (ci = di) ∈ T
for every 0 ≤ i < n, R(c̄) ∈ T iff R(d̄) ∈ T .

Let ∆0 = {R(c̄), c0 = d0}, which is finite and thus satisfiable. But ∆0 |=
R(d0, c1, . . . , cn−1), and so by the above lemma R(d0, c1, . . . , cn−1) ∈ T . Then
by induction R(d̄) ∈ T .

Let M be the equivalence classes of C, and we interpret M as an L-structure
by the following:

• For a constant symbol c, let cM = c∼.

• For a function symbol f , define fM by fM (c̄∼) = d∼ where (f(c̄) = d) ∈ T .

• For a relation symbol P of arity n, let PM = {c̄∼ ∈Mn : P (c̄) ∈ T}.

These are all well-defined by the above claims.

Claim. If t is a term with variables in v0, . . . , vn−1, c0, . . . , cn−1, d ∈ C, then
(t(c0, . . . , cn−1) = d) ∈ T iff tM (c0∼, . . . , c(n−1)∼) = d∼.

We proceed by induction on term complexity:

1. If t is a constant c, then (c = d) ∈ T iff c∼ = d∼ by definition of ∼

2. If t is the variable vi, then (ci = d) ∈ T iff tM (c0∼, . . . , c(n−1)∼) = ci∼ =
d∼

3. If t is of the form f(t0, . . . , tm), and the induction hypothesis holds for
each term in t0, . . . , tm, then by the witness property of T since T |=
∃yti(c0, . . . , cn−1) = y, there are constants d0, . . . , dm such that (ti(c0, . . . , cn−1) =
di) ∈ T . But note that

f(t̄(c0, . . . , cn−1)) = d, t0(c0, . . . , cn−1) = d0, . . . , tm(c0, . . . , cn−1) = dm |= f(d0, . . . , dm) = d

Thus by the completeness of T , f(d0, . . . , dm) ∈ T . By the induction hy-
pothesis, tMi (c0∼, . . . , c(n−1)∼) = di∼ and by definition fM (d0∼, . . . , dm∼) =
d∼. Therefore

tM (c0, . . . , cn−1) = fM (t̄M (c0∼, . . . , c(n−1)∼)) = d∼

Conversely, if tM (c0∼, . . . , c(n−1)∼) = d∼, then by completeness of T ,
(∃xt(c0, . . . , cn−1) = x) ∈ T and so by the witness property, there is a
e ∈ C such that (t(c0, . . . , cn−1) = e) ∈ T . But as shown above this im-
plies that tM (c0∼, . . . , c(n−1)∼) = e∼, and so e∼ = d∼. Thus by definition
of ∼ (e = d) ∈ T , and again by completeness (ti(c0, . . . , cn−1) = di) ∈ T .
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By a further induction on the second term, we see that for any terms t, s
and c̄ ∈ Cω, (t(c̄) = s(c̄)) ∈ T iff tM (c̄∼) = sM (c̄∼)

Claim. For any closed formula φ, M |= φ iff φ ∈ T .

1. If φ is t = s for closed terms, then M |= φ iff M |= t = s iff tM = sM iff
(t = s) ∈ T by the above observation.

2. If φ is P (t̄) with P a relation symbol and t̄ a sequence of closed terms,
then M |= φ iff t̄M ∈ PM . Now for any c̄ ∈ C, since (∃xt(c̄) = x) ∈ T as T
is complete, by the witness property there are constants ē ∈ C such that
(ē = t̄) ∈ T . Thus t̄M ∈ PM iff ēM ∈ PM , which is true iff (P (ē)) ∈ T .
Finally, the completeness of T ensures that this is equivalent to (P (t̄)) ∈ T .

3. If φ is ¬ψ, then M |= φ iff M 2 ψ iff ψ /∈ T . As T is complete, this is true
iff φ ∈ T .

4. If φ is ϕ ∧ ψ, then M |= φ iff M |= ϕ and M |= ψ iff ϕ ∈ T and ψ ∈ T .
By completeness, this is equivalent to φ ∈ T .

5. If φ is ∃xψ(x), then M |= φ iff there is a c∼ ∈ M such that M |= ψ(c∼).
But as M |= c = c∼, M |= ψ(c∼) iff M |= ψ(c) iff ψ(c) ∈ T . This implies
φ ∈ T . Conversely, if φ ∈ T , then by the witness property there is a
constant d such that ψ(d) ∈ T . Thus M |= ψ(d), and so M |= φ.

Therefore M |= T i.e. T is satisfiable.

Theorem 1.4.7 (Compactness Theorem). For T ⊆ L, T is satisfiable iff T
is finitely satisfiable.

Proof. The forward direction is trivial. For the reverse direction, by Lemma
1.4.2 there is an expansion in the language into L∗ ⊇ L and a T ∗ ⊆ L∗, T ∗ ⊇ T
such that T ∗ is finitely satisfiable and any expansion of T ∗ in L∗ has the witness
property. Then by Lemma 1.4.4 there is a finitely satisfiable T ′ extending T ∗

which is complete over L∗, and has the witness property. Finally, by Lemma
1.4.6 there is a M |= T ′, and therefore M |L |= T .

As mentioned before, the cardinality of models is an important property.
One of the most important result of the Compactness theorem is that there are
arbitrarily large models.

Definition 1.4.8. The elementary diagram of a L-structure M is defined to
be ThM (M) = {φ ∈ LM : M |= φ}.

Lemma 1.4.9. If N is an L-structure and there is an LM interpretation of N
such that N |= ThM (M), then M �L N .

Proof. Consider the map f : M −→ N with f(m) = MN . Since for any
m0,m1 ∈ M , if m0 6= m1 then M |= m0 6= m1 (with m0 6= m1 a formula in
LM ), thus N |= m0 6= m1. Therefore f is injective, and as N |= ThM (M),
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f is in fact an elementary embedding. Further, since ThL(M) = ThM (M)|L,
therefore ThL(M) ⊆ ThL(N). Since ThL(M) is complete, therefore ThL(N) =
ThL(M).

Theorem 1.4.10 (Upward Löwenheim-Skolem Theorem). Suppose M is
an infinite L-structure, κ an infinite cardinal with κ ≥ |M |+ |L|. Then there is
a L-structure N such that |N | = κ and M � N .

Proof. Let τ ′ = τ t{ci : i < κ}tM with the new symbols as constant symbols,
and consider the T = ThM (M) ∪ {ci 6= cj : i 6= j, i, j < κ}. Note that T is
finitely satisfiable: given a finite ∆ ⊆ {ci 6= cj : i 6= j, i, j < κ}, for every
distinct ci which occurs in ∆, interpret ci as a distinct member of M . Then
M |= ThM (M) ∪ ∆. Therefore by compactness T is satisfiable, say by the
model N ′. Further, by the above lemma M � N ′. Finally, by the Downward
Löwenheim-Skolem theorem (Theorem 1.3.6), 〈M∪{ci : i < κ}〉Sk is the desired
N .

1.5 Types and Saturation

When we wish to identify a particular element of a model or describe some
particular property, sometimes a single formula is insufficient. For example,
consider C as a field: every element α of Q̄ can be identified as the solution to
it’s minimal polynomial p(x) (not necessarily uniquely, but there are at most
finitely many solutions). On the other hand, there is no single formula which
determines whether or not an element of C is transcendental. This motivates
the following definition:

Definition 1.5.1. Let M be a L-structure, A ⊆ M , and ∆ ⊆ L. We define
∆A = {φ(ā) ∈ LA : φ ∈ ∆, ā ∈ A}.
For n < ω, a ∆-n-type of M over A is a set of formulas with n free variables
such that:

• For each φ ∈ p, either φ ∈ ∆A or ¬φ ∈ ∆A, where we identify ¬¬φ with
φ.

• ThM (M)∪{φ(x0, . . . , xn−1) : φ ∈ p}, where x0, . . . , xn−1 are new constant
symbols, is satisfiable.

A ∆-n-type p is complete if it is maximal i.e. for every φ ∈ ∆A with n free
variables, either φ ∈ p or ¬φ ∈ p.
We define SM∆,n(A) = {p : p is a complete ∆-n-type of M over A}.
For a b̄ ∈ M , the ∆-type of b̄ over A in M is defined by tpM∆ (b̄/A) = {φ :
M |= φ(b̄), φ ∈ ∆A or ¬φ ∈ ∆A}.
For any ∆-n-type p, p(M) = {b̄ ∈ Mn : For every φ ∈ p, M |= φ(b̄)}. We say
that M realizes p if p(M) is nonempty i.e. there is some m̄ ∈ Mn such that
M |= p(m̄). If M does not realize p, then we say that M omits p.
For the above terms, if ∆ = L we will drop ∆ from the description e.g. n-types,
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SMn (A). Similarly, if ∆ = {φ}, then we write φ instead of {φ} e.g.φ-n-types,
SMφ,n(A). We may drop the M in supscripts if it is clear from context.

Proposition 1.5.2. Suppose p is a n-type of M over A, A ⊆ M . Then there
is a N �M and a n̄ ∈ N such that N |= p(n̄). Conversely, if M � N , A ⊆M
and n̄ ∈ N , then tpN (n̄/A) is a type of M over A.

Proof. By definition of a type, since ThM (M) ∪ p(x̄) is satisfiable (where x̄ are
n new constant symbols) there is a N which models it. Thus x̄N is the desired
n̄. Further, by Lemma 1.4.9, M � N as N |= ThM (M).

The converse is true by definition as N and x̄N = n̄ satisfies ThM (M) ∪
tpN (n̄/A).

Using the idea of types, we can generalize the idea of elementary embeddings
and relax the requirement that the domain of the function is the entire model.

Definition 1.5.3. A f : A −→ N is an elementary map if for every ā ∈ A,
tpM (ā/∅) = tpN (f(a)/∅).

Proposition 1.5.4. f : M −→ N is an elementary map iff it is an elementary
embedding.

Proof. f is an elementary map iff tpM (m̄/∅) = tpN (h(m)/∅) for every m̄ ∈M iff
for every m̄ ∈M and φ ∈ L, M |= φ(m̄)⇔ N |= φ(h(m̄)) iff f is an elementary
embedding.

Note that the type tpM (ā/∅) is simply a set of formulas in L. In this case,
we define:

Definition 1.5.5. Let T be a theory. A ∆-n-type of T is a set of formulas p
with n free variables such that:

• For each φ ∈ p, either φ ∈ ∆ or ¬φ ∈ ∆, where we identify ¬¬φ with φ.

• T ∪ {φ(x0, . . . , xn−1) : φ ∈ p}, where x0, . . . , xn−1 are new constant sym-
bols, is satisfiable.

Proposition 1.5.6. Let T be a complete theory, and suppose M |= T . If p is a
type of T , then p is a type of M over ∅. Conversely, for any m̄ ∈M , tpM (m̄/∅)
is a type of T .

Proof. The reverse direction is clear by definition. For the forward direction, let
∆0 ⊆ p be finite, and define ψ = ∃x0, . . . , xn−1

∧
φ∈∆0

φ(x0, . . . , xn−1). Since
T ∪ p(x̄) is satisfiable, T |= ψ. Then M |= T and M |= ψ i.e. ThM (M)∪∆0(x̄)
is satisfiable. By compactness, ThM (M) ∪ p(x̄) is satisfiable, and so p is a type
of M .

The idea of types is an essential tool to many parts of model theory, and in
particular to this exposition. For now, let us define some properties which uses
types to differentiate between elementarily equivalent models.
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Definition 1.5.7. Let M be a L-structure, κ an infinite cardinal with κ ≤ |M |.
M is κ-saturated if for every A ⊆M with |A| < κ and p ∈ S1(A), M realizes
p.
M is κ-universal if for every L-structure N with |N | < κ such that N ≡ M ,
N is elementarily embeddable in M .
If M is |M |-saturated or |M |+-universal, then we simply say M is saturated
or universal, respectively.

To see the difference between saturated and unsaturated models, consider
Q̄, the algebraic closure of Q in C, and F , an algebraically closed field of charac-
teristic 0 with transcendence degree ℵ0. Again, since the theory of algebraically
closed fields of characteristic 0 is a complete theory, Q̄ ≡ F . However, consider
the 1-type {p(x) 6= 0 : p ∈ Q[x]}: this is a type omitted by Q̄ but realized by
any transcendental element of F . Moreover, F is in fact a saturated model:
since F has transcendence degree ℵ0, |F | = ℵ0. Now, for any set A ( F with
|A| < ℵ0, the only 1 types over A are either the type which says that x is a
solution to p(x) ∈ F (A)[x], or the type which says that x is transcendental over
F (A). That types of the former kind are realized by F is by virtue of F being
algebraically closed, and as A is finite the transcendental degree of F guarantees
that the nonalgebraic type is also realized in F .

As in previous cases, this example depends essentially on properties of fields,
and in general there may not be saturated models of a theory. However, we can
get the following:

Proposition 1.5.8. Let T be a complete theory, κ an infinite cardinal with
κ ≥ |T |. Then there is a M |= T such that |M | = 2κ and M is κ+-saturated.

Remark. We recall that for any infinite cardinal κ, κ+ is a regular cardinal i.e.
if (αi : i < κ) is any sequence of ordinals with each αi < κ+, then there is a
β < κ+ such that for every i < κ, αi < κ.

Proof. By the Upward Löwenheim-Skolem theorem, there is a model M |= T
with |M | = 2κ.

Claim. If M |= T and |M | = 2κ, then there is a N � M such that for every
A ⊆M with |A| = κ and p ∈ S1(A), N realizes p.

Since |A| + |T | = κ, |LA| = κ and so |S1(A) ≤ 2κ|. Now, |{A ⊆ M : |A| =
κ}| = |M |κ = (2κ)κ = 2κ, so P =

⋃
{S1(A) : A ⊆ M, |A| = κ}, then |P | = 2κ.

Let (pi : i < 2κ) enumerate P , and let {ci : i < 2κ} be new constant symbols.
Since T ∪

⋃
{pi(ci) : i < 2κ} is satisfiable by compactness, by the Löwenheim-

Skolem theorems there is a model N of cardinality 2κ which satisfies this theory.
The reduction of N to the original language gives the desired model.

We construct the desired model by induction on κ+. Let M0 = M , and for
i < κ+, if Mi is defined let Mi+1 be a model of size 2κ which realizes every
1-type over a A ⊆ Mi with |A| = κ, as constructed in the claim above. For a
limit δ, let Mδ =

⋃
i<δMi, which by Corollary 1.2.15 is an elementary extension

of Mi for i < δ. Therefore (Mi : i < κ+) is an elementary chain and so we let
N = Mκ+ =

⋃
i<κ+ Mi.
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We claim that N is κ+-saturated: for any A ⊆ N with |A| < κ+, since κ+ is
regular there must be some α < κ+ such that A ⊆ Mα. Then any 1-type over
A is realized in Mα+1, and thus in N .

Proposition 1.5.9. If M is κ-saturated, then it is κ+-universal.

Proof. Suppose N ≡M and |N | ≤ κ. List the elements of N by n̄ = (ni : i < κ),
possibly with repetition if |N | < κ. Let c̄ = (ci : i < κ) be new constant symbols,
with cNi = ni. Then let Li be the language with the new constants {cj : j < i}
and let Ti = ThLi(N), so that L0 = L and T0 = ThL(N) = ThL(M).

Claim. If there is a Li interpretation of M such that ThLi(M) = Ti, then there
is an interpretation of cMi+1 such that ThLi+1

(M) = Ti+1.
Let Ai = dom n̄|i, and Bi = {cMj ∈ M : j < i}. Consider the 1-type

pi = tpN (ni/Ai) as a type over Ai in the language L. For every φ ∈ pi, let φ′ be
the Li formula obtained from φ by replacing every occurrence of nj by cj , and
let p′i = {φ′ ∈ Li : φ ∈ p}. Thus p′i is a 1-type over ∅ in N , and by Proposition
1.5.6 it is a 1-type of Ti. By assumption M |= Ti, and so again by 1.5.6 p′i is a
1-type of M .

Now, again for every φ′ ∈ p′i let φ∗ be the formula in LBi formed by replacing
every occurrence of cj by cMj , and let p∗i = {φ∗ ∈ LBi : φ′ ∈ p′i}. Since p′i is a
1-type in M , p∗i is a 1-type of M over Bi in the language L. But |Bi| < κ, and
so by the κ-saturation of M , p∗i is realized by some m ∈ M . Define cMi = m;
that ThLi+1

(M) = Ti+1 is thus true by construction.

Claim. If δ is a limit ordinal < κ and there is an interpretation of c̄|δ in M such
that for each i < δ, Ti = ThLi(M), then ThLδ(M) = Tδ.

This is true by virtue of the fact that any formula is finite, and is thus
contained in Ti for some i < δ.

The above claims gives an interpretation of c̄ such that ThN (N) = ThLκ(N)
and M |= ThLκ(N), so N �M .

An important consequence of this result is that it allows us to work within
what are called universal models: Consider a complete theory T and suppose
that all the sets which we are interested in are of cardinality < κ̄. Using Propo-
sition 1.5.8 we can constructed a model M̄ of size 2κ̄ which is κ̄+-saturated, and
thus by Proposition 1.5.9 is κ̄++-universal. Thus every model of T which we
are interested in is elementary embeddable in M̄ , and therefore we need only to
consider elementary submodels of M̄ . In this case, for this exposition we will
loosely refer to submodels and subsets of M̄ as being “small” if it has cardinality
λ, where iµ(λ) < κ̄ with µ = i(2λ)+(λ). This is sufficient for the proofs we
need for this exposition. For a more general treatment, it is common to define κ̄
to be an inaccessible cardinal, so that there is no worry of a construction going
“out-of-bounds” with respect to κ̄.

However, for our purposes the most important use of saturation is the fol-
lowing result:
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Lemma 1.5.10. Suppose N ≡ M , |N | = |M |. If N,M are both infinite and
saturated, then N ∼= M .

Proof. Suppose |N | = |M | = λ and list their elements by m̄ = (mi : i < λ)
and n̄ = (ni : i < λ) respectively. Using a back-and-forth argument, we will
construct an isomorphism h : M −→ N . Let h0 = ∅, and let c̄ = (ci : i < λ) be
new constant symbols.

For i < λ, let Ai ⊇ m̄|i and suppose hi : A −→ N is an elementary map,
|Ai| < λ. Then for each mj ∈ Ai we can interpret the constant symbols by
cMj = mj , c

N
J = hi(mj) for j < i. Let Li be the language L with new constant

symbols {cj : mj ∈ Ai}, and so M ≡Li N since h is an elementary map.
Therefore, as in the proof of Proposition 1.5.9, the type tpM (mi/Ai) is also a
type of N over h(Ai) by replacing the occurrences of each mj ∈ Ai by h(mj).
But as N is saturated and |h(Ai)| < λ, this type is satisfied by some n ∈ N .
So extend hi to h′i : Ai ∪ {mi} −→ N by h′i(mi) = n; this ensures h′i is also an
elementary map with domain |Ai ∪ {mi}| < λ.

Conversely, suppose A ⊆M , |A| < λ and h′i : A −→ N is an elementary map.
Let Bi = Rang h′i, and consider the type tpN (ni/Bi). By the same reasoning
as above, this is a type of M over A by replacing each nj ∈ Bi with h′−1

i (nj).
Then the saturation of M guarantees this type is realized by some m ∈ M . If
ni /∈ Bi, then necessarily m /∈ A and so extend h′i+1 to hi+1 : A ∪ {m} −→ N
by hi+1(m) = nj . Otherwise simply let hi+1 = h′i. This guarantees that hi+1 is
an elementary map with domain |A ∪ {m}| < λ, and ni ∈ Rang hi+1.

Therefore, if hi : Ai −→ N is an elementary map with |Ai| < λ, m̄|i ⊆ Ai
and n̄i ⊆ Rang hi, there is an elementary map hi+1 : Ai+1 −→ N which extends
hi with |Ai+1| < λ, mi ∈ Ai+1 and ni ∈ Rang hi+1.

So for a limit ordinal δ < λ, suppose (hi : i < δ) is a sequence of elementary
maps into N such that for each i < δ:

• |dom hi| < λ

• If j < i then hi extends hj

• m̄|i ∈ dom hi and n̄|i ∈ Rang hi.

Then clearly hδ =
⋃
i<δ hi is an elementary map which satisfies the same con-

ditions.
Finally, let h =

⋃
i<λ hi. Then h : M −→ N is an elementary map, and

by Proposition 1.5.4 an elementary embedding which is also surjective i.e. an
isomorphism.

1.6 Ultraproducts

Ultraproduct is another widely used tool in model theory, although for this
exposition we will only need it for a particular result.

Definition 1.6.1. Given a partially ordered set (P,≤), F ⊆ P is a filter if:
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• F 6= ∅

• For every x, y ∈ F , there is a z ∈ F such that z ≤ x, z ≤ y

• If x ∈ F and x ≤ y, then y ∈ F

A filter F is proper if F 6= P .

For our purposes, we are only interested in filters which are subfamilies of a
powerset. This motivates the following definition:

Definition 1.6.2. Given any set X, a filter F ⊆ P(X) is an ultrafilter if
for every A ⊆ X, either A ∈ F or X −A ∈ F .

Lemma 1.6.3. Given S ⊆P(X), if for every finite choice of A0, . . . , An ∈ S ,⋂
i≤nAi 6= ∅, then there is a proper filter F ⊆P(X) with F ⊇ S .

Proof. Defining F = {A ∈ P(X) : ∃B0, . . . , Bn ∈ S ,
⋂
i≤nBi ⊆ A} fulfils the

requirements.

Lemma 1.6.4. For a filter F ⊆ P(X) for some set X, F is improper iff
∅ ∈ F

Proof. Trivial.

Proposition 1.6.5 (Ultrafilter lemma). Given any set X and a filter F ⊆
P(X), there is an ultrafilter U ⊇ F

Proof. Note that if C is a chain of proper filters containing F and ordered by
inclusion, then

⋃
C is also a proper filter containing F . Thus by Zorn’s lemma,

a maximal element U exists in the lattice of filters containing F . Now, if there
is an A ⊆ X such that A,X−A /∈ U , then U ∪{A} satisfies the conditions of the
above lemma, so there is a proper filter U ′ ) U , contradicting the maximality
of U .

Remark. Although the above proof uses Zorn’s lemma, it is known that the
Ultrafilter lemma itself if independent of ZF but strictly weaker than the Axiom
of Choice.

Definition 1.6.6. Suppose I is a set, and Mi an L-structure for each i ∈
I. Given an ultrafilter F ⊆ P(I), we define the equivalence relation ∼F on∏
i∈IMi: (ai : i ∈ I) ∼F (bi : i ∈ I) if {i ∈ I : Mi |= ai = bi} ∈ F

Abbreviating ∼F with ∼, we define the ultraproduct
∏
i∈IMi/F to be an L-

structure with:

• The domain is
∏
i∈IMi/ ∼

• For a constant symbol c, c
∏
i∈IMi/F = (cMi : i ∈ I)/ ∼

• For a function symbol f with arity n, f
∏
i∈IMi/F (ā0/ ∼, . . . , ān−1/ ∼) =

(fMi(a0,i, . . . , an−1,i) : i ∈ I)/ ∼
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• For a relation symbol P with arity n, (ā0/ ∼, . . . , ān−1/ ∼) ∈ P
∏
i∈IMi/F

iff {i ∈ I : Mi |= P (a0,i, . . . , an−1,i)} ∈ F

If Mi = M for each i ∈ I, then we call
∏
i∈IM/F an ultrapower and denote

it by M I/F

An important use of ultrapowers is in nonstandard analysis: let F ⊆P(ω)
be an ultrafilter containing the cofinite subsets of ω, and let R = Rω/F where R
is the real numbers as an ordered field. To see why we can use R for nonstandard
analysis, we need the following results:

Lemma 1.6.7. Given an ultraproduct
∏
i∈IMi/F , for any two terms s, t of L

and ā0, . . . , ān ∈
∏
i∈IMi/F ,

∏
i∈IMi/F |= s(ā0, . . . , ān) = t(ā0, . . . , ān) iff

{i ∈ I : Mi |= s(a0,i, . . . , an−1,i) = t(a0,i, . . . , an−1,i)} ∈ F

Proof. This is trivial by induction on complexity of terms.

Theorem 1.6.8 ( Loś’ Theorem). For any L-formula φ, and ā0, . . . , ān ∈∏
i∈IMi/F ,

∏
i∈IMi/F |= φ(ā0, . . . , ān) iff {i ∈ I : Mi |= φ(a0,i, . . . , an−1,i)} ∈

F

Proof. For any formula φ, we define ||φ(ā0, . . . , ān)|| = {i ∈ I : Mi |= φ(ā0, . . . , ān)}.
We then proceed by induction on formula complexity:

• If φ is s(x0, . . . , xn) = t(x0, . . . , xn) for some term s, t, then this is just
the case as in the above lemma.

• If φ is P (t0(x0, . . . , xn), . . . , tm(x0, . . . , xn)), then let b̄0, . . . , b̄m ∈
∏
i∈IMi/F

be such that
∏
i∈IMi/F |= tj(ā0, . . . , ān) = b̄j . Then∏

i∈I
Mi/F |= P (t0(ā0, . . . , ān), . . . , tm(ā0, . . . , ān))

⇔
∏
i∈I

Mi/F |= P (b̄0, . . . , b̄m)⇔ ||P (b̄0, . . . , b̄m)|| = D′ ∈ F

For j ≤ m, let Dj = ||ti(ā0, . . . , ān) = b̄j || ∈ F . By definition of a filter,
D = D′ ∩

⋂
j≤mDm ∈ F , and so

{i ∈ I : Mi |= P (b0,i, . . . , bm,i) ∧
∧
j≤m

tj(a0,i, . . . , an,i) = bj,i} = D ∈ F

This is equivalent to

{i ∈ I : Mi |= P (t0(a0,i, . . . , an,i), . . . , tm(a0,i, . . . , an,i)} ∈ F

Thus proving the claim.
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• If φ is ¬ψ, then∏
i∈I

Mi/F |= ¬ψ(ā0, . . . , ān)⇔
∏
i∈I

Mi/F 2 ψ(ā0, . . . , ān)

⇔ {i ∈ I : Mi |= ψ(a0,i, . . . , an,i)} = D /∈ F

As F is an ultrafilter, D /∈ F iff I −D ∈ F , and this is true iff

{i ∈ I : Mi 2 ψ(a0,i, . . . , an,i)} = I −D ∈ F

⇔ {i ∈ I : Mi |= ¬ψ(a0,i, . . . , an,i)} ∈ F

• If φ is ψ ∧ ϕ, then∏
i∈I

Mi/F |= ψ(ā0, . . . , ān) ∧ ϕ(ā0, . . . , ān)⇔∏
i∈I

Mi/F |= ψ(ā0, . . . , ān),
∏
i∈I

Mi/F |= ϕ(ā0, . . . , ān)

⇔ ||ψ(ā0, . . . , ān)|| ∈ F , ||ϕ(ā0, . . . , ān)|| ∈ F

Since F is a filter, this is true iff ||ψ(ā0, . . . , ān)|| ∩ ||ϕ(ā0, . . . , ān)|| ∈
F , and we see that ||ψ(ā0, . . . , ān) ∧ ϕ(ā0, . . . , ān)|| = ||ψ(ā0, . . . , ān)|| ∩
||ϕ(ā0, . . . , ān)||, proving the claim.

• If φ is ∃xψ, then
∏
i∈IMi/F |= ∃xψ(x, ā0, . . . , ān) iff there is a b̄ ∈∏

i∈IMi/F such that
∏
i∈IMi/F |= ψ(b̄, ā0, . . . , ān) which is true iff

there are (bi ∈ Mi : i ∈ I) such that {i ∈ I : Mi |= ψ(bi, a0,i, . . . , an,i)} ∈
F iff ||∃xψ(x, ā0, . . . , ān)|| ∈ F

This completes the proof.

Corollary 1.6.9. For any set I, a ultrafilter F ⊆P(I) and M an L-structure,
the diagonal map M −→ M I/F ,m 7→ (m : i ∈ I)/ ∼ is an elementary embed-
ding.

Proof. This is trivial by the above theorem.

To finish our remark regarding nonstandard analysis, let ā = (an : n < ω) be
a sequence of positive reals such that limn→∞ an = 0. Then for every positive
real r ∈ R, if we consider R as a elementary substructure of R by identifying r
with (r : n < ω)∼, R |= 0 < (ā∼) < r. Thus ā is an infinitesimal element of R.
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Chapter 2

Stability Results

Note. From this point on, by a theory we will always mean a complete theory
with infinite models. For every theory, we will work within some universal
model, and unless otherwise stated by a set we will always refer to a subset of
the universal model. In particular, for a given set, Sn(A) will simply refer to
the set of n-types over A relative to the universal model, and similarly tp(b/A).
Moreover, we will simply write |= φ(c) as an abbreviation of M̄ |= φ(c), where
M̄ is the universal model. Similarly, Also:

Definition 2.0.1. Let X be a linearly ordered set. Then for any ordinal α, [X]α

denotes the set of increasing α-sequences from X, and [X]<α =
⋃

0<β<α[X]β

2.1 Stability

The concept of stability is central to many recent developments in model theory,
and is indispensable for this exposition.

Definition 2.1.1. For an infinite cardinal λ, a complete theory T is λ-stable
if for every M |= T and A ⊆M with |A| ≤ λ, |S1(A)| ≤ λ.
T is stable if it is λ-stable for some infinite λ.

As an example, the theory of algebraically closed fields with characteristic
zero is ℵ0-stable, whereas the theory of dense linear orders with endpoints is
unstable, although it will take quite a lot of work for us to prove these claims.

Stable theories are in many sense “well-behaved”, and in particular in the
sense that there cannot be too many nonisomorphic models of a stable theory.
Making these claims precise is beyond the scope of this exposition, but let us
begin by some basic properties.

Lemma 2.1.2. If T is λ-stable, then for every n < ω, M |= T and A ⊆ M
with |A| ≤ λ, |SMn (A)| ≤ λ

Proof. By induction on n: if n = 1, the claim is trivial. Inductively, assume
for a contradiction that |SMn+1(A)| ≥ λ+, |SMn (A)| ≤ λ. Thus in a λ+-saturated
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elementary extension N � M (see Proposition 1.5.8), there is (āi : i < λ+)
such that each āi realizes a distinct type over A. Partitioning (āi : i < λ+) by
tpN (āi|n/A), since |SM (A)| ≤ λ this partitions (āi : i < λ+) into at most λ
equivalence classes, and as λ+ is regular there is some I ⊆ λ+, |I| = λ+ such
that for i ∈ I, tpN (āi|n/A) is constant over I. So let ā ∈ N be such that for
any i ∈ I, tpN (ā/A) = tpN (āi|n/A). As each āi realizes a distinct type over A,
there exists (bi : i < λ+) such that each tpN (ā a bi/A) is distinct. This implies
each tpN (bi/A ∪ {ā}) is distinct, with |A ∪ {ā}| ≤ λ. Thus |SN (A ∪ {ā})| > λ,
contradicting that T is λ-stable.

In the literature, different authors often use different but equivalent defini-
tions for the term “stable”, often referring to the existence of some formula in
T which satisfies some properties. Following [Sh 90], we will first prove a few
lemmas, then proceed to demonstrate the equivalence of stability with some
other properties.

Proposition 2.1.3. Given a theory T in L, for a φ(x, ȳ) ∈ L the following are
equivalent:

1. For every infinite λ, there is a M |= T with a A ⊆M such that |A| ≤ λ <
|SMφ,1(A)|

2. There is some infinite λ with a M |= T and a A ⊆M such that |A| ≤ λ <
|SMφ,1(A)|

3. There is a M |= T with sequences (ci : i < ω), (āj : j < ω) ∈M such that
either M |= φ(ci, āj) iff i < j or M |= ¬φ(ci, āj) iff i < j

4. φ has the order property: there is a sequence (āi : i < ω) from some model
M such that for every n < ω, {φ(x, āi) : i < n} ∪ {¬φ(x, āi) : i ≥ n} is a
type of M .

We will prove these equivalences in the following lemmas.

Definition 2.1.4. For any type p over A and B ⊆ A, we define p|B = {φ(x̄, b̄) ∈
p : b̄ ∈ B}.
For any ∆0-type p and ∆1 ⊆ ∆0, we define p|∆1

= {φ(x̄, ā) ∈ p : φ ∈ ∆1}.
We say that a type p (∆0,∆1)-splits over A if there are b̄, c̄ such that tp∆0(b̄/A) =
tp∆0(c̄/A) but there is a φ(x̄, ȳ) ∈ ∆1 such that φ(x̄, b̄),¬φ(x̄, c̄) ∈ p.
If ∆0 = ∆1 = L, then we simply say that p splits over A.

Lemma 2.1.5. (1)⇒ (2)

Proof. This is trivially true.

Lemma 2.1.6. (2)⇒ (3)

Proof. WLOG, we can assume that M realizes enough types such that there is
a sequence (ci : i < |A|+) ∈M with each tpMφ (ci/A) distinct. Let l = |ȳ|, define
ψ(ȳ, x) = φ(x, ȳ), and for j ≤ ω, define inductively Aj :
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1. A0 = A

2. If Aj is defined, let Aj+1 be such that for every p ∈ SMφ,1(Aj) ∪ SMψ,l(Aj)
and B ⊆ Aj with |B| < ℵ0, p|B is realized by some tuple in Aj+1. Note
that we can achieve this while ensuring |Aj+1| = |Aj | as B is finite, and
so there are only |A| choices of B

3. Aω =
⋃
j<ω Aj

Claim. There is an i < |A|+ such that for every n < ω and B ⊆ An with
|B| < ℵ0, tpMφ (ci/An+1) (ψ, φ)-splits over B.

Suppose not, so for every i < |A|+ there are ni < ω and Bi ⊆ Ani such
that there are no tuples āi, b̄i ∈ Alni+1 with tpMψ (āi/Bi) = tpMψ (b̄i/Bi) and

M |= φ(ci, āi) ∧ ¬φ(ci, b̄i). Note that since |A|+ > ℵ0, there is some C ′ ⊆ |A|+
with |C ′| = |A|+ and some n′ < ω such that for every i ∈ C ′, ni = n′ i.e. the
indices i < |A|+ such that ni = n′ is cofinal in |A|+. Now, there are |Ani | = |A|
many choices of B ⊆ Ani with |B| < ℵ0, so again by restricting to a cofinal
C ′′ ⊆ C ′ (with |C ′′| = |C ′|) there is a finite B′′ ⊆ Ani such that for every
i ∈ C ′′, Bi = B′′. By construction of An′+1, there is a D ⊆ An′+1 with B′′ ⊆ D
and |D| ≤ (l + 1)2|B

′′| such that every p ∈ SMψ,l(B′′) is realized by some tuple

in D. We note that |SMφ,1(D)| ≤ 2|D| < |A|+, so once again we can restrict to

a cofinal C(3) ⊆ C ′′, |C(3)| = |C ′′| with a type p such that for all i ∈ C(3),
tpMφ (ci/D) = p.

Assume WLOG that 0, 1 ∈ C(3) and recall that tpMφ (c0/A) 6= tpMφ (c1/A).

Thus there is some ā ∈ Al with M |= φ(c0, ā) ↔ ¬φ(c1, ā). By definition
of D above, we can find a ā′ ∈ Dl such that tpMψ (ā/B′′) = tpMψ (ā′/B′′). By
assumption, tpφ(c0/An′+1), tpφ(c1/An′+1) does not (ψ, φ)-split over B′′, so M |=
φ(c0, ā) ↔ φ(c0, ā

′) and M |= φ(c1, ā) ↔ φ(c1, ā
′). This implies that M |=

φ(c0, ā
′) ↔ ¬φ(c1, ā

′), thus contradicting that tpMφ (c0, D) = p = tpMφ (c1/D).
This proves the above claim.

Let i0 < |A|+ be such that it satisfies the above claim. For j < ω, define
āj , b̄j , cj inductively: If āk, b̄k, ck is defined for k < j, letBj =

⋃
k<j āk∪b̄k∪{ck}.

By the above claim, tpMφ (ci0/A2j+1) (ψ, φ)-splits over Bj , so there is āj , b̄j ∈
Al2j+1 such that tpMψ (āj/Bj) = tpMψ (b̄j/Bj) and M |= φ(ci0 , āj) ∧ ¬φ(ci0 , b̄j).

Then let cj ∈ A2j+2 be such that tpMφ (cj/Bj ∪ āj ∪ b̄j) = tpMφ (ci0/Bj ∪ āj ∪ b̄j)
(such a cj exists by definition of A2j+2).

Note that by construction, for any i ≤ j < ω, M |= φ(ci0 , āi) ∧ ¬φ(ci0 , b̄j).
However, since tpMφ (cj/Bj∪ āj∪ b̄j) = tpMφ (ci0/Bj∪ āj∪ b̄j) and āi, b̄i ∈ Bj∪ āj∪
b̄j , this implies that M |= φ(ci0 , āi) ↔ φ(cj , āi) and M |= φ(ci0 , b̄i) ↔ φ(cj , b̄i).
Therefore M |= φ(cj , āi) ∧ ¬φ(cj , b̄j). On the other hand, if j < i < ω, since
tpMψ (āi/Bi) = tpMψ (b̄i/Bi) and cj ∈ Bi, M |= ψ(āi, cj) ↔ ψ(b̄i, cj) and thus

M |= φ(cj , āi)↔ φ(cj , b̄i).
Let us define the function f : [ω]2 −→ 2 by f(i, j) if M |= φ(ci, āj), and

f(i, j) = 1 otherwise. By Ramsey’s theorem (see Appendix A, Theorem A.0.1)
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there is a W ⊆ ω such that f is constant on [W ]2 with |W | = ℵ0, and by renam-
ing the elements we can WLOG identify W with ω. Now, if M |= ¬φ(c0, ā1),
then f(0, 1) = 1, and so for i < j < ω, M |= ¬φ(ci, āj). But as shown above
for j ≤ i < ω, M |= φ(ci, āj), and so M |= φ(ci, āj) iff j ≤ i. Conversely, if
M |= φ(c0, ā1), then f(0, 1) = 0 and so for i < jω, M |= φ(ci, āj). But from
above, this implies that M |= φ(ci, b̄j). On the other hand, if j ≤ i < ω, then
M |= ¬φ(ci, b̄j), and so M |= φ(ci, b̄j) iff i < j. This proves (3).

Lemma 2.1.7. (3)⇒ (4)

Proof. Suppose (ci : i < ω), (āj : j < ω) ∈ M are such that either M |=
φ(ci, āj)⇔ i < j or M |= ¬φ(ci, āj)⇔ i < j. For n < ω, let pn(x) = {φ(x, āj) :
j < n} ∪ {¬φ(x, āj) : j ≥ n}. If M |= ¬φ(ci, āj) ⇔ i < j, then M |= pn(cn),
and thus pn(x) is a type of M i.e. φ has the order property.

On the other hand, if M |= φ(ci, āj) ⇔ i < j, then we proceed by the
compactness theorem: let (d̄j : j < ω) be new constants, and for n < ω,
consider ThM (M) ∪ {φ(x, d̄j) : j < n} ∪ {¬φ(x, d̄j) : j ≥ n}. Then for any
k > n, by interpreting xM = ck−n+1, d̄Mj = ak−n+1+j for j < n and d̄Mj = aj−n
for n ≤ j < k, M |= ThM (M) ∪ {φ(x, d̄j) : j < n} ∪ {¬φ(x, d̄j) : n ≤ j <
k}. Therefore by compactness there is some N � M with d̄Nj ∈ N such that

qn(x) = {φ(x, d̄j) : j < n} ∪ {¬φ(x, d̄j) : j ≥ n} is a type of N i.e. φ has the
order property.

Definition 2.1.8. For a formula φ, we use φ0 to denote φ and φ1 to denote
¬φ.

Lemma 2.1.9. (4)⇒ (1)

Proof. Suppose φ has the order property. For an ordinal α, let us define

Γφ(α) = {φ(xη, ȳη|β )η(β) : η ∈ 2α, β < α}

where for each η and β, xη, ȳη|β are new constants.

Claim. Γφ(n) is satisfiable for each n < ω.
Let us define the order < on 2<ω by:

• If η|k = ν|k, η(k) = 0 and ν(k) = 1, then η < ν

• If l(η) = k, η = ν|k and ν(k) = 1, then η < ν

• If l(η) = k, η = ν|k and ν(k) = 0, then ν < η

Obviously < is a linear order. Now, as φ has the order property, by interpreting
the new constants suitably we see that for every n < ω,

T ∪ {φ(xη, ȳν) : l(ν) < l(η) = n, η < ν} ∪ {¬φ(xη, ȳν) : l(ν) < l(η) = n, ν ≤ η}

is satisfiable, and thus by compactness Γφ(n) is satisfiable.
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Note that for any ordinal α, every finite subset of Γφ(α) is a finite subset
of Γφ(n) for some large enough n < ω (after renaming the new constants), and
thus by compactness every Γφ(α) is satisfiable.

To show (1), let λ be any infinite cardinal. Let λ0 be the least ordinal such
that 2λ0 > λ (so λ0 ≤ λ), and let M |= Γφ(λ0) with āν = ȳMν and cη = xMη for

ν ∈ 2<λ0 and η ∈ 2λ0 . Let A =
⋃
{āν : ν ∈ 2<λ0}, so

|A| ≤ ℵ0(
∑
α<λ0

|2α|) ≤ ℵ0 · λ · λ0 ≤ λ

Now, for η ∈ 2λ0 , let pη = tpMφ (cη/A). Note for η, ζ ∈ 2λ0 , if η 6= ζ and

β < λ0 is the least ordinal such that η(β) 6= ζ(β), then φ(x, āη|β )η(β) ∈ pη and

φ(x, āζ|β )ζ(β) = ¬φ(x, āη|β )η(β) ∈ pζ i.e. η 6= ζ implies pη 6= pζ . Therefore:

|SMφ,1(A)| ≥ |{pη : η ∈ 2λ0}| = |2λ0 | > λ ≥ |A|

which proves (1). This completes the proof of Proposition 2.1.3.

Definition 2.1.10. An unstable formula relative to T is a formula satis-
fying the conditions of Proposition 2.1.3.

Note. Using Lemma 2.1.2, we see that we can state and prove Proposition 2.1.3
for φ(x̄, ȳ), where l(x̄) is not necessarily 1. In this case, we also consider φ(x̄, ȳ)
to be an unstable formula relative to T .

Proposition 2.1.11. The following are equivalent:

1. T is unstable.

2. There is some infinite λ such that λ = λ|T | and T is not λ-stable.

3. Some formula φ(x, ȳ) is unstable relative to T .

4. Some formula φ(x̄, ȳ) is unstable relative to T .

Proof. (1) ⇒ (2) be definition. Assuming (2), then there is an M |= T with
A ⊆M such that |A| ≤ λ = λ|T | < |SM1 (A)|. So consider the mapping:

g : SM1 (A) −→
∏

φ(x,ȳ)∈L

SMφ,1(A), g(p) 7→ (p|φ)φ∈L

Note that this map is injective. Thus λ < |SM1 (A)| ≤ |
∏
φ∈L S

M
φ,1(A)|. Let

λφ = |SMφ,1|, and note that if λφ ≤ λ for all φ ∈ L then |
∏
φ∈L λφ| = λ|T | = λ,

a contradiction. Thus there is some φ(x, ȳ) ∈ L such that |SMφ,1(A)| = λφ > λ.
By Proposition 2.1.3, this implies that φ is unstable and thus (3).

Finally, assuming (3), note that for any formula φ(x, ȳ), distinct types in
SMφ,1(A) extend to distinct types in SM1 (A), and thus |SM1 (A)| ≥ |SMφ,1(A)|.
Therefore if there is some formula φ which is unstable relative to T , then by
Proposition 2.1.3 there is some infinite λ with a M |= T and A ⊆ M , |A| = λ
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such that |SMφ,1(A)| > |A|. Thus |SM1 (A)| > |A|, and so T is unstable in λ. This
implies (1).

For (4), by the previous note we see that Proposition 2.1.3 also holds for
φ(x̄, ȳ), and so using Lemma 2.1.2, the proof for the equivalence between (1), (2), (4)
follows in exactly the same manner as for (3).

Corollary 2.1.12. If there is a formula φ(x̄, ȳ) and a sequence (ān : n < ω)
such that for every W ⊆ ω, {φ(x̄, ān) : n ∈ W} ∪ {¬φ(x̄, ān) : n /∈ W} is
satisfiable, then T is unstable.

Proof. If such a φ and (ān : n < ω) exists, then in particular the assumption is
true for any W = k < ω, and so φ has the order property and is therefore an
unstable formula.

A frequently given rationale for the unstable formula is that it is a kind of
“generalized ordering”. We can formalize this by:

Lemma 2.1.13. The following are equivalent:

1. There is an unstable formula relative to T .

2. There is some model M |= T , (c̄i : i < ω) ⊆ M l and a formula ψ(x̄, ȳ)
such that for m,n < ω, M |= ψ(c̄m, c̄n) iff m < n.

Proof. For the forward direction, suppose that φ(x, ȳ) is an unstable formula.
By Proposition 2.1.3, this implies that φ has the order property, and so there is
a (āi : i < ω) ⊆M such that for every n < ω

pn(x) = {φ(x, āi) : i < n} ∪ {¬φ(x, āi) : i ≥ n}

is a satisfiable 1-type of M . Let bn realize pn(x), bn an element of some suf-
ficiently saturated elementary extension N of M , so that N |= φ(bm, ān) iff
m ≤ n. Define c̄n = bn a ān, and let ψ(x0, ȳ1, x1, ȳ0) = φ(x0, ȳ1) ∧ x0 = x1.
Therefore N |= ψ(c̄m, c̄n) iff m < n.

For the reverse direction, define ān = c̄2n+1. Then c̄2n satisfies {ψ(x̄, āi) :
i < n} ∪ {¬ψ(x̄, āi) : i ≥ n}, and so ψ(x̄, ȳ) has the order property i.e. ψ is
unstable.

The definition of λ-stability concerns the number of types over a fixed set,
which is sometimes insufficient for our purposes. The following lemma shows
how the number of types over different sets can still be bounded:

Lemma 2.1.14. For an infinite λ, let λ0 be the least cardinal such that 2λ0 > λ.
Suppose for every ν ∈ 2<λ0 there exists a set Dν and a type pν ∈ S1(Dν)
satisfying:

1. If σ is an initial segment of ν, then Dσ ⊆ Dν and pσ ⊆ pν

2. If l(ν) is a limit ordinal, then Dν =
⋃
α<l(ν)Dν|α
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3. For every ν, Dνa0 = Dνa1 and pνa0 6= pνa1 i.e. pνa0, pνa1 are distinct
extensions of pν over the same set

Then T is not λ-stable.

Proof. Note that for ν ∈ 2<λ0 , there is a formula φν(x, āν) with parameters in
Dν+1 such that φν(x, āν)i ∈ pνai. So for α < λ0, let Aα = {āν : ν ∈ 2α} and
let Bα =

⋃
β<αAα. If B = Bλ0

, then for each η ∈ 2λ0 , pη|B =
⋃
α<λ0

pη|α |Bα is
a 1-type over B. Moreover:

• Since for each α < λ0, |2α| ≤ λ by definition of λ0, |B| = |
⋃
α<λ0

Aα| ≤∑
α<λ0

ℵ0 · |2α| ≤ λ0 · λ = λ

• For η 6= ζ, η, ζ ∈ 2λ0 , by definition of B we have pη|B 6= pζ |B

This implies that |S1(B)| ≥ 2λ0 > λ ≥ |B|, and therefore T is not λ-stable.

This result motivates the following definition:

Definition 2.1.15. For a stable theory T , µ(T ) is defined to be the least cardinal
such that there does not exist Dν , pν satisfying the conditions of the above lemma
for all ν ∈ 2<µ(T ).

Proposition 2.1.16. For any stable, complete theory T , µ(T ) ≤ |T |+

Proof. By 2.1.11, if T is stable then it is 2|T |-stable, and as |T |+ is the least
cardinal λ satisfying 2λ > 2|T |, thus by the above lemma it does not have Dν , pν
satisfying the conditions of the above lemma for all ν ∈ 2<|T |+. Therefore
µ(T ) ≤ |T |+.

Before introducing more tools that can be applied to stable theories, let us
give a justification of how a stable theory does not have “too many models”.

Proposition 2.1.17. Suppose T is λ-stable for some λ ≥ |T |, and M |= T with
|M | ≤ λ.

1. T has a saturated model N of size λ+ with M � N .

2. If λ is regular, then T has a saturated model N of size λ with M � N

Proof. For (1), by the Löwenheim-Skolem theorems, let M0 be a model of T of
size λ with M � M0. Then |S1(M0)| ≤ λ, so by compactness and using new
constant symbols there is a model M1 � M0 of size λ which realizes every 1-
type of M0 over M0. Repeating this process, let (Mi : i < λ+) be an elementary
chain where for each i < λ+, |Mi| = λ and Mi+1 realizes every 1-type over Mi.
If N =

⋃
i<λ+ Mi, then as λ+ is regular, any A ⊆ N with |A| < λ+ is such that

A ⊆Mi for some i < λ+ i.e. N is a saturated model of size λ+.
For (2), the prove is exactly the same except that if λ is regular, then Mλ

is already saturated: any A ⊆Mλ with |A| < λ is contained in some Mi by the
regularity of λ, and thus any type over A is realized in Mi+1. Therefore taking
N = Mλ gives the desired saturated model.
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Remark. The above result can be considerably strengthened: in fact, for any
stable theory T , if T is λ-stable then there is a saturated model of size λ. To
prove this, however, will require several techniques which are not required for
this exposition, and we will thus avoid doing so. The interested reader can
consult any textbook on stability theory, for example [Bu 96].

2.2 Prime Models

The concept of prime models stems from algebra, and in particular the idea
of the characteristic ring of a ring: it is a structure that is embeddable in any
other member of some class of structures. In particular, for a complete theory
a prime model is a model which is elementarily embeddable in any model of the
theory. This idea is an essential tool in proving Morley’s categoricity theorem
for countable languages, but for uncountable languages a prime model may not
exist. We are however interested in a weaker property:

Definition 2.2.1. For a complete theory T , λ ≥ |T |, a model M and a set C ⊆
M , M is λ-prime over C if for every λ-saturated model N and an elementary
map f : C −→ N , f extends to an elementary embedding f̃ : M −→ N .

The construction of a λ-prime model is not trivial, and one way of doing so
is by defining a construction sequence:

Definition 2.2.2. Given a set C, a type p ∈ Sn(C) is λ-isolated if there is a
Γ(x̄) ⊆ p, |Γ(x̄)| < λ such that p is the only type in Sn(C) extending Γ(x̄).
A set D ) C is λ-constructible over C if there is an enumeration (possibly
with repetition) {dα : α < γ} = D − C such that for every α, tp(dα/C ∪ {dβ :
β < α}) is λ-isolated. In this case, we call {dα : α < γ} a λ-construction of
D over C.

Proposition 2.2.3. If D is λ-constructible over C and E is λ-constructible over
D, then E is λ-constructible over C. If (Di : i < δ) is an increasing sequence
such that each Di+1 is λ-constructible over Di, then

⋃
i<δDi is λ-constructible

over C.

Proof. Let D − C = {dα : α < κ}, E −D{eβ : β < µ} be λ-constructions over
C,D respectively. Then trivially (dα : α < κ) a (eβ : β < µ) is a λ-construction
over C. This also holds for the limit case.

Lemma 2.2.4. If M is a λ-saturated model, then every (possible partial) type
q over M with |q| < λ is realized in M . Further, every λ-isolated type over M
is realized in M .

Proof. If q is a type over M with |q| < λ, then let C ⊆ M be the set of
parameters which appears in the formulas of q, so necessarily |C| < λ. So q has
a completion over C which is realized in M as M is λ-saturated.

If p is a λ-isolated type over M , let q ⊆ p be such that |q| < λ and p is the
unique completion of q over M . Thus q is realized in M , say by m ∈ M . But
as p is the unique completion of q over M ⊇ C, thus m realizes p.
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Proposition 2.2.5. If M is a λ-saturated model which is λ-constructible over
C, then it is λ-prime over C.

Proof. Let {dα : α < γ} be a λ-construction of M over C. For any λ-saturated
N and an elementary map f : C −→ N , we will define inductively elementary
maps fα : C ∪ {dβ : β < α} −→ N :

• f0 = f

• For limit δ < γ, let fδ =
⋃
α<δ fα

• If fα is defined, note that as pα = tpM (dα/C ∪ {dβ : β < α}) is λ-isolated
by assumption, there is a qα ⊆ pα such that |qα| < λ and for every
φ(x, d̄) ∈ pα, qα |= φ(x, d̄). So let q̃α = {φ(x, fα(d̄)) : φ(x, d̄) ∈ qα}. q̃α is
a type over N as fα is an elementary map, and as N is λ-saturated, by the
above lemma q̃α is realized by some n ∈ N . Then for every φ(x, d̄) ∈ pα,
N |= φ(n, fα(d̄)) and so extending fα by fα+1(dα) = n ensures that fα+1

is an elementary map.

Taking f̃ =
⋃
α<γ fα then gives the desired elementary embedding from M into

N .

Lemma 2.2.6. If T is stable, λ ≥ |T |+, M |= T and C ⊆ M then every
(possibly partial) 1-type Σ(x) over C with |Σ(x)| < λ is contained in a λ-isolated
p ∈ SM1 (C).

Proof. Suppose for a contradiction Σ(x) is a 1-type over C which is not contained
in any λ-isolated type over C with |Σ(x)| < λ. Let p<> = Σ(x), and let D<> be
the set of elements in C which appear as parameters in Σ(x). Then for ν ∈ 2<λ,
we will define Dν and a 1-type pν over Dν with |pν | < λ:

• If Dν , pν are defined, as pν ⊇ Σ(x), pν is not contained in any λ-isolated
type, and in particular pν does not isolate a type over C. Thus there is
φν(x, ȳ) ∈ L and a c̄ ∈ C such that both pν ∪{φ(x, c̄)}, pν ∪{¬φ(x, c̄)} are
satisfiable. So let Dνa0 = Dνa1 = Dν ∪ {c̄}, pνa0 = pν ∪ {φ(x, c̄)} and
pνa1 = pν ∪ {¬φ(x, c̄)}. So if |pν | < λ, then |pνai| < λ.

• If ν is of limit length, let Dν =
⋃
α<l(ν)Dν|α and pν =

⋃
α<l(ν) pν|α . Note

as pν = p<> ∪
⋃
α<l(ν) pν|α+1

− pν|α , and |pν|α+1
− pν|α | = 1, this implies

|pν | ≤ |Σ(x)|+ ℵ0|l(ν)| < λ.

Then Dν , pν for ν ∈ 2<λ satisfies the conditions for Lemma 2.1.14, contradicting
that T is stable (since by Proposition 2.1.16, µ(T ) ≤ |T |+).

Theorem 2.2.7. If T is stable, λ ≥ |T |+ and C is a set (in the universal
model), then there is a λ-prime model over C.
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Proof. The idea is to use a long λ-construction over C which realizes enough
types to be λ-saturated, which is then λ-prime by Proposition 2.2.5. Note that
if D is a set such that every type p over D with |p| < λ is realized in D, then D
is a model of T by the Tarski-Vaught test and in fact a λ-saturated model.

So let (pi : i < κ) enumerate {p ⊆ LC : p ∈ S1(A), A ⊆ C, |A| < λ}. We
will define ci inductively to realize pi and so that (ci : i < κ) is a λ-construction
over C: suppose cj has been defined for j < i. Since pi is a type over some A
with |A| < λ, |pi| < λ, by the above lemma there is a p′ ∈ S1(C ∪ {cj : j < i})
which contains pi and is λ-isolated. So define ci to realize p′.

This construction gives a C1 = C0 ∪ {ci : i < κ} which is λ-constructible
over C0 = C. Repeating this process, we can define Cα for α ≤ λ+: Cα+1 is
λ-constructible over Cα, and for a limit δ < λ+, Cδ =

⋃
α<δ Cα. By Proposition

2.2.3, Cλ+ is thus λ-constructible over C. Moreover, if p is a type over Cλ+ with
|p| < λ, then p is a type over some Ci and so is realized in Ci+1. Therefore Cλ+

is a λ-saturated λ-constructible model over C, as desired.

Corollary 2.2.8. Moreover, if λ is regular, T is λ-stable and |C| = λ, then
there is a λ-prime model over C with cardinality λ.

Proof. The construction is almost the same as above, except that given C, we
can let (pi : i < λ) enumerate {p ⊆ LC : p ∈ S1(C), p is λ-isolated}. λ-stability
of T guarantees that there is at most λ such types. Then if cj has been defined
to satisfy pj , let qi ⊆ pi be such that |qi| < λ and q isolates p. Then again by
the above lemma there is a p′ ∈ S1(C ∪ {cj : i < j}) which is λ-isolated and
contains qi, and as qi isolates pi, p

′|C = pi. So defining ci to satisfy p′ satisfies
the requirements of the construction.

So given C with |C| = λ, we can construct a C1 ⊇ C with |C| < λ which
is λ-constructible over C. Again, we repeat this process inductively for α < λ;
the same justification shows that Cλ is then λ-constructible over C. Moreover,
for any type p over Cλ with |p| < λ, as λ is regular there is some Ci such that
p is a type over Ci, and therefore by the previous lemma contained in some
λ-isolated type in S1(C). Thus p is realized in Ci+1, and therefore again Cλ is
a λ-saturated λ-constructible model over C.

2.3 Indiscernibles

Definition 2.3.1. For a L-structure M , A ⊆ M a linearly ordered set and
φ(x0, . . . , xn−1) ∈ L, A is a φ-indiscernible sequence in M if for every
ā, b̄ ∈ [A]n, M |= φ(ā)↔ φ(b̄).
For a ∆ ⊂ L, A is a ∆-indiscernible sequence in M if for every φ ∈ ∆, A
is φ-indiscernible. If ∆ = L, we simply say A is an indiscernible sequence
in M .
Given a set C ⊆ M , A is a ∆-indiscernible sequence over C in M if it is
∆C-indiscernible (see Definition 1.5.1) i.e. for every φ(x̄, ȳ) ∈ ∆, c̄ ∈ C and
ā, b̄ ∈ [A]n, M |= φ(ā, c̄)↔ φ(b̄, c̄).
For a set ∆ of formulas, A is a ∆-n-indiscernible sequence in M over C
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if it is ∆n-indiscernible in M over C, where ∆n = {φ(x0, . . . , xn−1, ȳ) : φ ∈ ∆}
i.e. we consider only the formulas in ∆ which (besides parameters) has n free
variables.
Note that by definition, A is ∆-indiscernible iff it is ∆-n-indiscernible for every
n < ω.
If A is a set which is a φ-indiscernible sequence under ANY linear ordering
on A, then we say that A is a φ-indiscernible set in M i.e. for any finite
ā ∈ A of distinct elements, M |= φ(ā). ∆-indiscernible sets over C in M
are defined similarly.
If A = {āi : i ∈ η, āi ∈Mk} for some linear order η and some n ∈ ω i.e. A is a
ordered set of finite tuples from M , then the definition for φ-indiscernibility is
given correspondingly for φ(x̄0, . . . , x̄n−1) with |x̄i| = k.
We omit “in M” when the model is clear from context.

Remark. Unless otherwise specified, we will adopt the convention where if A
comes with some linear order then by “A is indiscernible” we mean that “A is
an indiscernible sequence” under that order. Conversely, if A does not come
with a linear order then we mean that “A is an indiscernible set”.

The existence of indiscernible sequences is easily proved by:

Lemma 2.3.2. Let M be a model, I ⊆Mn infinite but A (M , n < ω and ∆ (
L are all finite. Then there is an infinite and linearly ordered (āi : i < ω) ⊆ I
which is a ∆-n-indiscernible sequence over A. In particular, for any formula φ
there is an infinite φ-indiscernible sequence over A in I.

Proof. Arbitrarily linearly order I, and assume |I| = ℵ0 (say by taking only
a countably infinite subset). Note by assumption, ∆A,n (see the above def-
inition) is finite and thus 2∆A,n is finite. Defining f : [I]n −→ 2∆A,n by
M |= φ(ā0, . . . , ān−1, ā) iff φ(x̄0, . . . , x̄n−1, ā) ∈ f(ā0, . . . , ān−1), Ramsey’s theo-
rem (Theorem A.0.1) guarantees that there is an infinite subset of J ⊆ I such
that f is constant on J . J is then the desired ∆-n-indiscernible sequence over
A.

The following property, first exposited by Ehrenfeucht in [Eh 57], is useful
for studying stable theories, and makes heavy use of indiscernibility:

Definition 2.3.3. Let I ⊆M l be an infinite set of l-tuples of M . φ(x̄0, . . . , x̄n−1)
is connected over I if for every choice of ā0, . . . , . . . an−1 ∈ I of distinct tu-
ples, there is a σ ∈ Sn (where Sn is the permutation group of n elements) such
that M |= φ(āσ(0), . . . , āσ(n−1)).
φ(x̄0, . . . , x̄n−1) is asymmetric over I if for every choice of ā0, . . . , . . . an−1 ∈
I of distinct tuples, there is a σ ∈ Sn (where Sn is the permutation group of n
elements) such that M |= ¬φ(āσ(0), . . . , āσ(n−1)).

Lemma 2.3.4. If φ(x̄0, . . . , x̄n−1) is connected and asymmetric over I, then
there is a σ, τ ∈ Sn and an infinite J = (b̄i : i < ω) ⊆ I such that for every
ζ ∈ [ω]n,

M |= φ(b̄ζ(σ(0)), . . . , b̄ζ(σ(n−1)))
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M |= ¬φ(b̄ζ(τ(0)), . . . , b̄ζ(τ(n−1)))

In this case, we say that φ is connected by σ over I and asymmetric by τ over
I.

Proof. Let I = (āi : i < ω) , and consider the map f : [ω]n −→ Sn × Sn with
f(ζ) = (σζ , τζ) such that

M |= φ(āζ(σζ(0)), . . . , āζ(σζ(n−1)))

M |= ¬φ(āζ(τζ(0)), . . . , āζ(τζ(n−1)))

Note σζ , τζ exists as φ is connected and asymmetric over I. Since Sn × Sn is
finite, by Ramsey’s theorem (Theorem A.0.1), there is an infinite W ⊆ ω such
that f is constant on [W ]n. Letting J = (āi : i ∈ W ) and σ = σζ , τ = τζ for
ζ ∈ [W ]n gives the desired result.

Lemma 2.3.5. If there is a M |= T with an infinite I ⊆ M l, a m̄ ∈ M and
a formula φ(x̄0, . . . , x̄n−1, m̄) which is asymmetric and connected over I, then
there is an infinite indiscernible sequence J over m̄ and a σ, τ ∈ Sn such that φ
is connected by σ and asymmetric by τ over J .

Proof. We will in fact take M to be an universal model here, so that any type
is realized in M . For simplicity, we may assume WLOG that I = (āi : i < ω),
and by the above lemma we may assume that there is σ, τ ∈ Sn such that for
every ζ ∈ [ω]n, I is connected by σ and I is asymmetric by τ .

List L by (ψi : i < |L|), and define ∆i = {ψj : j < i}. We will construct
inductively sequences Ii for i ≤ |L|, which satisfies:

1. Ii is infinite

2. Ii is ∆i-indiscernible over m̄

3. ψ is connected by σ and asymmetric by τ over Ii

4. For j < i, if Ij = (āk : k < ω) and Ii = (b̄k : k < ω), for ev-
ery l < j, M |= ψl(āζ(0), . . . , āζ(n−1), m̄) for every ζ ∈ [ω]n iff M |=
ψl(b̄ζ(0), . . . , b̄ζ(n−1), m̄)

For the base case, as ∆0 = ∅, let I0 = I; for the successor case, if Ij satisfies
the inductive hypothesis, by Lemma 2.3.2 let Ij+1 ⊆ Ij be an infinite ψj+1-
indiscernible subsequence over m̄. Note then φ is naturally connected by σ
and asymmetric by τ over Ij+1, and (4) is satisfied as Ij+1 ⊆ Ij , and Ij is
ψl-indiscernible over m̄ for l < j.

For the limit case δ < |L|, let (c̄i : i < ω) be new constants and consider the
set

{ψj(c̄ζ(0), . . . , c̄ζ(h(j)−1), m̄)i : j < δ, ζ ∈ [ω]h(j),M |= ψj(ā0, . . . , āh(j)−1, m̄)i

where Ij+1 = (āk : k < ω)}
∪ {φ(c̄ζ(σ(0)), . . . , c̄ζ(σ(n−1)), m̄) : ζ ∈ [ω]n}
∪ {¬φ(c̄ζ(τ(0)), . . . , c̄ζ(τ(n−1)), m̄) : ζ ∈ [ω]n}
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Any finite subset is satisfiable by interpreting (c̄i : i < ω) as a suitable Ij for
some j < δ, and so by compactness this set of formulae is satisfiable in M by a
Iδ = (c̄Mi : i < ω). By construction, this satisfies all the conditions (1)− (4).

Since ∆|L| = L, taking J = I|L| then gives the desired indiscernible sequence.

Proposition 2.3.6. If there is a M |= T with an infinite I ⊆ M l, a m̄ ∈ M
and a formula φ(x̄0, . . . , x̄n−1, m̄) which is asymmetric and connected over I,
then T is not stable.

Proof. Again, we will assume M is the universal model so that all types are
realized in M . Using the above lemma, we may assume WLOG that I = (āi :
i < ω) is countable, indiscernible over m̄ and there is σ, τ ∈ Sn such that φ is
connected by σ and asymmetric by τ over I.

So assume that T is stable. Let λ = 2|T |, let λ0 be the least such that
2λ0 > λ and consider the set J1 = 2λ0 − {0,1} (where 0 is the constant string
of 0’s and 1 the constant string of 1’s) with the following ordering: if α < λ0 is
the least such that ν(α) 6= ζ(α), ν(α) = 0, then ν < ζ. Note that as λ0 ≤ λ is
the least such that 2λ0 > λ, then 2<λ0 ≤ λ · λ0 ≤ λ. Thus, defining J to be the
strings which are eventually constant, we see that:

1. |J1| > λ ≥ |J |

2. Neither J1 nor J has endpoints

3. For every σ, τ ∈ J1−J , there exists ν, ζ, ξ ∈ J such that ν < σ < ζ < τ < ξ

Since I is an infinite indiscernible sequence over m̄, by compactness we can
define (b̄s : s ∈ J1) such that for every (s1, . . . , sn) ∈ [J1]n, b̄s1 a · · · a b̄sn
realizes the same type over m̄ as ā0 a · · · a ān−1.

Define B = m̄∪
⋃
{b̄s : s ∈ J}, and for s ∈ J1−J let ps = tp(b̄s/B). Note as

|B| ≤ λ, the stability of T (by Proposition 2.1.11, as λ|T | = λ) implies that T
is λ-stable, and so as |J1− J | > λ there exists s < t ∈ J1− J such that ps = pt.

WLOG, assume that M |= φ(ā0, . . . , ān−1, m̄) (otherwise replace φ by ¬φ).
As φ is asymmetric (or connected, if ¬φ is used) over I, there is a θ ∈ Sn
such that M |= ¬φ(āθ(0), . . . , āθ(n−1), m̄). So let θ be such that r(θ) = min{k :
θ(k) 6= k} is maximal with M |= ¬φ(āθ(0), . . . , āθ(n−1), m̄), which implies that
if r = r(θ) then

M |= ¬φ(ā0, . . . , ār−1, āθ(r), . . . , āθ(n−1), m̄)

By property (3) above of J1 and J , we can find s0 < · · · < sn−1 ∈ J such that
sr−1 < s < sr and sθ(r)−1 < t < sθ(r), and as b̄s0 a · · · a b̄sn−1

realize the same
type over m̄ as ā0 a · · · a ān−1, we see that

M |= ¬φ(b̄s0 , . . . , b̄sr−1 , b̄sθ(r) , . . . , āsθ(n−1)
, m̄)

So by the indiscernibility of (b̄s : s ∈ J1),

M |= ¬φ(b̄s0 , . . . , b̄sr−1
, b̄t, b̄sθ(r+1)

, . . . , āsθ(n−1)
, m̄)
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But as ps = pt,

M |= ¬φ(b̄s0 , . . . , b̄sr−1
, b̄s, b̄sθ(r+1)

, . . . , āsθ(n−1)
, m̄)

So again by indiscernibility

M |= ¬φ(b̄s0 , . . . , b̄sr−1 , b̄sr , b̄sθ(r+1)
, . . . , āsθ(n−1)

, m̄)

Which contradicts that r = r(θ) is maximal. Therefore T is not stable.

In fact, one can show that for a complete theory, having a formula which
is asymmetric and connected over an infinite set is equivalent to having an
unstable formula, hence T is unstable iff there is an infinite set and a formula
which is asymmetric and connected over it (see [Sh 90] for details).

For our purposes, one of the main goals of introducing the notion of asym-
metric and connected is the following result:

Proposition 2.3.7. If T has a model M with an infinite I ⊆ M that is an
indiscernible sequence over some A ⊆ M but not an indiscernible set over A,
then T is unstable.

Proof. Since I is not an indiscernible set overA, there is a formula φ(x̄0, . . . , x̄n−1, ȳ),
a ā ∈ A, ā0 < · · · < ān−1 ∈ I and a σ ∈ Sn such that

M |= φ(ā0, . . . , ān−1, ā) ∧ ¬φ(āσ(0), . . . , āσ(n−1), ā)

So let

ψ(x̄0, . . . , x̄n−1, ā) = φ(x̄0, . . . , x̄n−1, ā) ∧ ¬φ(x̄σ(0), . . . , x̄σ(n−1), ā)

But as I is an indiscernible sequence over A, M |= ψ(ζ) for any ζ ∈ [I]n.
Therefore φ is connected and asymmetric over I. By the above proposition, T
is thus unstable.

Corollary 2.3.8. We can weaken the above proposition by requiring only that I
is a ∆-indiscernible sequence over A but not a ∆-indiscernible set over A, where
∆ is closed under permutation of variables i.e. for every φ(x̄0, . . . , x̄n−1, ȳ) ∈ ∆
and σ ∈ Sn, φ(x̄σ(0), . . . , x̄σ(n−1), ȳ) ∈ ∆.

Proof. Again, if the assumption is true then there is a is a formula φ(x̄0, . . . , x̄n−1, ȳ),
a ā ∈ A, ā0 < · · · < ān−1 ∈ I and a σ ∈ Sn such that

M |= φ(ā0, . . . , ān−1, ā) ∧ ¬φ(āσ(0), . . . , āσ(n−1), ā)

Since ∆ is closed under permutation of variables, the formula

ψ(x̄0, . . . , x̄n−1, ȳ) = φ(āσ(0), . . . , āσ(n−1), ȳ)

is also in ∆, and therefore as I is a ∆-indiscernible sequence, M |= φ(ζ), ψ(ζ)
for any ζ ∈ [I]n. Therefore φ is connected an asymmetric over I, as in the proof
above.
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This proposition gives a taste of how indiscernible sequences are used when
T is stable. An application is:

Proposition 2.3.9. For a complete theory T and a model M |= T , suppose
C ⊆M is a set and D = {dα : α < |D|} ⊆M a sequence. Let pα = tp(dα/C ∪
{dβ : β < α}) and suppose for β < α, pβ ⊆ pα. Moreover suppose pα does not
split over C. Then {dα : α < κ} is an indiscernible sequence over C.

Proof. By induction on the length of the tuple d̄ ∈ [D]<ω: for the base case,
suppose tp(dα/C) 6= tp(dβ/C), β < α. So there is a φ(x) ∈ LC such that
|= φ(dα) ∧ φ(dβ). But pβ ⊆ pα implies pβ |C = pα|C , a contradiction.

For the inductive case, suppose every d̄ ∈ [D]n has the same type over C.
Assume for a contradiction that there are (d̄0, d

′
0), (d̄1, d

′
1) ∈ [D]n+1 such that

tp(d̄0 a d′0/C) 6= tp(d̄1 a d′1/C). Supposing WLOG that d′1 = dα and d′0 = dβ ,
β < α, thus there is a φ(y0, . . . , yn−1, x) ∈ LC such that M |= φ(d̄0, d

′
0) ∧

¬φ(d̄1, d
′
1). Now by the inductive hypothesis tp(d̄0/C) = tp(d̄1/C), so as pα

does not split over C, ¬φ(d̄1, x) ∈ pα implies ¬φ(d̄0, x) ∈ pα. But as pβ ⊆ pα,
therefore M |= ¬φ(d̄0, d

′
0), a contradiction. Thus every d̄ ∈ [D]n+1 realizes

the same type over C, completing the induction. Thus D is an indiscernible
sequence over C.

Corollary 2.3.10. If T is stable, then D is in fact an indiscernible set over C

Proof. Follows directly from Proposition 2.3.7.

The following technical lemma will be used later to prove a useful result, but
since we have all the concepts needed to prove the lemma we will do so here.

Lemma 2.3.11. For a n, ω, let ∆1, . . . ,∆n−1 be sets of formulas, each of which
are closed under permutation of variables (i.e. if φ(x0, . . . , xn−1) ∈ ∆k, then
for every σ ∈ Sn, φ(xσ(0), . . . , xσ(n−1)) ∈ ∆). Given a model M |= T , if
I = (āi : i < α) ⊆M is a sequence of tuples from M , A ⊆M a set and defining
Ai = A ∪

⋃
j<iAj, assume that for every i < α, 2 ≤ k + 1 < n, pi = tp(āi/Ai)

does not (∆k,∆k+1)-split over A. If in addition pj |∆k
⊆ pi|∆k

for j < i < α
and 1 ≤ k < n, then for every 1 ≤ k < n, I is a ∆k-k-indiscernible sequence
over A.

Proof. Suppose ζ, ξ ∈ [α]k, φ(x̄0, . . . , x̄k−1, ȳ) ∈ ∆k and c̄ ∈ A, so that it suffices
to show

Claim. M |= φ(āζ(0), . . . , āζ(k−1), c̄) iff M |= φ(āξ(0), . . . , āξ(k−1), c̄)

We will proceed by induction on k: For k = 1, since p0|∆1 = pζ(0)|A,∆1 =
pξ(0)|A,∆1 , thus the claim is true. Inductively, if the claim is true for k with k+
1 < n, let β = max(ζ(k), ξ(k)) where ζ, ξ ∈ [α]n+1. By the inductive hypothesis
tp∆k

(āζ(0) a · · · a āζ(k−1)/A) = tp∆k
(āξ(0) a · · · a āξ(k−1)/A), and in addition

pβ does not (∆k,∆k+1)-split over A. So for φ(x̄0, . . . , x̄k−1, x̄, ȳ) ∈ ∆k+1, since
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c̄ ∈ A, φ(āζ(0), . . . , āζ(k−1), x̄, c̄) ∈ pβ iff φ(āξ(0), . . . , āξ(k−1), x̄, c̄) ∈ pβ . Finally,
as pζ(k)|∆k+1

, pξ(k)|∆k+1
⊆ pβ |∆k+1

M |= φ(āζ(0), . . . , āζ(k), c̄)⇔ φ(āζ(0), . . . , āζ(k−1), x̄, c̄) ∈ pζ(k)|∆k+1

⇔ φ(āζ(0), . . . , āζ(k−1), x̄, c̄) ∈ pβ |∆k+1

⇔ φ(āξ(0), . . . , āξ(k−1), x̄, c̄) ∈ pβ |∆k+1

⇔ φ(āξ(0), . . . , āξ(k−1), x̄, c̄) ∈ pξ(k)|∆k+1

⇔M |= φ(āξ(0), . . . , āξ(k−1), āξ(k), c̄)

This completes the inductive proof.

Indiscernible sets are a versatile tool, as illustrated by the following lemmas:

Lemma 2.3.12. Suppose T is λ-stable, M |= T , C ⊆ M and X ⊆ M is an
indiscernible set over C in M . If λ0 is the least such that 2λ0 > λ, then for any
m ∈ M , there exists X ′ ( X, |X ′| < λ0 such that X − X ′ is an indiscernible
set over C ∪ {m} in M .

Proof. WLOG we may replace M by a κ-saturated elementary extension for
some large κ so that all types over the sets we are interested in are realized in
M (e.g. take M to be the universal model). Suppose there exists C,X,m con-
tradicting the claim. We will construct a tree of types satisfying the assumptions
of Lemma 2.1.14, thus contradicting that T is λ-stable.

For ν ∈ 2<λ0 , we will construct an elementary map fν with domain D′ν ⊆
C ∪X, D′ν ⊇ C inductively by the length of ν, requiring that |D′ν ∩X| < λ0,
fν has range in M and that if σ is an initial segment of ν, then D′σ ⊆ D′ν and
fσ = fν |D′σ . Let D′<> = C, f<> = idC , and note that as X is an indiscernible
set over C, unless |X| = 1 then C ∩X = ∅, and so in any case |C ∩X| < λ0,
satisfying the inductive hypothesis. Also, for any ν with length a limit ordinal
δ, let D′ν =

⋃
α<δD

′
ν|α and fν =

⋃
α<δ fν|α .

So assume that D′ν , fν has been constructed. Since we assume that C,X,m
contradicts the claim of the lemma, as |D′ν∩X| < λ0, X−D′ν is not indiscernible
over C ∪ {m} and so there exists tuples d̄0, d̄1 ∈ X − D′ν and a φ(x, ȳ) ∈ LC
such that M |= φ(m, d̄0) ∧ ¬φ(m, d̄1). Let D′νai = Dν ∪ d̄i, and we note:

Claim. tpM (d̄0/D
′
ν) = tpM (d̄1/D

′
ν)

For every φ(x̄, ȳ, z̄) ∈ L, c̄ ∈ C and d̄′ ∈ D′ν − C, note as X is indiscernible
over C and d̄′, d̄0, d̄1 ∈ X, tpM (d̄0 a d̄′/C) = tpM (d̄1 a d̄′/C) and therefore
M |= φ(d̄0, d̄′, c̄) iff M |= φ(d̄1, d̄′, c̄) i.e. tpM (d̄0/D

′
ν) = tpM (d̄1/D

′
ν)

Since fν has range in M , which we assume to be sufficiently saturated, the
following type:

qi = {φ(x̄, fν(d̄′)) : φ ∈ L, d̄ ∈ D′ν ,M |= φ(d̄i, d̄′)}

is realized in M by some tuple d̄, and we define fνai to extend fν by having
fνai(d̄i) = d̄. Moreover, as tpM (d̄0/D

′
ν) = tpM (d̄1/D

′
ν) we see that q0 = q1,

which implies that we can define fνa0(d̄0) = fνa1(d̄1) = d̄. Since d̄0, d̄1 are
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finite, if |D′ν∩X| < λ0 then |D′νai∩X| < λ0. Moreover, sinceD′νai−Dν is always
finite, this guarantees that |D′ν | ≤ ℵ0 · l(ν) and so the cardinality condition is
satisfied even at limit stages. This completes the inductive construction.

So define Dν = fν(D′ν), and pν = {φ(x, fν(d̄)) : d̄ ∈ D′ν ,M |= φ(m, d̄)}.
That fν is an elementary map guarantees that pν ∈ SM1 (Dν), and for every
ν by construction there is d̄0 ∈ D′νa0, d̄1 ∈ D′νa1 and a φ ∈ LC such that

M |= φ(m, d̄0) ∧ ¬φ(m, d̄1). Therefore tpM (m/Dνa0) 6= tpM (m/Dνa1), and so
pνa0 6= pνa1. Finally, that fνa0(d̄0) = fνa1(d̄1) guarantees by induction that
Dνa0 = Dνa1, and thus Dν , pν for ν ∈ 2<λ0 satisfies the conditions of Lemma
2.1.14, contradicting that T is λ-stable.

Corollary 2.3.13. In fact, we can have |X ′| < µ(T ).

Proof. The above proof is valid by replacing λ0 with µ(T ), by definition of µ(T )
(see Definition 2.1.15).

Corollary 2.3.14. If the assumptions of the above lemma hold, κ > µ(T ) and
D ⊆ M is such that |D| < κ, then there is a X ′ ( X with |X ′| < κ such that
X −X ′ is an indiscernible set over C ∪D. If µ(T ) is regular, then this applies
even for the case of κ = µ(T ).

Proof. List D = {dα : α < |D|}, and for α < |D| define inductively Xα with
|Xα| < κ such that X −Xα is indiscernible over C ∪ {dβ : β < α}:

• Let X0 = ∅

• If Xα is defined, let Yα+1 ( X − Xα be such that |Yα+1| < µ(T ) and
(X −Xα)− Yα+1 is indiscernible over C ∪ {dβ : β < α+ 1} by the above
lemma. Then let Xα+1 = Xα ∪ Yα+1, which guarantees that Xα ⊆ Xα+1,
|Xα+1| < |Xα|+ |Yα+1| < κ and X −Xα+1 is indiscernible over C ∪ {dβ :
β < α+ 1}.

• For a limit ordinal δ < |D|, let Xδ =
⋃
α<δXα. Note that Xδ =⋃

α<δXα+1−Xα, and by construction each |Xα+1−Xα| = |Yα+1| < µ(T ).
So if κ > µ(T ) then |Xδ| ≤ |δ| · µ(T ) < κ, whereas if κ = µ(T ) is
regular then |Xδ| ≤

∑
α<δ |Xα+1 − Xα| < µ(T ) = κ. Moreover since

X −Xδ =
⋂
α<δX −Xα, X −Xδ is indiscernible over C ∪ {dα : α < δ}.

Taking X ′ =
⋃
α<|D|Xα then gives the desired indiscernible set X −X ′.

2.4 Definability of types and Rank of formulas

The idea of definable types is due to Shelah, and has wide applications in sta-
bility theory, a few of which will be useful for us. For this section, we will work
with a fixed complete theory T and a universal model M̄ of T , such that by a
set or a tuple (unless otherwise specified) we will mean a set or a tuple in M̄
(which is much smaller than the universal model).
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Definition 2.4.1. For p a set of formulas with parameters in m variables and
φ(x0, . . . , xm−1, ȳ) a formula in L, the φ-2-Rank of p R2

φ(p) is either −1,
an ordinal or ∞ (where we consider α < ∞ for any ordinal α) and defined
inductively by:

• R2
φ(p) ≥ 0 if p is a type i.e. p is satisfiable.

• For a limit ordinal δ, R2
φ(p) ≥ δ if for every α < δ, R2

φ(p) ≥ α

• R2
φ(p) ≥ α+ 1 if for every finite q ⊆ p, there is a tuple ā in the universal

model, such that R2
φ(q ∪ {φ(x̄, ā)}), R2

φ(q ∪ {¬φ(x̄, ā)}) ≥ α

When φ is clear from context, we will simply write R(p) and call it the Rank
of p.

Note. In [Sh 90], Shelah gives a much more general treatment of ranks which
is too general for our purposes. In Shelah’s notation, the φ-2-rank is denoted
Rm(−, φ, 2).

Lemma 2.4.2. Let φ(x0, . . . , xm−1, ȳ) be any formula.

1. If p1, p2 are sets of formulas with parameters in m variables such that
p1 |= p2, then R2

φ(p1) ≤ R2
φ(p2)

2. For any p a set of formulas with parameters in m variables, there is a
finite q ⊆ p such that R2

φ(q) = R2
φ(p)

3. If R2
φ(p) = α <∞, then there is no tuple ā such that R2

φ(p∪{φ(x̄, ā)i}) ≥ α
for i = 0, 1

4. If q ⊆ p ∈ Sφ,m(A) is such that R2
φ(q) = R2

φ(p), then p is the unique
extension of q in Sφ,m(A).

Proof.

1. We will prove the claim by induction on ordinals: the claim is trivial
for α = 0 and α a limit ordinal; and if R2

φ(p1) ≥ α + 1, note that by
compactness if p1 |= p2 then for every finite q2 ⊆ p2 there is a finite
q1 ⊆ p1 such that q1 |= q2. Thus definition there is a tuple ā such that
R2
φ(q1∪{φ(x̄, ā)i}) ≥ α for i = 0, 1. Since q1∪{φ(x̄, ā)i} |= q2∪{φ(x̄, ā)i}

by construction, by the inductive hypothesis R2
φ(q2 ∪ {φ(x̄, ā)i}) ≥ α.

Therefore R2
φ(p2) ≥ α+ 1.

2. By (1), if q ⊆ p then R2
φ(p) ≤ R2

φ(q). Thus if R2
φ(p) =∞, then we can take

q ⊆ p arbitrarily in p to prove the claim. Otherwise, if R2
φ(p) = α < ∞,

by definition there is some finite q ⊆ p such that there is no tuple ā with
R2
φ(q ∪ {φ(x̄, ā)}) ≥ α and R2

φ(q ∪ {φ(x̄, ā)}) ≥ α. This implies that

R2
φ(q) � α+ 1, so again by (1) R2

φ(q) = R2
φ(p).
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3. If such a tuple ā does exist, then for every finite q ⊆ p, R2
φ(q∪{φ(x̄, ā)i}) ≥

α by (1), and therefore R2
φ(p) ≥ α+ 1, a contradiction.

4. If R2
φ(q) = R2

φ(p) = α, suppose that for an ā ∈ A, φ(x̄, ā) ∈ p. Then

by (1), α = R2
φ(p) ≤ R2

φ(q ∪ {φ(x̄, ā)}) ≤ R2
φ(q) = α, and therefore

R2
φ(q ∪ {φ(x̄, ā)}) = α. Conversely, suppose that ¬φ(x̄, ā) ∈ p, so again

R2
φ(q ∪ {¬φ(x̄, ā)}) = α. But by (3), as R2

φ(q) = α, there is no ā such

that R2
φ(q∪{φ(x̄, ā)}), R2

φ(q∪{¬φ(x̄, ā)}) ≥ α, and so only one of the two

conditions hold. Therefore p = q ∪ {φ(x̄, ā) : R2
φ(q ∪ {φ(x̄, ā)}) = α}

Lemma 2.4.3. For every n < ω, φ(x0, . . . , xm−1, ȳ) a formula and p a set of
formulas with parameters in m variables, then R2

φ(p) ≥ n iff the set

Γφ(p, n) = {ψ(x̄η, ā) : ψ(x̄, ā) ∈ p, η ∈ 2n} ∪ {φ(x̄η, ȳη|k)η(k) : η ∈ 2n, k < n}

is satisfiable.

Proof. For the forward direction, by compactness, it is sufficient to show that
for every finite q ⊆ p, Γφ(q, n) is satisfiable. So WLOG assume that p is finite.
Inductively, we will define āσ for σ ∈ 2<n such that if l(σ) = k < n then
R(pσ) ≥ n− k where pσ = p ∪ {x̄ = x̄} ∪ {φ(x̄, āσ|j )

σ(j) : j < k}:

• For k = 0, the condition is simply R(p) ≥ n, which is true by assumption.

• If āσ has been defined for σ ∈ 2k, k + 1 ≤ n, then by the inductive
hypothesis R(pσ) ≥ n− k. Therefore (as pσ is finite) there is a tuple ā in
M̄ such that R(pσ ∪{φ(x̄, ā)i}) ≥ n−k−1 for i = 0, 1. Defining āσai = ā
thus satisfies the inductive hypothesis.

This construction implies that if η ∈ 2n, then R(pη) ≥ 0 and thus pη is satisfi-
able. Let c̄η ∈ M̄ realize pη, interpret x̄η as c̄η and for k < n, interpret ȳη|k as
āη|k . This shows that Γφ(p, n) is satisfiable.

For the backwards direction, we proceed by induction downwards from n:
for n = 0, if Γφ(p, 0) is satisfiable then p is satisfiable and thus R2

φ(p) ≥ 0. Then

for n > 0, if Γφ(p, n) is satisfiable, then for any η ∈ 2n−1, p∪{φ(x̄, ȳη|k)η(k) : k <
n− 1} ∪ {φ(x̄, ȳη)i} is satisfiable for i = 0, 1, and therefore R2

φ(p ∪ {φ(x̄, ȳη|k) :

k < n− 1}) ≥ 1. Repeating this step n times yields that R2
φ(p) ≥ n.

Lemma 2.4.4. If R2
φ(x̄ = x̄) ≥ ω, then φ is an unstable formula.

Proof. For every n < ω, note that the set Γφ(x̄ = x̄, n) in the above lemma is
satisfiable iff the set

Γφ(n) = {φ(x̄η, ȳη|k)η(k) : η ∈ 2n, k < n}

is satisfiable. But this definition of Γφ(n) coincides with the definition in the
proof of Lemma 2.1.9, and so by the same proof we see that φ is unstable.

44



Definition 2.4.5.

• Given a complete φ(x̄, ȳ)-m-type p over some set A, a tuple c̄ and a formula
ψ(ȳ, z̄), p is ψ(ȳ, c̄)-defined if φ(x̄, ā) ∈ p iff M̄ |= ψ(ā, c̄)

• p is (ψ(ȳ, z̄), C)-definable if there is a c̄ ∈ C such that p is ψ(ȳ, c̄)-defined.

• p is C-definable if there is some formula ψ(ȳ, z̄) such that p is (ψ,C)-
defined.

• If p is a complete ∆-m-type over some set A and C is a set, p is C-
definable if p|φ is C-definable for every φ ∈ ∆.

Lemma 2.4.6. For any formula φ(x̄, ȳ) with l(x̄) = m, if R2
φ(x̄ = x̄) < ω then

there is a ψ(ȳ, z̄) such that for every set A (with |A| > 1), every p ∈ Sφ,m(A) is
(ψ,A)-definable. In particular, every φ-type over A is A-definable.

Proof. Let A be a set (with |A| > 1), and p ∈ Sφ,m(A). Since (x̄ = x̄) ∈ p, by
Lemma 2.4.2(1), R(p) ≤ R(x̄ = x̄) < ω. Then by Lemma 2.4.2(2), there is a
finite q ⊆ p such that R(q) = R(p) = k < ω. Since q is a φ-type over A, we may
assume q = {φ(x̄, āl)

η(l) : l < l(η)} for some η ∈ 2<ω. Now, for every ā ∈ A let
q(ā) = q ∪ {φ(x̄, ā)}. Consider the cases:

• If φ(x̄, ā) ∈ p, then q(ā) ⊆ p and thus by R(p) ≤ R(q(ā)) ≤ R(q) = R(p) =
k, so R(q(ā)) = k.

• If ¬φ(x̄, ā) ∈ p, then R(p) ≤ R(q ∪ {¬φ(x̄, ā)}) ≤ R(q) = R(p) = k. By
Lemma 2.4.2(3), if R(q(ā)) ≥ k then R(q) ≥ k + 1, a contradiction. Thus
R(q(ā)) < k.

We have thus shown that R(q(ā)) ≥ k iff φ(x̄, ā) ∈ p. But by Lemma 2.4.3,
R(q(ā)) ≥ k iff Γφ(q(ā), k) is satisfiable. So let θ(x̄, c̄) =

∧
q (so that c̄ ∈ A),

and define

ψ(ȳ, c̄) = ∃σ∈2<k z̄σ
∧
η∈2k

(∃x̄θ(x̄, c̄) ∧ φ(x̄, ȳ) ∧
∧

0≤l<k

φ(x̄, z̄η|l)
η(l))

Note that in this case Γφ(q(ā), k) is satisfiable iff M̄ |= ψ(ā, c̄). Thus we have
shown that M̄ |= ψ(ā, c̄) iff Γφ(q(ā), k) is satisfiable iff R(q(ā)) ≥ k iff φ(x̄, ā) ∈ p
i.e. p is (ψ,A)-definable.

To prove the lemma, we need to show that we can choose ψ such that it
is independent of p and A. Note that if we can show that there is some finite
∆ = {ψi(ȳ, z̄) : i < n} such that for every A (with |A| > 1) and p ∈ Sm,φ(A), p
is (ψi, A)-definable for some i < n, then

ψ(ȳ, z̄0, . . . , z̄n−1, z
′, z′0, . . . , z

′
n−1) =

∧
0≤l<n

(z′ 6= z′l → ψl(ȳ, z̄l))

is such that p is (ψ,A)-definable.
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So suppose for a contradiction that such a finite ∆ does not exist. If l(ȳ) = n
in φ(x̄, ȳ), then let P be a new unary relation symbol, b0, . . . , bm−1 be new
constant symbols and for any ∆ ⊆ L of formulae of the form ψ(ȳ, z̄ψ) with
l(ȳ) = n, define

T∆ = T ∪ {¬∃z1, . . . , zl(z̄ψ)(

l(z̄ψ)∧
i=1

P (zi)∧

(∀y1, . . . , yn((

n∧
j=1

P (yj))→ (φ(b̄, ȳ)↔ ψ(ȳ, z̄))))) : ψ ∈ ∆}

i.e. if M |= T∆, then M |= T and for every m̄ ∈ PM , there is a m̄′ ∈ PM such
that M 2 φ(b̄, m̄′)↔ ψ(m̄′, m̄). Now, if ∆ is finite, then by assumption there is
a set A and a p ∈ Sφ,m(A) such that p is not (ψ,A)-definable for any ψ ∈ ∆. So
if M |= T with A ⊆M and m̄ ∈M realizes p, then defining PM = A and b̄ = m̄
satisfies T∆. Thus T∆ is satisfiable for any finite ∆. But then by compactness,
if ∆0 ⊆ L is the set of all formulae in the form ψ(ȳ, z̄) with l(ȳ) = n, then T∆0

is also satisfiable.
Thus let N |= T∆0 , and consider the type p = tpNφ (b̄N/PN ): since N |= T ,

we have shown above that there is some formula ψ which uses neither P nor b̄
and such that p is (ψ, PN )-definable, which contradicts the construction of T∆0

as ψ ∈ ∆0. This completes the proof by contradiction, and thus the lemma is
proven.

Corollary 2.4.7.

1. Given φ(x̄, ȳ) and k < ω, for every θ(x̄, ȳ) there is a formula ψ(ȳ) such
that for every tuple ā, R2

φ(θ(x̄, ā)) ≥ k iff M̄ |= ψ(ā)

2. Given φ(x̄, ȳ) and θ(x̄, z̄), there is a ψ(ȳ, z̄) such that for every φ-type p,
if θ(x̄, c̄) ∈ p and R2

φ(p) = R2
φ(θ(x̄, c̄)) < ω then p|φ is ψ(ȳ, c̄)-definable.

Proof.

1. As in the above proof, consider the formula

ψ(ȳ) = ∃σ∈2<k z̄σ
∧
η∈2k

(∃x̄θ(x̄, ȳ) ∧
∧

0≤l<k

φ(x̄, z̄η|l)
η(l))

Then by the same reasoning, M̄ |= ψ(b̄) iff Γφ(θ(x̄, b̄), k) is satisfiable iff
R(θ(x̄, b̄)) ≥ k (by Lemma 2.4.3).

2. Let k = R(p) = R(θ(x̄, c̄)), and let q(ā) = {θ(x̄, c̄), φ(x̄, ā)}. Then by
the same reasoning as the proof of the above lemma, R(q(ā)) ≥ k iff
φ(x̄, ā) ∈ p. The rest of the proof that the ψ(ȳ, z̄) defined as above gives
p|φ is ψ(ȳ, c̄)-definable in exactly the same manner.
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Theorem 2.4.8. If there is some set A and a m-type p ∈ Sm(A) which is not
A-definable, then T is unstable.

Proof. Let p,A be as stated. We may assume |A| > 1, as any type over a
singleton set is trivially A-definable. So if p is not A-definable, then there is
some formula φ(x̄, ȳ) (with l(x̄) = m) such that p|φ is not A-definable. Then
by the above lemma, R2

φ(x̄ = x̄) ≥ ω, and therefore by Lemma 2.4.4 φ is an
unstable formula. By Proposition 2.1.11, T is therefore unstable.

Corollary 2.4.9. If T is stable, then every complete type is definable over its
set of parameters. Even more, for every formula φ(x̄, ȳ), there is a formula
ψφ(ȳ, z̄) such that every φ-type p over a set A is (ψφ, A)-definable.

Proof. ψφ is the formula constructed in the above lemma.

We will see in the upcoming section an important use of definable types, but
for now we will prove one more useful result:

Lemma 2.4.10. Let T be stable and ∆ ( L be finite. Then there exists a finite
∆∗ ( L such that for any set A, if the sequence (āβ : β < α) satisfies (where
pβ = tp∆∗(āβ/A ∪ {āγ : γ < β})):

1. p0 ⊆ pβ

2. For every φ ∈ ∆∗, R2
φ(pβ |φ) = R2

φ(p0|φ)

3. For every φ ∈ ∆∗, pβ |φ is A-definable.

Then (āβ : β < α) is a ∆-indiscernible sequence over A.

Proof. Note that as ∆ is finite, there is an n < omega such that it suffices to
show that (āβ : β < α) is ∆-m-indiscernible over A for all m ≤ n. So define a
sequence of finite sets ∆n, . . . ,∆0 by:

1. ∆ ⊆ ∆i

2. ∆i is closed under permutation of variables i.e. if φ(x0, . . . , xn−1, ȳ) ∈ ∆i

and σ ∈ Sn, then φ(xσ(0), . . . , xσ(n−1), ȳ) (we do not require this to be
applicable to ȳ, which is understood to be reserved for parameters).

3. For every φ ∈ ∆i, there is a ψ ∈ ∆i− 1 such that if p is a φ-type with
R2
φ(p) = R2

φ(p|A), then p is (ψ,A)-definable.

The construction is straightforward: start with ∆n = ∆, and for every φ ∈ ∆
add in all the permutation of variables into ∆n. So suppose ∆i has been defined
for i > 0, and start with ∆i−1 = ∆i. Since T is stable, by the above corollary
for every phi ∈ ∆i there is a ψφ such that every φ-type is definable by ψ over
its set of parameters, so add ψφ into ∆i−1. Finally, add in all permutation of
variables into ∆i−1. Clearly each set is finite.

So let ∆∗ =
⋃
i≤n ∆i. Since ∆ ⊆ ∆i, it suffices to show that if (āβ : β < α)

satisfies the assumptions, then it is an ∆i-i-indiscernible sequence over A for

47



i ≤ n. Now by assumption, for γ < β < α and φ ∈ ∆∗, p0|φ ⊆ pγ |φ, pβ |φ
and R2

φ(pγ |φ) = R2
φ(p0|φ) = R2

φ(pβ |φ). By Lemma 2.4.2(4), p0|φ has a unique
extension in Sm,φ(Aγ) of equal rank (where φ has m free variables minus param-
eters), which is thus pγ |φ. Moreover, note that p0|φ ⊆ pβ |φ,Aγ ⊆ pβ |φ, and so
R(pβ |φ) = R(p0|φ) ≥ R(pβ |φ,Aγ ) ≥ R(pβ |φ). Therefore R(pβ |φ,Aγ ) = R(pγ |φ),
and thus by uniqueness pβ |φ,Aγ = pγ |φ. Since this holds for every φ ∈ ∆∗, in
particular this implies that tp∆i(āγ/Aγ) ⊆ tp∆i(āβ/Aβ) for every γ < β < α
and i ≤ n.

Now, for a fixed β < α and i < n, suppose that b̄, c̄ ∈ A are such that
tp∆i

(b̄/A) = tp∆i
(c̄/A). Then for every φ ∈ ∆i+1, note that ψφ ∈ ∆i. Thus

there is a tuple d̄ ∈ A such that φ(x̄, b̄) ∈ tp(āβ/A) iff M̄ |= ψφ(b̄, d̄) iff
M̄ |= ψφ(c̄, d̄) iff φ(x̄, c̄) ∈ tp(āβ/A) i.e. tp(āβ/A) does not (∆i,∆i+1)-split
over A. Therefore the sequence ∆0, . . . ,∆n+1, A and (āβ : β < α) satisfies
the assumptions of Lemma 2.3.11, which implies that (āβ : β < α) is a ∆i-i-
indiscernible sequence over A. This completes the proof.

Proposition 2.4.11. If T is stable, ∆ is finite, λ is regular, I = {āα : α < λ}
with l(āβ) = m and |A| < λ, then there is a J ⊆ I, |J | = λ, which is a
∆-indiscernible set over A.

Proof. Assume WLOG that ∆ is closed under permutation of variables (which
is possible while keeping ∆ finite). Let ∆∗ be as constructed in the lemma
above, and enumerate ∆∗ = {φi : i < n}. Note that as ∆∗ is finite, for any
set B with |B| < λ, |S∆∗,m(B)| < λ: otherwise as there is a single formula θ
which corresponds to the finite set ∆∗ (such that for every set B, S∆∗,m(B) is
naturally bijective with Sθ,m(B)), this implies that there is an unstable formula
(by Proposition 2.1.3), and thus contradicts that T is stable (by Proposition
2.1.11).

Now, consider all the complete ∆∗-m-types p with parameters in a subset
of the universal model M̄ and such that |p| < λ. Note that any p ∈ S∆∗,m(A)
satisfies that |p| < λ (by the above observation), and as λ is regular there must
be some p ∈ S∆∗,m(A) which is realized λ many times in I. So of the types
which are realized λ times in I, let p0 be a type such that (R2

φi
(p0|φi) : i < n) is

minimal under the lexicographical ordering (which is a well-ordering since ranks
are either −1,∞ or an ordinal and n is finite). Thus let A0 ⊇ A be such that
p0 is a type over A0 and |A0| < λ.

We will define (b̄α : α < λ) ⊆ I inductively: suppose that (b̄β : β < α) has
been defined, and let Aα = A0 ∪ {b̄β : β < α}. So |Aα| < λ, which implies
that |S∆∗,m(Aα)| < λ. Then by regularity of λ, there is a type pα ∈ S∆∗,m(Aα)
with pα ⊇ p0 which is realized λ many times in I. Note that |pα| < λ, so for
i < n, since pα ⊇ p0, by Lemma 2.4.2(1), R2

φi
(pα|φi) ≤ R2

φi
(p0|φi). But by

the minimality of (R2
φi

(p0|φi) : i < n) amongst complete types with cardinality

< λ, by induction along i < n we see that R2
φi

(p0|φi) ≤ R2
φi

(pα|φi)and therefore

R2
φi

(p0|φi) = R2
φi

(pα|φi). Then let b̄α ∈ I −Amα realize pα.

This construction ensures that (b̄α : α < λ) and A satisfies the assumptions
of the above lemma, and thus (b̄α : α < λ) is a ∆-indiscernible sequence over
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A. By Corollary 2.3.8, since ∆ is closed under permutation of variables, the
stability of T ensures that the sequence is in fact a ∆-indiscernible set over
A.

2.5 Two Cardinal Theorem for Nonalgebraic For-
mula

In general, a Two Cardinal theorem refers to a theorem which gives the condi-
tions under which a model M has two sets φ(M) and ψ(M) such that |φ(M)| 6=
|ψ(M)|. This is especially important when φ and ψ are nonalgebraic formulas,
since compactness guarantees that φ(M), ψ(M) can be arbitrarily large pro-
vided that M is sufficiently large. Readers interested can consult [Ho 97] for
the case when T is countable, or [Sh 90] for a very general (but difficult to prove)
version. For our purposes, we will prove a particular two cardinal theorem due
to Harnik, with the help of some lemmas:

Lemma 2.5.1. Suppose T is stable and p ∈ S1(C) for a set C. Then there is
a D ⊆ C, |D| < µ(T ) such that p does not split over D (cf. Definition 2.1.4).
In particular if T is λ-stable and λ0 the least such that 2λ0 > λ, then there is a
D ⊆ C with |D| < λ0 such that p does not split over D.

Proof. The proof is morally the same as Lemma 2.3.12. Suppose for a contra-
diction that p, C is a counter-example to the claim, so that for every D ⊆ C, if
|D| < µ(T ) then p splits over D. Then for ν ∈ 2<µ(T ), we will construct a set
D′ν ⊆ C (|D′ν | < µ(T )) and an elementary map fν with domain D′ν inductively
on the length of ν. For the base case, let D<> = f<> = ∅; for ν of limit length
let D′ν =

⋃
α<l(ν)Dν|α , f ′ν =

⋃
α<l(ν) fν|α .

For successor stages, suppose D′ν , fν is defined. Since |D′ν | < µ(T ) by
the inductive hypothesis, p splits over D′ν . This implies that there exists
d̄0, d̄1 ∈ C − D′ν such that tp(d̄0/D

′
ν) = tp(d̄1/D

′
ν) and a φ(x, ȳ) ∈ L such

that φ(x, d̄0),¬φ(x, d̄1) ∈ p. So define D′νai = D′ν ∪ {d̄i}, and note that

q = {φ(x̄, fν(d̄′)) : φ(x̄, d̄′) ∈ p|D′ν}

is a type (as f is an elementary map) and thus realized by some tuple d̄. Then by
defining fνa0(d̄0) = fνa1(d̄1) = d̄, we can guarantee that fνai is an elementary
map extending fν with domain D′νai. Moreover, as d̄i is finite |D′ν | < µ(T )
implies that |Dνai| < µ(T ), and also implies that for ν of length a limit ordinal,
|Dν | = |

⋃
α<l(ν)Dν|α | = |

⋃
α<l(ν)Dν|α+1

− Dν|α | ≤ ℵ0 · l(ν) < µ(T ). This
completes the inductive construction.

As in Lemma 2.3.12, let

pνai = {φ(x, fνai(d̄)) : φ(x, d̄) ∈ p|D′νai}

which is a complete 1-type over fνai(Dνai) by virtue of fνai being an elementary
map. Since by construction fνa0(Dνa0) = fνa1(Dνa1), taking Dν = fν(Dν) for
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ν ∈ 2<λ0 implies that Dν , pν satisfies the assumptions of Lemma 2.1.14, which
contradicts the definition of µ(T ).

For the case of T being λ-stable, note that the proof applies Mutatis mutan-
dis by replacing µ(T ) with λ0.

The following is a generalization of λ-saturation, which we will need for this
proof.

Definition 2.5.2. For a complete theory T , given a model M and a (possibly
partial) 1-type Γ(x) over C ⊆ M with |Γ(x)| < λ, C is λ-compact with re-
spect to Γ(x) if for every ∆(x) which is a (possibly partial) 1-type over C with
|∆(x)| < λ and Γ(x) ⊆ ∆(x), ∆(x) is realized by some c ∈ C.
C is λ-compact if for every Γ(x) which is a (possibly partial) 1-type over C, if
|Γ(x)| < λ then Γ(x) is realized in C.

Note. For λ > |T | and a model M , being λ-compact is equivalent to being
λ-saturated.

Lemma 2.5.3. For a stable theory T and a λ > |T |, suppose (Cα : α < δ) is an
increasing chain of sets in some model of T , Γ(x) a 1-type over C0 with |Γ(x)| <
λ, and every Cα is λ-compact with respect to Γ(x) with Γ(Cα) = Γ(C0). Then
Cδ =

⋃
α<δ Cα is λ-compact with respect to Γ(x). Moreover, Γ(Cδ) = Γ(C0).

Proof. WLOG we assume that δ is a regular limit cardinal: the lemma is trivially
true for δ a successor, and if cf(δ) < δ then we can simply consider (Cαi : αi ∈
W ) where W ( δ is a cofinal subset of length cf(δ).

Note if δ ≥ λ and regular, then any type ∆(x) ⊇ Γ(x) over Cδ with |∆(x)| <
λ is in fact a type over Cα for some α < δ, and so is therefore realized by
assumption. Thus we may also assume that δ < λ.

So suppose ∆(x) is a type over Cδ, Γ(x) ⊆ ∆(x) and |∆(x)| < λ. It suffices
to show that this type is realized in Cδ. Now, let q ∈ S1(C0) be any complete
1-type such that q ∪∆(x) is consistent (i.e. q is some completion of ∆(x) over
C0), and so by the lemma above, there is a D ⊆ C0, |D| < µ(T ) ≤ |T |+ ≤ λ
(by Proposition 2.1.16), such that q does not split over D. Now, for α < δ let
∆α(x) = ∆(x)|Cα , so that ∆(x) =

⋃
α<δ ∆α(x). Note that this ensures that for

every α, Γ(x) ⊆ ∆α(x) (since Γ(x) is a type over C0 ⊆ Cα).
Now, for ξ < λ, inductively define aξ ∈ C0 such that if (by the division

theorem for ordinals) ξ = δ · β + α for an α < δ, then aξ realizes the type
∆α(x) ∪ q|D∪{aη:η<ξ}: note this is a type over Cα, and as |D|, |∆(x)| < λ,
λ > |T | and Γ(x) ⊆ ∆α(x), this type is realized in Cα since Cα is assumed to
be λ-compact with respect to Γ(x). But then Cα |= Γ(aξ), and by assumption
Γ(Cα) = Γ(C0), which implies that aξ ∈ C0 as desired.

Note as q is a complete type over C0, if we define pξ = tp(aξ/D∪{aη : η < ξ})
then pξ = q|D∪{aη :η<ξ}. But since by definition q does not split over D, pξ does
not split over D. In addition, if η < ξ then pη ⊆ pξ, and so the conditions for
Proposition 2.3.9 and it’s corollary are satisfied. Therefore I = {aξ : ξ < λ} is
an indiscernible set over D. Moreover, if E ⊆ Cδ is the set of elements which
appear as parameters in ∆(x), then as |∆(x)| < λ, |E| < λ as well. Now,
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as µ(T ) ≤ |T |+ ≤ λ, either λ > µ(T ) or λ = µ(T ) = |T |+ is regular, so by
Corollary 2.3.14 there is an I ′ ( I, |I ′| < λ such that I − I ′ is an indiscernible
set over D ∪ E.

But by construction, for any α < δ the type ∆α(x) is realized λ many times
in I, and so is realized by an element of I − I ′. Indiscernibility of I − I ′ over
D ∪ E (as ∆(x) is a type over E) then implies that every element of I − I ′

realizes ∆α(x). Since this holds for every α < δ, therefore every a ∈ I− I ′ ⊆ Cδ
realizes ∆(x). Thus Cδ is λ-compact with respect to Γ(x). Finally, Γ(Cδ) =
Γ(

⋃
α<δ Cα) =

⋃
α<δ Γ(Cα) = Γ(C0) by assumption.

Lemma 2.5.4. For a stable theory T , λ > |T |, C a set in some model that is λ-
compact with respect to Γ(x), Γ(x) a type over C with |Γ(x)| < λ, and b realizes
a λ-isolated type over C (see Definition 2.2.2), then C ∪ {b} is λ-compact with
respect to Γ(x) and Γ(C ∪ {b}) = Γ(C).

Proof. Let Σ(x0) be a type over C such that |Σ(x0)| < λ and Σ(x0) isolates
tp(b/C).

So suppose ∆(x0) is a type over C∪{b} with ∆(x0) ⊇ Γ(x0) and |∆(x0)| < λ.
To show that C ∪ {b} is λ-compact with respect to Γ(x0), it suffices to show
that ∆(x0) is realized in C. Note that we can consider ∆(x0) = ∆′(x0, b), where
∆′(x0, x1) is a 2-type over C. So define:

∆′′(x0) = {∃x1ψ(x0, x1) : ψ(x0, x1) is a finite conjunction of formulas from

∆′(x0, x1) ∪ Σ(x1)}

Note by definition of ∆(x0) and ∆′(x0, x1), Γ(x0)∪∆′′(x0) is satisfiable and thus
a type over C. Moreover, |∆′′(x0)| < λ, and therefore by the λ-compactness
of C with respect to Γ(x0), there is a c0 ∈ C which realizes Γ(x0) ∪ ∆(x0).
Then by definition of ∆′′(x0), there is some model M ⊇ C with a c1 ∈ M
such that M |= ∆′(c0, c1)∪Σ(c1). But as Σ(x0) isolates the type tp(b/C), thus
tp(c1/C) = tp(b/C). But as M |= ∆′(c0, c1), in some larger model N with
b ∈ N , N |= ∆′(c0, b) and therefore N |= ∆(c0). This implies that ∆(x0) is
realized in C, as desired.

Finally, suppose b realizes Γ(x). So Σ(x)∪Γ(x) is a type over C, and moreover
|Σ(x)∪Γ(x)| < λ. Therefore by the λ-compactness of C, there is a c ∈ C which
realizes this type and so tp(c/C) = tp(b/C). But as (x = c) ∈ tp(c/C), this
implies that b ∈ C. Thus Γ(C ∪ {b}) = Γ(C).

Lemma 2.5.5. For a stable theory T , λ > |T |, suppose C is a set in some model
that is λ-compact with respect to Γ(x), Γ(x) a type over C with |Γ(x)| < λ, and
M is λ-constructible over C (see Definition 2.2.2). Then M is λ-compact with
respect to Γ(x), and Γ(M) = Γ(C).

Proof. Let {mα : α < κ} be a λ-construction of M over C, and let Mα =
C ∪ {mβ : β < α}. By the above lemma we see that if Mα is λ-compact with
respect to Γ(x) and Γ(Mα) = Γ(C), then this also holds for Mα+1. For limits,
we can use Lemma 2.5.3 to show that this holds similarly. Therefore this holds
for M = Mκ.
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Lemma 2.5.6. For a stable theory T , λ > |T |, if there are λ-saturated models
M0 � M1, and Γ(x) is a 1-type over M0 with |Γ(x)| < λ and Γ(M0) = Γ(M1),
then there is a λ-saturated M2 �M1 with Γ(M2) = Γ(M0).

Proof. Fix a universal model M̄ , and let c0 ∈ M1 −M0. As T is stable, by
Corollary 2.4.9, for every formula φ(x, ȳ), there is a defining formula ψφ(ȳ, z̄)
and a āφ ∈ M0 such that for every b̄ ∈ M0, M0 |= φ(c0, b̄) iff M0 |= ψφ(b̄, āφ).
So define

q = {φ(x, b̄) : φ ∈ L, b̄ ∈M1,M1 |= ψφ(b̄, āφ)}

Thus q is a complete 1-type overM1 with tp(c0/M0) ⊆ q. Moreover, if tp(b̄0/M0) =
tp(b̄1/M0), φ(x, b̄0) ∈ q iff M1 |= ψφ(b̄0, āφ) iff M1 |= ψφ(b̄1, āφ) iff φ(x, b̄1) ∈ q
i.e. q does not split over M0.

Let c1 /∈ M1 be an element of the universal model which realizes q. Since
c0 ∈ M1 −M0 and by assumption Γ(M1) = Γ(M0), thus M1 2 Γ(c0). But as
Γ(x) is a type over M0 and tp(c0/M0) ⊆ q, if c1 realizes q then c1 does not
realize Γ(x) i.e. Γ(M1 ∪ {c1}) = Γ(M1) = Γ(M0).

Claim. M1 ∪ {c1} is λ-compact with respect to Γ(x).
Let ∆(x) be a 1-type over M1 ∪ {c1} with Γ(x) ⊆ ∆(x) and |∆(x)| < λ.

Thus every formula in ∆(x) is of the form φ(c1, x, b̄) with b̄ ∈M1. Now consider
∆′(x) = {ψφ(x, b̄, āφ) : φ(c1, x, b̄) ∈ ∆(x)}: since each ψφ with āφ defines φ,
m ∈M1 satisfies ∆′(x) iff m satisfies ∆(x). Note that |∆′(x)| < λ, so as M1 is
λ-saturated, it suffices to prove that ∆′(x) is a type with respect to M1 to show
that ∆(x) is realized in M1 and thus M1 ∪ {c1} is λ-compact with respect to
Γ(x).

So for a contradiction, assume that ∆′(x) is not a type with respect to M1.
By compactness, there is a k < ω and for i < k, φ(c1, x, b̄i) ∈ ∆(x) such that
M̄ |= ¬∃x

∧
i<k ψφi(x, b̄i, āφi). But since ∆(x) is a type extending Γ(x), if γ(x) is

a finite conjunction of formulas in Γ(x), then M̄ |= ∃x(
∧
i<k φ(c1, b̄i, āφi)∧γ(x)).

Denoting this formula by γ∗(c1, b̄0, . . . , b̄k−1), note that this is equivalent to
M̄ |= ψγ∗(b̄0, . . . , b̄k−1).

So consider the set

{¬∃x
∧
i<k

ψφi(x, ȳi, āφi)} ∪ {ψγ∗(ȳ0, . . . , ȳk−1) : γ(x) is a finite

conjunction of formulas from Γ(x)}

Which is a set of formulas with parameters in M0 and is satisfied by b̄0 a · · · a
b̄k−1 i.e. a type over M0. Moreover, since |Γ(x)| < λ, clearly this set also has
cardinality < λ, and so as M0 is λ-saturated there are ā0 a · · · a āk−1 ∈ M0

satisfying:

M0 |= ¬∃x
∧
i<k

ψφi(x, āi, āφi) (2.1)

M0 |= ψγ∗(ā0, . . . , ȳk−1) (2.2)

52



The second equation implies that M0 |= γ∗(c0, ā0, . . . , āk−1) i.e.

M0 |= ∃x(
∧
i<k

φi(c0, x, āi) ∧ γ(x))

As ψ∗γ defines γ(x) relative to the type tp(c0/M0). But by compactness, this
implies that Γ(x) ∪ {

∧
i<k φi(c0, x, āi)} is a satisfiable 1-type. Again, the λ-

saturation of M1 gives us an m ∈ M1 which satisfies this type, and as m ∈
Γ(M1) = Γ(M0), in fact m ∈ M0. So M0 |=

∧
i<k φi(c0,m, āi), and therefore

M0 |=
∧
i<k ψφi(m, āi, āφi), contradicting (2.1). This proves that ∆′(x) is satis-

fiable, which completes the proof of the claim that M1 ∪{c1} is λ-compact with
respect to Γ(x).

To complete the proof of the lemma, let M2 be a λ-constructible λ-prime
model over M1 ∪{c1} (which is constructed in Theorem 2.2.7). By the previous
lemma, Γ(M2) = Γ(M1 ∪ {c1}) = Γ(M0), and as M2 is λ-prime over M1 ∪ {c1},
in particular M1 �M2 (as c1 /∈M1) and M2 is λ-saturated.

Corollary 2.5.7. If M0 � M1 are λ-saturated models of a stable T (λ >
|T |), Γ(x) is a 1 type over M0 with |Γ(x)| < λ and Γ(M0) = Γ(M1), then for
any infinite cardinal κ, there is a model M with cardinality ≥ κ elementarily
extending M1 with Γ(M) = Γ(M1) = Γ(M0).

Proof. Given any ordinal α, define inductively Mi for i < α such that Mi+1 �
Mi and Γ(Mi) = Γ(M0): M0,M1 are given as in the claim, and if Mi is defined,
let Mi+1 be the model gotten by applying the above lemma to the pair M0,Mi.
For a limit δ < α, let Aδ =

⋃
i<δMi, which by Lemma 2.5.3 is λ-compact with

respect to Γ(x) with Γ(A0) = Γ(M0) by the inductive hypothesis. So taking
the λ-constructible λ-prime model over Aδ (constructed in Theorem 2.2.7) to
be Mδ, Lemma 2.5.5 shows that Mδ satisfies the inductive hypothesis. This
allows us to construct arbitrarily large elementary extensions which satisfies the
claim.

Lemma 2.5.8. For T a complete theory and φ(x) a nonalgebraic formula in
T (i.e. for every n < ω, (∃≥nxφ(x)) ∈ T ) and λ ≥ |T |, if there are models
M � N of T with φ(M) = φ(N), then there are λ+-saturated models A � B
with φ(A) = φ(B).

Proof. Let P be a new relation symbol of arity 1, and let L+ be the expanded
language with P . We form a L+-expansion N+ of N by interpreting PN

+

= M .
Note that:

• N+ |= ∃x¬P (x)

• N+ |= ∀x(φ(x)→ P (x))

• For every L-formula ψ(x, ȳ) with ȳ of length n,

N+ |= ∀ȳ(∃xψ(x, ȳ) ∧
∧

0≤i<n

P (yi))→ ∃z(ψ(z, ȳ) ∧ P (z))
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i.e. PN
+

satisfies the Tarski-Vaught test with respect to L.

So let

T+ = T ∪ {(∃x¬P (x)), (∀x(φ(x)→ P (x)))}

∪ {∀ȳ(∃xψ(x, ȳ) ∧
∧

0≤i<n

P (yi))→ ∃z(ψ(z, ȳ) ∧ P (z)) : ψ(x, ȳ) ∈ L}

So that for every C |= T+, PC |L �L C|L, and in particular PC |L |= T . Also,
by compactness, if (ci : i < 2λ) are new constants, then T+ ∪ {P (ci) : i < 2λ}
is satisfiable. So by the Löwenheim-Skolem theorems let C be a model of this
theory with |C| = |PC | = 2λ

Claim. If M0 |= T+ and |M0| = |PM0 | = 2λ, then there is a M1 �L+ M0,
|M1| = |PM1 | = 2λ such that for every set A ⊆ M0 and B ⊆ PM0 with

|A| = |B| = λ, M1 realizes every p ∈ S
M0|L
1 (A) and PM1 |L realizes every

q ∈ SP
M1 |L

1 (B) i.e. M1 realizes every complete L-type of M0 with cardinality λ
and PM1 realizes every complete L-type of PM0 with cardinality λ.

We construct B in a similar fashion to Proposition 1.5.8: let (ci : i <

2λ), (di : i < 2λ) be new constant symbols, and for every q ∈ SP
M0 |L

1 (B) with
B ⊆ PM0 , |B| = λ, let q′ = q ∪ {P (x)} (recall that q is a type in the language

L). List
⋃
{SM0|L

1 (A) : A ⊆ M0, |A| = κ} by (pi(x) : i < 2κ) (as in Proposition

1.5.8, since each |SM0|L
1 (A)| ≤ 2κ and |{A ⊆M0 : |A| = λ}| = (2λ)λ = 2λ, there

are 2λ many such types). Similarly, list
⋃
{SP

M0 |L
1 (B) : B ⊆ PM0 , |B| = λ} by

(qi(x) : i < 2λ). Then by compactness

ThM0
(M0) ∪

⋃
{pi(ci) : i < 2λ} ∪

⋃
{q′i(di) : i < 2λ}

is satisfiable, and therefore (again by the Löwenheim-Skolem theorems) is sat-
isfied by some L+-structure M1 with |M1| = |PM1 | = 2λ (|PM1 | = 2λ as
PM0 ⊆ PM1).

Let C0 = C, and for i < λ+, if Ci is defined let Ci+1 be the model M1

constructed in the above claim with M0 = Ci. For a limit δ < λ+, let Cδ =⋃
i<δ Ci, and let D =

⋃
i<λ Ci.

Claim. Both D|L and PD|L are λ+-saturated models of T , with |D| = |PD| =
2λ.

Note that as D |= T+, PD �L D as well. The cardinality condition is clear
by construction (since PD =

⋃
i<λ+ PCi). For saturation, this is again similar

to the case in Proposition 1.5.8: For any A ⊆ D with |A| ≤ λ, since λ+ is

regular A ⊂ Ci for some i < λ+. Then any p ∈ SCi|L1 (A) is realized in Ci+1.
Similarly, for any B ⊆ PD with |B| ≤ λ, B is contained in some PCi . Since

every q ∈ SP
Ci |L

1 (B) is realized in PCi+1|L, PD is also saturated.

Thus both D|L and PD|L are saturated models of T i.e there are models
A � B of T with |A| = |B| = 2λ, φ(A) = φ(B) and both M and N are
λ+-saturated.
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Theorem 2.5.9. If T is a complete stable theory, φ(x) is a nonalgebraic formula
in T and there are models M � N with φ(M) = φ(N), then there is a model A
such that |A| > |φ(A)|.

Proof. By the above lemma, we may assume that M,N are |T |+-saturated.
Then Corollary 2.5.7 gives us a model A � M with |A| > |M | and such that
φ(A) = φ(M), so that |A| > |φ(A)|.

2.6 Vaught’s Two Cardinal theorem for cardi-
nals far apart

The two cardinal theorem in the previous section applies for a single nonalge-
braic formula, but we will also need one for nonalgebraic types. The following
theorem is commonly attributed to Vaught, although our approach is based on
a type-omitting theorem by Morley. Again, we will be working with a fixed
universal model M̄ of a complete theory T in the language L. We first need the
following lemma by Shelah:

Lemma 2.6.1. For any set A, if µ = i(2|T |)+(|A|) then for any linear order

I with |I| = µ and (ai : i ∈ I) ⊆ M̄ , there is a A-indiscernible sequence
(bj : j < ω) ⊆ M̄ of distinct elements such that for every ζ ∈ [ω]n, there is a
ξ ∈ [I]n with tp(bζ(0) . . . bζ(n−1)/A) = tp(aξ(0) . . . aξ(n−1)/A)

Proof. Note that for every n < ω, |Sn(A)| ≤ 2|T |+|A| since |LA| = |T | + |A|.
So let λ = sup{|Sn(A)| : n < ω}. Also, since µ = i1(i2|T |(|A|)), by König’s
theorem we have cf(µ) > i2|T |(|A|) > 2|T |+|A| ≥ λ. Lastly, note that by the
Erdös-Rado theorem (Theorem A.0.2), for every κ < µ and n < ω there is a
κ′ = in(κ+ λ)+ < µ such that for any f : [κ′]n+1 −→ λ, there is a Y ⊆ κ′ with
|Y | ≥ κ and f is constant on [Y ]n+1.

We will construct a sequence of types p1(x1) ( p2(x1, x2) ( . . . with pn ∈
Sn(A) which satisfies: for every κ < µ, there is a I ′ ( I with |I ′| = κ such that
for every i1 < · · · < in ∈ I ′, tp(ai1 . . . ain/A) = pn. For simplicity, we can take
p0 = T .

So suppose that pn has been constructed to satisfy the inductive hypoth-
esis. Given a κ < µ, choose κ′ as given above. Note that the inductive hy-
pothesis guarantees that there is a I ′ ⊆ I with |I ′| = κ′ such that for every
(i1, . . . , in) ∈ [I ′]n, tp(ai1 . . . ain/A) = pn. Then, as |Sn(A)| ≤ λ, the Erdös-
Rado theorem gives a I ′′ ⊆ I ′ with |I ′′| = κ such that for all i1, . . . , in+1 ∈ I ′′,
tp(ai1 . . . ain+1/A) = pn+1,κ for some choice of pn+1,κ ∈ Sn+1(A). Now, as
|Sn+1(A)| ≤ λ < cf(µ), there is a cofinal set W ⊆ µ such that for all κ0, κ1 ∈W ,
pn+1,κ0

= pn+1,κ1
. Thus we choose this to be pn+1, and the cofinality of W in

µ guarantees that the inductive hypothesis is met.
Finally, let p =

⋃
n<ω pn, and, letting (bn : n < ω) be new constants, consider

the set

{φ(bn1
, . . . , bnk) : φ(x1, . . . , xk) ∈ p, n1 < · · · < nk < ω}∪{bn 6= bm : n < m < ω}
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This set is satisfiable by compactness, and the realizations (bn : n < ω) is an
indiscernible sequence over A by construction. Moreover, by construction each
pn is the type of some subsequence of (ai : i ∈ I) over A, and so the lemma is
proved.

Theorem 2.6.2 (Vaught’s Two Cardinal theorem for cardinals far
apart). Suppose T is a complete theory, and Σ(x) is a 1-type of T . Denot-
ing µ = (2|T |)+, if there is a λ ≥ |T | and a model M |= T with |M | ≥ iµ(λ),
|Σ(M)| = λ, then for every κ ≥ |T | there is a model N |= T with |N | = κ and
|Σ(M)| ≤ |T |.

Proof. Let P be a new unary relation symbol, and (ci : i < λ) new constant
symbols. Let L′ = LSk ∪ {P} ∪ {ci : i < λ} (where LSk is the Skolemized
language of L), and expand M to a L′-structure by interpreting PM = Σ(M) =
{cMi : i < λ} (so that {ci : i < λ} enumerates Σ(M)). Our strategy will be to
create a set p ⊆ L′ in ω-many variables as in the lemma above, while ensuring
that the Skolem hull of a sequence which satisfies p does not realize Σ(x) too
many times. We will ensure the latter clause by restricting the number of Skolem
terms which map into the set defined by P .

Let (aα : α < |M |) be an enumeration of M , and so as in the proof of the
above lemma we can define p1(x1) ⊆ p2(x1, x2) ⊆ . . . with pn ∈ SML′,n(P (M)).
Note that since we enumerate P (M) by the constants (ci : i < λ), pn can be
considered as a L′-type over ∅. Defining pω =

⋃
n<ω pn(x1, . . . , xn), clearly by

compactness pω is satisfiable.
Note that for every formula φ(x) ∈ Σ(x), M |= ∀xP (x) → φ(x) i.e. the

formula P (x) isolates the type Σ(x) ∪ {P (x)}. Also, even if Σ(x) ∪ {¬P (x)} is
satisfiable, it is a 1-type that is omitted by M . So for now we will first assume
that Σ(x) ∪ {¬P (x)} is indeed a 1-type of ThL′(M).

Claim. For any term t(x1, . . . , xn, y1, . . . , ym) in LSk and any j1, . . . , jm ∈ λ,
P (t(x1, . . . , xn, cj1 , . . . , cjm)) ∈ pn(x1, . . . , xn) iff there is a j0 < λ such that
(t(x1, . . . , xn, cj1 , . . . , cjm) = cj0) ∈ pn(x1, . . . , xn).

If aα1 , . . . , aαn is such that pn(x1, . . . , xn) = tpNL′(aα1 . . . aαn/P (M)), then

(P (t(x1, . . . , xn,cj1 , . . . , cjm))) ∈ pn(x1, . . . , xn)

⇔M |= P (t(aα1
, . . . , aαn , cj1 , . . . , cjm))

⇔ for some j0 < λ,M |= t(aα1
, . . . , aαn , cj1 , . . . , cjm) = cj0

⇔ (t(x1, . . . , xn, cj1 , . . . , cjm) = cj0) ∈ pn(x1, . . . , xn)

Now, let (di : i < κ) be new constant symbols and define the set

pκ = {φ(di1 , . . . , din) : φ(x1, . . . , xn) ∈ pω, i1 < · · · < in < κ}

Note that the set pκ ∪ ThL′M (M) is satisfiable by compactness (since a finite
subset of pκ is a finite subset of pω by a change of variables). Let N model this
theory, so that (dNi : i < κ) is a L′-indiscernible sequence (as asserted by pκ).

56



Claim. There exists a I ⊆ λ, |I| ≤ |T | such that for every term t(x1, . . . , xn, y1, . . . , ym)
in LSk, i1 < · · · < in < κ and j1, . . . , jm ∈ I, ifN |= t(di1 , . . . , din , cj1 , . . . , cjm) =
cj0 then j0 ∈ I.

We will inductively construct In for n < ω: let I0 = ∅, and given In with
|In| ≤ |T | define the set In+1 by

In+1 = {j < λ : There is a term t(x1, . . . , xn, y1, . . . , ym) in LSk

and j1, . . . , jm ∈ In such that

(t(x1, . . . , xn, cj1 , . . . , cjm) = cj) ∈ pω}

Note that there are only |LSk| = |L| = |T | many terms in LSk, and if |In| ≤ |T |
then there are ≤ |T | many choices of j1, . . . , jm, so that inductively indeed
|In+1| ≤ |T |. Now, let I =

⋃
n<ω In, so that |I| ≤ |T |. Moreover, given any

term t in LSk, j1, . . . , jm ∈ I and i1 < · · · < in < κ, since m < ω there
is some k < ω such that j1, . . . , jm ∈ Ik. Then as N |= pn(di1 , . . . , din), if
N |= t(di1 , . . . , din , cj1 , . . . , cjm) = cj0 then by construction j0 ∈ Ik+1 ⊆ I.

Combining the above claims, by reindexing I an initial segment of |T | ≤ λ we
may assume WLOG that if there is a term t(x1, . . . , xn, y1, . . . , ym) in LSk, i1 <
· · · < in < κ and j1 < · · · < jm < I such thatN |= P (t(di1 , . . . , din , cj1 , . . . , cjm)),
then there is a j0 < I such that for every ζ ∈ [κ]n,

N |= t(dζ(0), . . . , dζ(n−1), cj1 , . . . , cjm) = cj0 ∧ P (cj0)

So now, consider the LSk-structure A = 〈{dNi : i < κ} ∪ {cNj : j < I}〉Sk,
where the Skolemization is only done relative to the original language L. Of
course, as A �L N , A |= T as ThL(M) = T . Moreover:

Claim. For every a ∈ A, tpAL′(a/∅) is realized in M .
Since a ∈ A, by construction there is a term t in LSk, i1 < · · · < in < κ

and j1 < · · · < jm < I such that A |= t(di1 , . . . , din , cj1 , . . . , cjm) = a. So if
(aα1 , . . . , aαn) ∈ M is such that tpML′ (aα1 . . . aαn/∅) = pn(x1, . . . , xn), then for
every formula φ(x) ∈ L′,

φ(x) ∈ tpAL′(a/∅)⇔ φ(t(x1, . . . , xn, cj1 , . . . , cjm)) ∈ tpML′ (aα1 . . . aαn/∅)

which implies that tpAL′(a/∅) = tpML′ (t
M (aα1 , . . . , aαn , c

M
j1
, . . . , cMjm)/∅)

In particular, since M omits the type Σ(x) ∪ {¬P (x)}, A also omits this
type. On the other hand, as P (x) isolates the type Σ(x) ∪ {P (x)}, thus for
every a ∈ A, A |= Σ(a) iff A |= P (a). In particular, for every j < λ, N |= P (cj)
and we see that for every j < I, A |= Σ(cj). But on the other hand, if a ∈ A
is such that A |= P (a), then there is a term t in LSk, i1 < · · · < in < κ and
j1 < · · · < jm < I such that A |= t(di1 , . . . , din , cj1 , . . . , cjm) = a. So by the
first claim above, there is a j0 ∈ λ such that N |= a = cj0 . But then by the
construction of I, we have j0 ∈ I, and thus A |= Σ(a) iff there is a j < I
such that A |= a = cj . Therefore we have A |= T with |A| = κ ≥ |T | and
Σ(A) = {cAj : j < I}, so that |Σ(A)| = |I| ≤ |T |.
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Remark. Although we refer to the above theorem as Vaught’s two cardinal
theorem for cardinals far apart, the reader should note that there is a significant
difference between what is stated here and Vaught’s original claim: Vaught
initially gave the proof in [Va 65] while restricting Σ(x) to a single formula φ(x)
and where T is a countable theory, although his proof quickly generalizes to
uncountable theories. Moreover, his result showed that one could have the size
of φ(M) be any cardinal χ with κ ≥ χ ≥ |T |, which is a stronger result than
what we have proven here (although it is not difficult to change the above proof
so that this result could be achieved). Morley gave an alternative proof for
the countable case in [Mo 65a], which also generalized Vaught’s result to any
1-type Σ(x) of T , and he stated without proof that the result holds similarly
for uncountable theories (to be precise, he stated that his main result holds for
an uncountable theory, but his proof of Vaught’s theorem was almost identical
to the proof of his main result). It has since been pointed out to the author
that in [Sh 90], Shelah proved a even more general theorem from which the
full generalization of both Morley’s and Vaught’s result could be recovered. It
is however unnecessary for us to do so for this exposition, and we will omit
Shelah’s longer proof here.

2.7 Ehrenfeucht-Mostowski Models

The construction of what we now call Ehrenfeucht-Mostowski models was first
introduced in [E 56], where in contrast to saturated models, these models realize
very few types. Following [Ho 97], we will introduce them using a category-
theoretical setup:

Definition 2.7.1. For a linear order X and a Y ⊆ X, for i, j ∈ X we say that
i ≡ j mod Y or i ≡Y j if for every k ∈ Y , i < k iff j < k.

Definition 2.7.2. A Ehrenfeucht-Mostowski functor (EM functor) in
the language L is a functor from the category of linear orders (with order em-
beddings as morphisms) to the category of L-structures (with L-embeddings as
morphisms) satisfying the following conditions:

• For every linear ordering η, η ⊆ F (η) and 〈η〉L = F (η)

• For every order embedding f : η −→ ξ, F (f) : F (η) −→ F (ξ) is an
L-embedding which extends f

For a theory T , a L-structure M is an Ehrenfeucht-Mostowski model (EM
model) of T if M |= T and there is some linear ordering η and a EM functor
F such that F (η) = M .

Remark. We require η ⊆ F (η) as sets, but the ordering on η does not have to
be related to the interpretations on F (η) in anyway.

Lemma 2.7.3. For any two linear orders η, ξ and ā ∈ [η]k, b̄ ∈ [ξ]k, there is
a linear ordering ξ with order embeddings f : η −→ ζ, g : ξ −→ ζ such that
f(a(i)) = g(b(i)) for i < k.
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Proof. Consider the signature {<} where < is a relation symbol of arity 2.
Then any linear order is a structure of this language of orders which satisfies
the formula

∀x, y(x = y ∧ x ≮ y ∧ y ≮ x)∨ (x < y ∧ x 6= y ∧ y ≮ x)∨ (y < x∧ x 6= y ∧ x ≮ y)

Then Thη(η) ∪ Thξ(ξ) ∪ {a(i) = b(i) : i < k} is satisfiable by compactness, and
thus by some linear order ζ. The interpretations aζ , bζ for each a ∈ η, b ∈ ξ
gives the desired embeddings.

Proposition 2.7.4. Suppose φ(x0, . . . , xn−1) ∈ L is quantifier-free, F is an EM
functor and η, ξ are linear orders. Then for every ā ∈ [η]n, b̄ ∈ [ξ]n, F (η) |= φ(ā)
iff F (ξ) |= φ(b̄).

Proof. By the above lemma, let ζ be a linear ordering and f : η −→ ζ, g :
ξ −→ ζ be order embeddings with f(ā) = g(b̄). Note then that F (f), F (g) are
embeddings of the language. Since φ is quantifier-free, by Proposition 1.2.8,
F (η) |= φ(ā) iff F (ζ) |= φ(f(ā)) iff F (ζ) |= φ(g(b̄)) iff F (ξ) |= φ(b̄).

Corollary 2.7.5. For every quantifier-free φ, η is φ-indiscernible in F (η).

Proof. Let ξ = η in the above proposition.

This suggests the following definitions:

Definition 2.7.6. Given a L-structure M and η a linear ordering contained in
M , ThL(M,η) = {φ(x0, . . . , xn−1) ∈ L : for every ā ∈ [η]n,M |= φ(ā)}.
For a EM functor F in L, Th(F ) = {φ(x0, . . . , xn−1) ∈ L : for every linear order η, φ ∈
Th(F (η), η)}.

Corollary 2.7.7. If F is a EM functor in L and for some linear order η,
ThL(F (η)) has Skolem functions, then Th(F ) is a complete theory. Thus for
any linear order ξ, F (η) ≡ F (ξ), with ξ indiscernible in F (ξ) i.e. Th(F ) =
Th(F (η), η).

Proof. If Th(F (η)) has Skolem functions, then by Proposition 1.3.7 every for-
mula φ(x0, . . . , xn−1) ∈ L is equivalent (relative to ThL(F (η)) to some quantifier-
free formula ψ(x0, . . . , xn−1) ∈ L. Now for any ā ∈ [η]n and b̄ ∈ [ζ]n for a linear
order ζ, by the above proposition F (η) |= ψ(ā) iff F (ζ) |= ψ(b̄), and so either
ψ ∈ Th(F ) or ¬ψ ∈ Th(F ) i.e. Th(F ) is complete. In particular this shows
that for any linear order ξ, F (η) ≡ F (ξ), and again by Proposition 1.3.7 ξ is
indiscernible in F (ξ).

To prove the existence of EM functors, we will need some tools:

Definition 2.7.8. T ⊆ L is =-closed if it is a set of closed atomic formulas
satisfying:

• For every closed term t of L, (t = t) ∈ T
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• For every atomic φ(x) ∈ L with one free variable, if (s = t) ∈ T then
φ(s) ∈ T iff φ(t) ∈ T .

Lemma 2.7.9. Suppose T is a =-closed set of formulas. Then there is a L-
structure M such that:

• For every closed atomic φ, M |= φ iff φ ∈ T

• For every m ∈M , there is a closed term t in L such that M |= m = t

Proof. Let X be the set of closed terms in L, and define the equivalence relation
∼ on X by s ∼ t iff (s = t) ∈ T (∼ is both symmetric and transitive as T is
=-closed). Let M be the equivalence classes of X, and we interpret M into a
L-structure:

• For a constant symbol c, cM = c∼

• For a function symbol f , fM (t̄∼) = [f(t̄)]∼

• For a relation symbol P , PM (t̄∼) iff P (t̄) ∈ T

We leave it to the reader to verify that fM and PM are well-defined because
T is =-closed. Note by induction on term complexity, for every closed term t,
tM = t∼. Thus for closed terms s, t, (s = t) ∈ T iff M |= s = t. This similarly
holds for all closed atomic formulas. Thus M satisfies the desired properties.

Lemma 2.7.10. Suppose M is an L-structure with ω ⊆ M , 〈ω〉 = M and for
every atomic φ ∈ L, ω is φ-indiscernible in M . Then there exists an EM functor
F in L with F (ω) ∼= M .

Proof. First, for every linear order η we will construct a F (η). Let us define
T (η) ⊆ Lη by the following: for every closed atomic φ ∈ Lη, note that there is
a ψ(x0, . . . , xn−1) ∈ L and an ā ∈ [η]n such that φ = ψ(ā). Then φ ∈ T (η) iff
for every b̄ ∈ [ω]n, M |= ψ(b̄).

Claim. For any linear ordering η, T (η) is =-closed.
Clearly, for a term t(x0, . . . , xn−1) of L, for every b̄ ∈ [η]n, M |= t(b̄) = t(b̄)

and so (t(b̄) = t(b̄)) ∈ T (η). Next, for any atomic φ(x) ∈ Lη with one free
variable, let ψ(x, ȳ) ∈ L and c̄ ∈ [η]<ω be such that φ(x) = ψ(x, c̄). If s, t are
terms in L with c̄ ∈ η such that (s(c̄) = t(c̄)) ∈ T (η), then φ(s(c̄)) ∈ T (η) iff for
every d̄ ∈ [ω]<ω,

M |= φ(s(d̄)) ∧ (s(d̄) = t(d̄))⇔M |= φ(t(d̄)) ∧ (s(d̄) = t(d̄)

iff φ(t(c̄)) ∈ T (η). Thus T (η) is =-closed.

Thus by the above lemma there is an N |= T (η) such that for every n ∈ N ,
there is a closed term t in Lη such that N |= n = t. Note that for any a < b,
a, b ∈ η, since M 2 a = b, a = b /∈ T (η) and thus as guaranteed by Lemma
2.7.9, N |= a 6= b. Therefore we can identify η with {aN : a ∈ η}, such that
η ⊆ N and 〈η〉 = N .
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Now, if ξ is a linear order and f : η −→ ξ is an order embedding, note that
for every atomic φ(x0, . . . , xn−1) ∈ L and ā ∈ [η]n, F (η) |= φ(ā) iff M |= φ(b̄) for
every b̄ ∈ [ω]n iff F (ξ) |= φ(f(ā)) (as f preserves strict ordering). In particular,
for any term t in L and φ(x) ∈ L with one free variable, F (η) |= φ(t(ā)) iff
F (ξ) |= φ(t(f(ā))). Then as 〈η〉 = F (η), the map F (f) : tF (η)(ā) 7−→ tF (ξ)(f(ā))
is an L-embedding which extends f . Further, clearly if f : η −→ ξ and g : ξ −→
ζ are order embeddings, then F (f ◦ g) = F (f) ◦ F (g) i.e. F is a EM functor.

Finally, consider the map i : F (ω) −→ M defined by i(tF (ω)(ā)) = tM (ā)
for any term t(x0, . . . , xn−1) and ā ∈ [ω]n. We claim that this is well-defined:
F (ω) |= t(c̄) = s(c̄) with c̄ an increasing sequence in ω iff for every d̄ an increasing
sequence of the same length, M |= t(d̄) = s(d̄), which, as ω is φ-indiscernible in
M , is equivalent to M |= t(c̄) = s(c̄). Thus i is also a L-embedding, and as ω is
a generates M , i is also surjective i.e. an isomorphism.

Theorem 2.7.11 (Ehrenfeucht-Mostowski Theorem). Let T be a theory
in L with infinite models and Skolem functions. Then there is a EM functor F
in L with Th(F ) ⊇ T .

Proof. Suppose M is a model of T with ω ⊆ M (since M is infinite, we can
simply take any countably infinite subset of M and identify it as ω). Let c̄ =
(ci : i < ω) be new symbols, and define T ′ ⊆ Lc̄ to contain:

1. T

2. For every φ(x0, . . . , xn−1) ∈ L and ā, b̄ ∈ [c̄]n, the formula φ(ā)↔ φ(b̄)

3. For every φ(x0, . . . , xn−1) ∈ Th(M,ω), the formula φ(c0, . . . , cn−1)

Claim. T ′ is satisfiable
We will show that T ′ is finitely satisfiable. Let U ⊆ T ′ be finite, then let

φ0(x0, . . . , xk−1), . . . , φm−1(x0, . . . , xk−1) ∈ L and c̄|k be such that φ0(c̄|k), . . . , φk−1(c̄|k)
are precisely the formulas in U\T (we may add redundant variables to each φi to
ensure they follow this form). We then define the following equivalence relation
on [ω]k:

ā ∼ b̄ iff for every i < k,M |= φi(ā)⇔M |= φi(b̄)

Note that there are only 2k equivalence classes of ∼. Thus by Ramsey’s theorem
(see Appendix A, Theorem A.0.1) there is an infinite subset W = {wi : i <
ω} ⊆ ω ⊆ M such that every ā ∈ [W ]k belongs in the same equivalence class.
So interpret cAi = wi for i < k, which guarantees that A |= U . Thus by
compactness, T ′ is satisfiable.

Let N |= T ′. Note that as (v0 6= v1) ∈ Th(M,ω), for any i < j < ω,
T ′ |= ci 6= cj and thus cNi 6= cNj i.e. we can identify ω with (cNi : i < ω) such
that ω ⊆ N . Take the L-reduct N |L, and define A = 〈ω〉 ⊆ N |L (recall that as
T ⊆ T ′ has Skolem functions, A � N |L). The definition of T ′ above guarantees
that ω is indiscernible in N and thus in A, so by the above lemma, there is a
EM functor F in L such that A ∼= F (ω).
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It remains to show that T ⊆ Th(F ). Note that by definition T ⊆ T ′, so
N |L |= T and therefore F (ω) |= T . But since T has Skolem functions, by
Proposition 1.3.7, for every φ ∈ L there is a quantifier-free ψ ∈ L such that
T |= φ ↔ ψ. By Lemma 2.7.5 we know that ω is ψ-indiscernible in F (ω) for
every quantifier-free ψ, and thus ω is in fact indiscernible in F (ω). Therefore
for every φ ∈ L, either φ ∈ Th(F (ω), ω) or ¬φ ∈ Th(F (ω), ω). But by Lemma
2.7.7 every EM model from F is elementarily equivalent, and therefore Th(F )
is complete. Since F (ω) |= Th(F ), this implies that T ⊆ Th(F ).

Since the above theorem guarantees the existence of EM functors for a theory
with Skolem functions, in practice we will often say that “M is an EM model of
T” when we actually mean “M is an EM model of TSk”. The most important
use of EM models is the following property:

Proposition 2.7.12. Suppose T is a theory in L with Skolem functions and for
some cardinal κ and some EM functor F , F (κ) |= T . Then for every X ⊆ F (κ),
F (κ) realizes at most |X|+ |L| many complete 1-types over X.

Proof. Note that by definition of EM functors, for every a ∈ F (κ) there is a term
ta(x̄) and a b̄a ∈ [κ]<ω such that F (κ) |= a = ta(b̄a). LetX ⊆ F (κ), and letW =⋃
{Rang b̄a : a ∈ X, so |W | ≤ |X|+ℵ0. However, the indiscernibility of κ in F (κ)

guarantees that for every term s(x̄) of L and c̄ ∈ [κ]<ω, tpF (κ)(sF (κ)(c̄)/X) is
determined completely by s and the equivalence class under ≡W (see Definition
2.7.1) of each ci. Since there are ≤ |W | + ℵ0 many choices of a sequence of
equivalence classes of ≡W and |L| many terms, this gives an upper bound of
|W |+ |L|+ℵ0 ≤ |X|+ |L| many 1-types over X which are realized in F (κ).
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Chapter 3

Shelah’s Categoricity
theorem

3.1 Notation and premises

α, β, γ, i, j will denote (von Neumann) ordinals, λ, µ, κ will denote infinite cardi-
nals (as initial ordinals). δ will denote a limit ordinal, and k, l,m, n will denote
natural numbers. αβ will denote the set of sequences of length β with value in
α, and α<β =

⋃
γ<β α

β . ν, η will denote sequences in αβ , and l(ν) denotes the
length of the sequence. σ will denote a permutation of a finite set.

For a linearly ordered set X, [X]β will denote strictly increasing sequences
in Xβ . [X]<β =

⋃
γ<β [X]γ , and ζ, ξ will denote sequences in [X]β .

Fix a signature such that the number of relation symbols is at most equal
to the number of constant and function symbols, and let L be the language of
this signature. t, s, τ will denote terms of L, φ, ψ, θ, ξ, ρ will denote formulas in
L, and x, y, z will denote variables in L. φ0 will denote φ, and φ1 will denote
¬φ. ∆,Γ,Σ will denote sets of formulas in L.

Definition 3.1.1. A theory T is λ-categorical if there is only one model (up
to isomorphism) of T of cardinality λ.

Let T be a complete theory with infinite models which is λ-categorical for
a λ > |T | = |L|, and let TSk denote the Skolemization of T in the language
LSk which exists by Lemma 1.3.2. Fix a universal model M̄ of T that is κ̄-
saturated. By models M,N we will mean elementary submodels of M̄ much
smaller than κ̄, and by sets A,B,C we will mean subsets of M̄ much smaller
than κ̄. We will also (by an abuse of notation) understand M,N to be subsets
of M̄ . a, b, c, d, e will denote elements of M̄ , and by |= φ(ā) we mean M̄ |= φ(ā).
For any ā ∈ A<ω, we will (by an abuse of notation) write ā ∈ A.

By a ∆-n-type we will mean a ∆-n-type over some set A with respect to M̄ ,
and for any a and set A, tp∆(a/A) = tpM̄∆ (a/A) and S∆,n(A) = SM̄∆,n(A). An
∆-n-indiscernible sequence (or set) over A will be a sequence(or set respectively)
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in M̄ that is ∆-n-indiscernible over A with respect to M̄ . As usual, we omit ∆
when ∆ = L, and we replace {φ} by φ. p, q will denote ∆-n-types.

3.2 Preliminaries

Proposition 3.2.1. If T is λ-categorical for a λ > |T |, then for every µ <
λ, µ ≥ |T |, T is µ-stable. In particular, T is stable.

Proof. By Theorem 2.7.11, there is a EM functor F in LSk with Th(F ) ⊇
TSk, and by Proposition 2.7.12, F (λ) is a model of T such that for every C ⊆
F (λ), F (λ) realizes |C| + |T | many complete 1-types over C. So suppose for a
contradiction that T is not µ-stable, and let A be a set such that |A| ≤ µ <
|S1(A)|. Then by applying the Downward Löwenheim-Skolem theorem on the
universal model, there is a model M with cardinality λ which contains A and
realizes µ+ ≤ λ many 1-types over A. But by λ-categoricity M ∼= F (λ), so there
is a set B ⊆ F (λ) with |B| < µ+ such that F (λ) realizes µ+ many 1-types over
B, a contradiction. Thus T is µ-stable, and therefore stable.

Note. One can in fact show that T is µ-stable for every µ ≥ |T | i.e. T is
superstable (see [Sh 90], for example).

Definition 3.2.2. A model M is locally saturated if for every finite ∆ and
p a ∆-m-type over M with |p| < |M |, p is realized in M .

Proposition 3.2.3. If T is λ-categorical for a λ > |T |, then every model of T
is locally saturated.

Proof. We first show that every model of cardinality λ is locally saturated:
Given a finite ∆, note that for any set A and m < ω, |Sm,∆(A)| = |A|+ ℵ0. So
let M0 be a model with |M0| = λ, and let (Mi : i ≤ λ) be an elementary chain
where Mi+1 realizes all every Sm,∆(Mi) and |Mi+1| = λ i.e. Mi+1 is a model of
size λ realizing (for new constants (ci : i < λ))

ThM (M) ∪
⋃
{pi(ci) : pi ∈ Sm,∆(M)}

So for any µ < λ, any ∆-m-type p over Mµ+ with |p| = µ is a type over Mi for
some i < µ+ (since µ+ is regular), and therefore realized in Mµ+ . Since T is
λ-categorical and |Mµ+ | = λ, this implies that for any model M with |M | = λ
and any p a ∆-m-type over M with |p| = µ, p is realized in M . But this holds
for every µ < λ, so in fact any model of cardinality λ is locally saturated.

So now consider the more general case, and assume for a contradiction that
M is a model of T which is not locally saturated: so let ∆, m is finite and p
a ∆-m-type with |p| < |M | such that p is not realized in M . We may assume
that ∆ is in fact a singleton {φ}: if ∆ = {φi(x̄, ȳi) : i < |∆}, then consider

φ(x̄, y, y0,0, . . . , y|∆|−1,0, y0,1, . . . , y|∆|−1,1, ȳ0, . . . , ȳ|∆|−1) =
∧

i<|∆|,j<2

y = yi,j → φi(x̄, ȳi)
j
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So that every ∆-m-type corresponds naturally to an unique φ-m-type, and a
∆-m-type is realized in M iff the corresponding φ-m-type is realized in M .

Now, if p = {φ(x̄, āi) : i < |p|}, let A =
⋃
i<|p| āi so that p is a type over A.

Of course |A| ≤ |p| · ℵ0 < |M |, so by Proposition 2.4.11, for any finite ∆′, and
n < ω, there is a ∆′-n-indiscernible set over A of size |A|+ ≤ |M | in M (since
T is stable by the previous proposition). Also, by the above proposition T is
stable, so by Corollary 2.4.9 there is a ψφ such that any φ-type over any set
B is (ψφ, B)-definable. So let āφ be such that ψφ(ȳ, āφ) defines (possibly some
completion of) p.

Next, we wish to construct a |T |+-saturated model N with the following
properties:

• There are distinct (b̄i : i, |T |+) such that q = {φ(x̄, b̄i) : i < |T |+} is a
type over N which is omitted by N

• N contains a sequence (cj : j < |T |+) which is indiscernible over B = {b̄i :
i < |T |+}

To constructN , let P be a new unary relation symbol, and let(b̄i : i < |T |+), (cj :
j < |T |+) be new constant symbols with |b̄i| = n. Then consider the set of
formulas which is the union of:

1. T

2. {ci 6= cj ∧ b̄i 6= b̄j : i < j < |T |+}

3. {ψφ(b̄i, āφ) ∧
∧
k<n P (bk,i) : i < |T |+}

4. {∃x̄
∧
l<m φ(x̄, b̄im) : m < ω, i0, . . . , im < |T |+}

5. {∀x̄∃y1, . . . , yn
∧
k<n P (yk) ∧ ¬(φ(x̄, ȳ)↔ ψφ(ȳ, āφ))}

6. {ϕ(cζ(0), . . . , cζ(m−1), b̄i0 , . . . , b̄in)↔ ϕ(cξ(0), . . . , cξ(m−1), b̄i0 , . . . , b̄in) :
ϕ(x0, . . . , xm−1, ȳ0, . . . , ȳn) ∈ L, ζ, ξ ∈ [|T |+]m, i0, . . . , in < |T |+}

Suppose that N0 satisfies this set. Note that (2) ensures that the new constants
have distinct interpretations; (3) ensures that all the b̄i satisfies ψφ(b̄i, āφ) and
have b̄i ∈ P (N0); (4) ensures (by compactness) that q is a φ-type of N0|L; (5)
ensures that the φ-type defined by ψφ(x, āφ) is omitted in N0; and (6) ensures

that (cN0
i : i < |T |+) is an L-indiscernible set over B.

To show that such an N0 exists, note that by expanding the interpretation
of M by PM = A, for every finite subset of the formulas, we can interpret
the b̄j ’s as one of the āi ∈ A and cj ’s to be an element in a ∆′-indiscernible
sequence over A for an appropriate finite ∆′. This satisfies the finite subset,
and so by compactness the set of formulas is satisfiable. Then by the Upward
Löwenheim-Skolem theorem there is a model N0 of cardinality 2|T |, and by the
method of Proposition 1.5.8 there is a |T |+-saturated extension N of N0 with
|N | = 2|T |. Note that the type {φ(x̄, b̄i) : i < |T |+} can be omitted by ensuring
(5) is satisfied at every stage of the construction.
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Let B = {b̄i : i < |T |+}, µ = i(2|T |)+(|T |+) and again let (ci : |T |+ ≤ i < µ)
be new symbols. Since

ThN (N)∪{φ(cζ(0), . . . , cζ(n−1), b̄) : b̄ ∈ B,n < ω, ζ ∈ [µ]n, N |= φ(c0, . . . , cn−1, b̄)}

is satisfiable by compactness, there is an interpretation of (ci : i < µ) such that
it is an indiscernible sequence over B. Denoting this indiscernible sequence by
I, let N ′ be a |T |+-prime |T |+-constructible model over B ∪ I (which exists by
Theorem 2.2.7). Notice that since every finite sequence in I realizes the same
type as a sequence in (ci : i < |T |+) and N is |T |+-saturated but omits the type
{φ(x, b̄i) : i < |T |+}, N ′ also omits this type (as N ′ is |T |+-constructible over
B ∪ I).

Finally, let L+ be the language consisting only of L, another new relation
symbol R and new constants identifying the tuple āφ. Defining RN

′
= B and

T+ = ThL+(N ′), note that the 1-type {R(x)} is satisfied |B| = |T |+ times in
N ′|L+ but |N ′| = i(2|T |)+(|T |+), and so by Theorem 2.6.2 there is a model M ′

of T+ with cardinality λ and |R(M ′)| ≤ |T |. But since N ′ omits q, N ′|L+ |=
∀x̄∃y1, . . . , yn

∧
k<nR(yk) ∧ ψφ(ȳ, āφ) ∧ ¬φ(x̄, ȳ), and therefore M ′ also omits

q. Therefore M ′|L is a model of T with cardinality λ which omits the type
{φ(x̄, b̄i) : i < |T |+}, and is thus not locally saturated. This contradicts the
first part of the proof, where we showed that every model of T with cardinality
λ is locally saturated. Thus there does not exist any model of T which is not
locally saturated.

Corollary 3.2.4. If T is λ-categorical in a λ > |T |, M � N are models of T ,
ā ∈M and φ(x, ȳ) is such that φ(x, ā) is nonalgebraic, then there is a c ∈ N−M
such that |= φ(c, ā). Additionally, |φ(M, ā)| = |M |.

Proof. Note that for any model M1 with ā ∈M1, by compactness

p = {φ(x, ā) ∧ x 6= c : c ∈ φ(M1, ā)}

is a type over M1 which is not realized in M1. As M1 is locally saturated by
the above proposition, |p| = |M1| which implies that |φ(M1, ā)| = |M1|.

Now, assume for a contradiction that M,N, φ(x, ā) is a counterexample to
the corollary. Then by Theorem 2.5.9, there is a model A such that |A| > |φ(A)|,
a contradiction.

3.3 Degree of a formula

The concept of Morley rank is used in the proof of Morley’s categoricity theorem:
any λ-categorical theory is ℵ0-stable and therefore has a well-defined Morley
rank i.e. is totally transcendental, which implies the existence of a strongly
minimal formula. Unfortunately, for an uncountable language even if the theory
is λ-categorical it is not necessarily totally transcendental. Shelah, however,
introduced the degree as a weaker measure of complexity:
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Definition 3.3.1. A set of formulas Γ = {φi(x, āi) : i < κ} with parameters is
m-almost contradictory if for every Σ ⊆ Γ with |Σ| = m, |= ¬∃x

∧
i∈Σ φi(x, āi).

Γ is almost contradictory if it is m-almost contradictory for some m < ω.

Definition 3.3.2. For every formula φ(x, ā) with parameters, the degree D(φ(x, ā))
is defined to be either −1, an ordinal or ∞ (where we consider α <∞ for every
ordinal α):

• D(φ(x, ā)) ≥ 0 if |= ∃xφ(x, ā)

• For a limit ordinal δ, D(φ(x, ā)) ≥ δ if for every α < δ, D(φ(x, ā)) ≥ α

• D(φ(x, ā)) ≥ α + 1 if there is a formula ψ(x, ȳ) and sequences c̄i for
i < |T |+ such that

1. For every i < |T |+, D(φ(x, ā) ∧ ψ(x, c̄i)) ≥ α
2. {ψi(x, c̄i) : i < |T |+} is almost contradictory

Note. Shelah generalizes both the concept of rank and degree in [Sh 90], and
the degree here corresponds to what is denoted D1(−, L, |T |+).

Lemma 3.3.3.

1. If |= ∀xφ(x, ā)→ ψ(x, b̄), then D(φ(x, ā)) ≤ D(ψ(x, b̄))

2. If tp(ā/∅) = tp(b̄/∅), then D(φ(x, ā)) = D(φ(x, b̄))

3. There is an ordinal α0 < (2|T |)+ such that there is no φ(x, ā) with D(φ(x, ā)) =
α0. Thus if D(φ(x, ā)) ≥ α0, then D(φ(x, ā)) > α0

Proof. For (1), we will prove the following claim: for every α, if |= ∀xφ(x, ā)→
ψ(x, b̄) and D(φ(x, ā)) ≥ α, then D(ψ(x, b̄)) ≥ α:

• For α = 0, if D(φ(x, ā)) ≥ 0 then there is an c such that |= φ(x, ā). Then
by assumption |= ψ(c, b̄) and therefore D(ψ(x, b̄)) ≥ 0

• If the claim holds for all α < δ for a limit δ, then trivially it holds also for
δ

• Suppose D(φ(x, ā)) ≥ α + 1, then there is a ϕ(x, ȳ) and sequences c̄i
for i < |T |+ such that {ϕ(x, c̄i) : i < |T |+} is almost contradictory and
D(φ(x, ā) ∧ ϕ(x, c̄i)) ≥ α. Note that

|= ∀xφ(x, ā) ∧ ϕ(x, c̄i)→ ψ(x, b̄) ∧ ϕ(x, c̄i)

and so by the inductive hypothesis, D(ψ(x, b̄) ∧ ϕ(x, c̄i)) ≥ α. By defini-
tion, thus D(ψ(x, b̄)) ≥ α+ 1

We will use a similar induction for (2): for every ordinal α, if tp(ā/∅) = tp(ā/∅)
then D(φ(x, ā)) ≥ α iff D(φ(x, ā)) ≥ α.
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1. If D(φ(x, ā)) ≥ 0, then (∃yφ(y, x̄)) ∈ tp(ā/∅) = tp(b̄/∅) and so |= ∃yφ(y, b̄)
i.e. D(φ(x, b̄)) ≥ 0

2. The claim is trivial by definition for limit cases

3. If D(φ(x, ā)) ≥ α + 1, then there exists ψ(x, ȳ) and c̄i for i < |T |+ such
that D(φ(x, ā) ∧ ψ(x, c̄i)) ≥ α and {ψ(x, c̄i) : i < |T |+} is n-almost con-
tradictory for some n < ω. We will then define d̄i inductively for i < |T |+:
suppose that d̄j has been defined for all j < i such that

tp(d̄j/{b̄} ∪ {d̄k : k < j}) = {φ(x̄, b̄, d̄k0 , . . . , d̄kn−1
) :

φ(x̄, ā, c̄k0 , . . . , c̄kn−1
) ∈ tp(c̄j/{ā} ∪ {c̄k : k < j})}

(3.1)

i.e. fi : ā 7→ b̄, c̄j 7→ d̄j for j < i is an elementary map. Then this ensures
that

{φ(x̄, b̄, d̄k0 , . . . , d̄kn−1) : φ(x̄, ā, c̄k0 , . . . , c̄kn−1) ∈ tp(c̄i/{ā} ∪ {c̄j : j < i})}

is a type over {b̄} ∪ {d̄j : i < j}, and define d̄i to realize this type. This
construction implies that {ψ(x, d̄i) : i < |T |+} is also n-almost contradic-
tory, and also that tp(ā a c̄i/∅) = tp(b̄ a d̄i/∅). Then by the inductive
hypothesis, D(φ(x, ā) ∧ ψ(x, d̄i)) ≥ α, and therefore D(φ(x, b̄)) ≥ α+ 1

Finally, for (3), note that the number of complete n-types over ∅ is at most 2|T |,
so there are at most |T | · 2|T | = 2|T | choices of a formula φ(x, ȳ) and a complete
type over ∅. By (2), the degree of φ(x, ā) is determined only by φ(x, ȳ) and
tp(ā/∅), and so the range of D has cardinality 2|T |. Therefore there is some
α0 ∈ (2|T |)+ which is not in the range of D.

For the next few results, let α0 < (2|T |)+ be a fixed ordinal not in the range
of D.

Lemma 3.3.4. If D(x = x) > α0 and µ = |T |+, then for ν ∈ µ<ω there are
formulas φν(x, āν) with parameters satisfying, for every ν ∈ µ<ω:

1. For every k < l(ν), |= ∀xφν(x, āν)→ φν|k(x, āν|k)

2. D(φν(x, āν)) > α0

3. {φνai(x, āνai) : i < µ} is almost contradictory

4. For every i < µ, φνai = φνa0

Proof. We will define φν(x, āν) inductively: let φ<>(x, ā<>) = (x = x). If
φν(x, āν) is defined satisfying the above conditions, then as D(φν(x, āν)) ≥ α0 +
1, there is a ψ(x, ȳ) and c̄i for i < |T |+ = µ such that D(φν(x, āν)∧ ψ(x, c̄i)) ≥
α0 and {ψ(x, c̄i) : i < µ} is almost contradictory. Defining φνai(x, āνai) =
φν(x, āν) ∧ ψ(x, c̄i) then satisfies all the above conditions.
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Theorem 3.3.5. If T is λ-categorical for a λ > |T |, then D(x = x) <∞. Thus
by Lemma 3.3.3(1), every formula has degree <∞.

Proof. Consider TSk which is the Skolemization of T in the language LSk, so
by Theorem 2.7.11 let M∗ be the EM model of TSk over the linearly ordered
set {yi : i < λ}. Note by Corollary 2.7.7, {yi : i < λ} is an indiscernible
sequence. Moreover as M∗ is an EM model, by definition M∗ = 〈yi : i < λ〉Sk.
Therefore for every ā ∈ M∗, there is a finite sequence of terms τ̄ ∈ LSk and
i1 < · · · < in < λ such that M∗ |= ā = τ̄(yi1 , . . . , yin).

So assume for a contradiction that D(x = x) = ∞. By the above lemma,
there are formulas φν(x, āν) for ν ∈ µ<ω (µ = |T |+ as in the above lemma) which
satisfies those conditions. By appending unnecessary constants, we may assume
that for ν 6= η, āν 6= āη. Now, for every limit δ < µ with cf(δ) = ω, choose a
ηδ ∈ [µ]ω with δ = sup{ηδ(n) : n < ω} i.e. ηδ is an ω-length strictly increasing
sequence in µ which is a cofinal subset of δ. Let W = {ηδ : δ < µ, cf(δ) = ω},
and note that |W | = µ as the limit ordinals δ with cofinality ω is a cofinal
subset of µ. Then, for η ∈ W , define pη = {φη|n(x, āη|n) : n < ω} (which is a
satisfiable 1-type by the previous lemma) and let cη realize pη. Finally, define
A =

⋃
{āν : ν ∈ µ<ω} ∪ {cη : η ∈W}.

Since |W | = µ, we see that |A| ≤ µ = |T |+ ≤ λ, and therefore by the
Löwenheim-Skolem theorems there is a model M with |M | = λ and A ⊆ M .
Since T is λ-categorical, necessarily M ∼= M∗|L, and so we may assume WLOG
that A ⊆ M∗. So for every āν , fix a particular finite sequence of terms τ̄ν in
LSk and a ζν ∈ [λ]nν such that M∗ |= āν = τ̄ν(yζν(1), . . . , yζν(nν)). Now, we
shall define, for n < ω, sets Xn ⊆ λ which satisfies the following:

1. X0 = ∅, and for all n < ω, |Xn| ≤ |T |

2. For every n < ω, there is an ν ∈ µ<ω such that āν ∈ 〈Xn+1〉Sk − 〈Xn〉Sk

3. For every n < ω and ν, σ ∈ µ<ω, if āν ∈ 〈Xn〉Sk and max ν ≥ maxσ, then
āσ ∈ 〈Xn〉Sk

4. If āν ∈ 〈Xn〉Sk but there exists an i < µ such that āνai /∈ 〈Xn〉Sk, then
there are infinitely many j < µ, such that τ̄νai = τ̄νaj , ζνai(k) ≡ ζνaj(k)
mod Xn (see Definition 2.7.1) for each k ≤ nνai = nνaj , and such that
āνaj ∈ 〈Xn〉Sk

The construction is by induction on n < ω: suppose that Xk, for k ≤ n, has
been constructed to satisfy the above conditions, with the sole exception that
we weaken (2) for the case of k = n and instead require that there is some
ν ∈ µ<ω such that āν /∈ 〈Xn〉Sk. We construct Xn+1 in several stages:

1. First, let X ′n = Xn ∪ {ζν(1), . . . , ζν(nν)} so that āν ∈ 〈X ′n〉Sk. Of course,
|X ′n| = |Xn|+ k ≤ |Xn|+ ℵ0 ≤ |T |

2. Next, consider λ/Xn, which is the set of equivalence classes of λ mod Xn:
it is immediate that |λ/Xn| ≤ |Xn| + ℵ0. So for every C ∈ λ/Xn, let
C ′ = C if it is finite, or choose C ′ ⊆ C with |C ′| = ℵ0. Then define

69



X
(2)
n = X ′n ∪

⋃
{C ′ : C ∈ λ/Xn}. Note as there are |Xn| + ℵ0 ≤ |T |

choices of C ∈ λ/Xn and each |C ′| ≤ ℵ0, |X(2)
n | ≤ |T |.

3. We then use a supplementary induction. Let Y0 = X
(2)
n , and for l < ω,

we will construct Yl+1 ⊇ Yl with |Yl| ≤ |T |:

(a) If Yl is defined and l+1 is even, let β = sup{(max ν)+1 : āν ∈ 〈Yl〉Sk}.
Note that as |Yl| ≤ |T |, |〈Yl〉Sk| ≤ |T | < |T |+ = µ, and therefore β <
µ (since µ is regular). So define Yl+1 = Yl∪{ζσ(k) : σ ∈ β<ω, k ≤ nσ}
which ensures that for every σ with maxσ < β, āσ ∈ 〈Yl+1〉Sk. Since
|β<ω| = |β|+ ℵ0, |Yl+1| ≤ |Yl|+ (ℵ0 · (|β|+ ℵ0)) ≤ |T |

(b) If Yl is defined and l + 1 is odd, consider the all the pairs (ν, i) ∈
µ<ω × µ such that:

• āν ∈ 〈Yl〉Sk
• āνai /∈ 〈Yl〉Sk
• There are only finitely many j < µ such that τ̄νai = τ̄νaj and

for each k ≤ nνai = nνaj , ζνai(k) ≡Xn ζνaj(k)

Then let Yl+1 contain Yl and ζνai(k) for every such pair (ν, i), so that
āνai ∈ 〈Yl+1〉Sk. Note that as |LSk| = |T |, given a particular ν ∈ µ<ω
there are only |T | choices for τ̄νai, and at most |Xn| + ℵ0 ≤ |T |
choices of each equivalence class ζνai(k)/Xn. So consider the func-
tion i 7→ (τ̄νai, (ζνai(1)/Xn, . . . , ζνai(nνai)/Xn)): this function par-
titions µ into |T | many equivalence classes, and we are requiring Yl+1

to contain ζνai(1), . . . , ζνai(nνai) iff i belongs to a finite equivalence
class. Thus |Yl+1| ≤ |Yl|+ |T | · ℵ0 ≤ |T |

4. Finally, let Xn+1 =
⋃
l<ω Yl. Since each |Yl| ≤ |T |, |Xn+1| < |T |

Claim. Xn+1, constructed in this way, satisfies the conditions for the inductive
construction.

That condition (1) is satisfied has been shown along the way in the con-
struction. The first step guarantees that (2) is satisfied with respect to Xn,
and if āν ∈ 〈Xn+1〉Sk, then āν ∈ 〈Yl〉Sk for some l < ω, so step 3a guaran-
tees that condition (3) is met. For condition (4), assume that āν ∈ 〈Xn+1〉Sk,
i < µ is such that āνai /∈ 〈Xn+1〉Sk. If there does exists infinitely many j < µ
with τ̄νai = τ̄νaj , ζνai(k) ≡Xn ζνaj(k) for each k ≤ nνai = nνaj , then step 2
guarantees that at least countably infinitely many āνaj is in 〈Xn+1〉Sk as every
equivalence class of λ/Xn is represented either completely or countably many
times in Xn+1. On the other hand, if i < µ is such that there does not exist
infinitely many such j < µ, then as āν ∈ 〈Yl〉Sk for some l < ω, step 3b guar-
antees that āνai ∈ 〈Yl+1〉Sk, which then trivially ensures that condition (4) is
satisfied. Finally, since |Xn+1| ≤ |T |, |〈Xn+1〉Sk| = |T | < |T |+ = µ, so there
must exist some ν ∈ µ<ω such that āν /∈ 〈Xn+1〉Sk (since for ν 6= σ, āν 6= āσ).

So let X =
⋃
n<ωXn, and define δ = sup{ν(n) : n < l(ν), āν ∈ 〈X〉Sk}. Note

that condition (2) and (3) of the above construction guarantees that for every
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n < ω and ν ∈ µ<ω such that āν ∈ 〈Xn〉Sk, there is a σ with max ν < maxσ
such that āσ ∈ 〈Xn+1〉Sk, which implies that δ is a limit ordinal with cofinality
ω (since X =

⋃
n<ωXn). Therefore, by the definition of W there is an η ∈ W

with η a cofinal increasing sequence in δ. Then by definition of A, there is
a cη ∈ A ⊆ M∗ which realizes the type pη. So let τ be a term in LSk and
i(1) < · · · < i(n) < λ be such that M∗ |= cη = τ(yi(1), . . . , yi(n)).

Now, for l ≤ n, let j(l) = inf{j ∈ X : j ≥ i(l)}, and let k0 < ω be the least
such that j(1), . . . , j(n) ∈ Xk0 and āη|1 ∈ 〈Xk0〉Sk (a k0 exists satisfying this
last condition by the definition of δ as the supremum of ν with āν ∈ 〈X〉Sk, η
as a cofinal increasing sequence in δ and by condition (3) of the construction of
Xn). Then let k < ω be maximal such that āη|k /∈ 〈Xk0+1〉Sk: since sup{η(n) :
n < ω, āη|n ∈ 〈Xk0+1〉Sk} < δ by definition of δ because of conditions (2) and
(3), and η is an increasing cofinal sequence in δ, it cannot be the case that
āη|k ∈ 〈Xk0+1〉Sk for all k < ω, and therefore such a maximal k exists.

Denote η|k = ν and i = η(k). Since āν ∈ 〈Xk0+1〉Sk but āνai /∈ 〈Xk0+1〉Sk,
by condition (4) of the construction of Xk0+1, there exists infinitely many β < µ
such that τ̄νaβ = τ̄νai, ζνaβ(l) ≡Xk0 ζνai for l ≤ nνaβ = nνai and āνaβ ∈
〈Xk0+1〉Sk. Further, for each β as above and any l ≤ nνai, (assuming WLOG
that ζνaβ(l) < ζνai(l)) suppose for a contradiction that there exists an m ≤ n
such that ζνaβ(l) ≤ i(m) < ζνai(l): then as j(m) = inf{j ∈ X : j(m) ≥ i(m)} ∈
Xk0 by definition of k0, this implies that ζνaβ(l) 6≡Xk0 ζνai(l), contradicting
the definition of β. Similar reasoning shows that there is no m ≤ n such
that ζνaβ(l) < i(m) ≤ ζνai(l). This shows that in fact ζνaβ(l) ≡ ζνai(l)
mod Xk0 ∪ {i(1), . . . , i(n)}.

But as M∗ is an EM model over {yi : i < λ}, the indiscernibility of {yi :
i < λ} thus implies that for each β, āνai and āνaβ realize the same LSk-
type over {yα : α ∈ X or α = i(l), l ≤ n}, and in particular the same type
over cη. Thus, since cη realizes pη, there are infinitely many β < µ such that
M∗ |= φνai(cη, āνaβ). By property (4) of the previous lemma, for every β < µ,
φνai = φνaβ , so in fact for infinitely many β < µ, M∗ |= φνaβ(cη, āνaβ). But
{φνai(x, āνai) : i < µ} is almost contradictory by property (3) of the previous
lemma, a contradiction. This completes the proof by contradiction, from which
we conclude that D(x = x) <∞.

3.4 Weakly Minimal formulas

In the proof of Morley’s categoricity theorem, one shows that T being categorical
in some uncountable cardinal implies that T is totally transcendental (i.e. the
Morley rank of (x = x) is less than ∞), from which one then proves that T
has a strongly minimal formula. Having proved that D(x = x) < ∞, we now
proceed to find a weakly minimal formula, which is a generalization of strongly
minimal formulas.

We will now use freely that T has these properties, which we proved in the
previous sections:

• T is λ-categorical for some λ > |T |
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• T is |T |-stable

• Every model of T is locally saturated

• For models M � N and a nonalgebraic formula θ(x, ā) with parameters
ā ∈M , θ(N, ā) *M

• D(x = x) <∞

Definition 3.4.1. Given a formula φ(x, ȳ), a formula with parameters ψ(x, ā)
is φ-minimal if there is no b̄ such that |{c ∈ M̄ :|= ψ(c, ā)∧ φ(c, b̄)}| ≥ ℵ0 and
|{c ∈ M̄ :|= ψ(c, ā) ∧ ¬φ(c, b̄)}| ≥ ℵ0

Given a formula with parameters θ(x, ā), ψ0(x, ā1), . . . , ψn(x, ān) is a φ-partition
of θ(x, ā) if:

1. |= ∀xθ(x, ā)↔
∨
i≤n ψi(x, āi)

2. For i 6= j, |= ¬∃xψi(x, āi) ∧ ψj(x, āj)

3. Each ψi(x, āi) is satisfiable, nonalgebraic and φ-minimal

Lemma 3.4.2.

1. If |= θ(c, ā) and ψi(x, āi), i ≤ n is a φ-partition, then there is some i ≤ n
such that |= θ(c, ā) ∧ ψi(c, ā)

2. If θ(x, ā) has a φ-partition, then it has a φ-partition of the form ψ(x, ā1), . . . , ψ(x, ān)

Proof.

1. This is trivial by definition.

2. Suppose ψi(x, āi), i ≤ n is a φ-partition of θ(x, ā). Then define

ψ(x, ȳ1, . . . , ȳn, z, z1, . . . , zn) =
∨
i≤n

(z = zi → ψi(x, ȳi))

Let b1, . . . , bn be distinct elements, and define ā′i = ā1 a · · · a ān a bi a
b1 a · · · a bn. Then clearly ψ(x, ā′i) is a φ-partition of θ(x, ā).

Remark. If θ(x, ā) has a φ-partition, then we may refer to it as if it is unique
and denote the φ-partition by ψφ(x, āi).

Definition 3.4.3. The formula θ(x, ā) is weakly minimal if for every formula
φ(x, ȳ), there is a φ-partition of θ(x, ā).
A set B partitions θ(x, ā) if ā ∈ B and for every φ, θ(x, ā) has a φ-partition
ψ(x, āi) with āi ∈ B.
A type p is minimal if there is no φ(x, ā) such that both p ∪ {φ(x, ā)} and
p ∪ {¬φ(x, ā)} are nonalgebraic types.
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Lemma 3.4.4.

1. If θ(x, ā) is weakly minimal and ā ∈M for a model M , then there is some
A ⊆M , |A| ≤ |T | such that A partitions θ(x, ā).

2. If A partitions θ(x, ā) and p ∈ S1(A) is such that θ(x, ā) ∈ p, then p is
minimal.

Proof.

1. Suppose θ(x, ā) is weakly minimal, so in particular for every formula
φ(x, ȳ), there are n < ω, l1, . . . , ln ∈ 2 and k1, . . . , kn < ω such that

M̄ |= ∃ȳ1, . . . , ȳn(θ(x, ā)↔
∨
i≤n

ψ(x, ȳi))

∧ (
∧
i 6=j

¬∃zψ(z, ȳi) ∧ ψ(z, ȳj))

∧ (
∧
i≤n

∃≤kizψ(z, ȳi) ∧ φ(z, ȳi)
li)

Since this is a formula with parameters ā ∈M , by the Tarski-Vaught test
this formula holds in M (as M � M̄). The choice of ȳ1, . . . , ȳn in M then
gives the desired φ-partition of θ(x, ā). But since for each formula φ, the
φ-partition ψφ(x, āi) only requires finitely many elements ā1, . . . , ān in M ,
taking the union of these parameters over all φ together with ā gives a set
of cardinality at most |T |.

2. Since p is a type, let c be such that |= p(c). So |= θ(c, ā), and therefore
|=

∨
i≤n ψφ(c, āi), with āi ∈ A as A partitions θ(x, ā). If i ≤ n is such

that |= ψφ(c, āi), then as p is a complete type over A, ψφ(x, āi) ∈ p. So
for any b̄, there is an n < ω such that either |= ∃≤nxψφ(x, āi) ∧ φ(x, b̄) or
|= ∃≤nxψφ(x, āi) ∧ ¬φ(x, b̄). But as p ∪ {φ(x, b̄)i} |= ψφ(x, āi) ∧ φ(x, b̄)i,
this implies that either p ∪ {φ(x, b̄)} or p ∪ {¬φ(x, b̄)} is algebraic.

Theorem 3.4.5. If |M0| > |T |, θ(x, ā) is a nonalgebraic formula such that
D(θ(x, ā)) is minimal amongst nonalgebraic formulas and ā ∈M0, then θ(x, ā)
is weakly minimal.

Proof. Given a fixed φ, to show that there is a φ-partition of θ(x, ā), we will
try to define inductively a āν for every ν ∈ 2<ω: suppose that āη is defined,
and there exists a b̄ such that {θ(x, ā)}∪{ψ(x, āη|l)

η(l) : l < l(η)}∪{φ(x, b̄)i} is
nonalgebraic for both i = 0, 1, then let āηai = b̄. Otherwise āηai is undefined.

Note that if we can only define āν for ν ∈ S ( 2<ω, S a finite subset, then
a φ-partition exists: enumerate S′ = {νi : i < n} where S′ are the leaves of S,
and define

ψi(x, āi) = θ(x, ā) ∧
∧

j<l(νi)

φ(x, āη|j )
η(j)
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By construction, clearly each ψi(x, āi) is φ-minimal and nonalgebraic. Addi-
tionally, if i 6= j, then νi 6= νj since they are both leaves in S and thus ψi(x, āi)
and ψj(x, āi) is contradictory by construction. Finally, if |= θ(c, ā) then we can
always trace a path in S to a particular leaf νi ∈ S′ such that |= ψi(c, āi) by
construction. Therefore ψi(x, āi) partitions θ(x, ā), and trivially if |= ψi(c, āi)
then |= θ(c, ā). Thus there is a φ-partition of θ(x, ā).

So now, assume that we can define infinitely many āν . Hence by König’s
lemma, there is a η ∈ 2ω such that for every l < ω, āν|l is defined. WLOG
we may assume that for infinitely many l < ω, ν(l) = 0, so for k < ω let lk
be the k-th l such that η(l) = 0, and let āk = āη|lk . Thus by construction,

for every n < ω, {θ(x, ā)} ∪ {φ(x, āi) : i < n} ∪ {¬φ(x, ān)} is a nonalgebraic
type (since otherwise āη|lk would not be defined). Let cn realize this type i.e.

|= φ(cn, āi) if i < n and |= ¬φ(cn, ān). Now, we define two equivalence classes
on [ω]2: (n,m) ∼ (0, 1) iff |= φ(cn, ām)↔ φ(c0, ā1). Then by Ramsey’s theorem
(Appendix A, A.0.1), there is an infinite W ⊆ ω such that either (n,m) ∼ (0, 1)
for every (n,m) ∈ [W ]2 or (n,m) � (0, 1) for every (n,m) ∈ [W ]2. In either
case, we may replace W by ω by re-indexing, and note that there is some
n < m such that |= φ(cn, ām) iff for every n < m, |= φ(cn, ām). But since by
definition we have |= φ(cn, ām) if m < n, if |= ¬φ(cn, ām) for n < m then φ has
the order property and is thus an unstable formula (see Proposition 2.1.3), so
by Proposition 2.1.11 this contradicts that T is |T |-stable. Therefore we have
|= φ(cn, ām) iff m 6= n.

Suppose for a contradiction that for every m < ω, there is a sequence
b̄0, . . . , b̄m−1 such that for every choice of w ⊆ m = {0, . . . ,m − 1}, {φ(x, b̄k) :
k ∈ w} ∪ {¬φ(x, b̄k) : k ∈ m − w} is satisfiable. Then by compactness, if
(ci : i < 2ω), (b̄k : k < ω) are new constants and (Wi : i < 2ω) enumerates the
subsets of ω, the set

T∪
⋃
{{φ(ci, b̄k) : k ∈Wi} ∪ {¬φ(ci, b̄k) : k ∈ ω −W} : i < 2ω}

∪ {ci 6= cj : i 6= j} ∪ {b̄k 6= b̄l : k 6= l}

is satisfiable i.e. there is a sequence (b̄k : k < ω) such that for every W ⊆ ω,
{φ(x, b̄k) : k ∈ W} ∪ {φ(x, b̄k) : k ∈ ω −Wi} is satisfiable. This contradicts
Corollary 2.1.12 as T is |T |-stable, and therefore there is some m′ < ω such
that for every b̄0, . . . , b̄m′−1, there is a w ⊆ m′ such that {φ(x, b̄k) : k ∈ W} ∪
{¬φ(x, b̄k) : k ∈ m′ −W} is not satisfiable.

Now, fix a particular w ⊆ m′, and consider the following map [ω]m
′ −→ 2:

(i1, . . . , im′) 7→ 0 iff |= ∃x(
∧
k∈w φ(x, āik)) ∧ (

∧
k∈m′−w ¬φ(x, āik)). Again by

Ramsey’s theorem there is an infinite W ⊆ ω such that the mapping is constant
on [W ]m

′
, so we may again re-index and assume W = ω. But as there are only

finitely many w ⊆ m′, we can reiterate this process until we have, for every
w ⊆ m′ and i1 < · · · < im′ < ω, either:

|= ∃x(
∧
k∈w

φ(x, āik)) ∧ (
∧

k∈m′−w

¬φ(x, āik)) (3.2)
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or
|= ¬∃x(

∧
k∈w

φ(x, āik)) ∧ (
∧

k∈m′−w

¬φ(x, āik)) (3.3)

If there exists some w1, w2 ⊆ m′ with |w1| = |w2| but such that (3.2) holds for
w1 while (3.3) holds for w2, then the formula

∃x(
∧
k∈w1

φ(x, āik)) ∧ (
∧

k∈m′−w1

¬φ(x, āik))

would be connected and asymmetric (see Definition 2.3.6) over (ān : n < ω), and
therefore by Proposition 2.3.6 contradicting that T is |T |-stable. Thus whether
or not (3.2) holds depends solely on |w|. But we have defined m′ such that there
is some w0 ⊆ m′ for which (3.2) fails, and therefore (3.3) holds for every w ⊆ m′
with |w| = |w0| i.e. there does not exist a b such that :

1. |= φ(b, ān) for at least |w0| many n < ω; and

2. |= ¬φ(b, ān) for at least |m′ − w0| many n < ω

So define the formula

ψ(x, b̄n) = θ(x, ā) ∧ ¬φ(x, ān+m′) ∧
∧
k<m′

φ(x, āk)

and note that if there is a b such that |= ψ(b, b̄n) for at least m′ many n < ω,
then it there are m′ many n < ω and m′ many n′ < ω such that |= φ(b, ān) ∧
¬φ(x, ān′), which contradicts what we proved above. Thus the formulas ψ(x, b̄n)
are m′-almost contradictory, and in particular almost contradictory. However,
we have proven above that each {θ(x, ā)} ∪ {φ(x, āi) : i < n} ∪ {¬φ(x, ān)} is a
nonalgebraic type, and therefore each ψ(x, b̄n) is satisfiable and nonalgebraic.

Claim. There exists an nψ such that for every modelM and ē ∈M , if |ψ(M, ē)| ≥
nψ then |ψ(M, ē)| ≥ ℵ0

Assume for a contradiction that such an nψ does not exist, so that there is a
model M such that for every n < ω, there is an ēn ∈M with n < |ψ(M, b̄n)| <
ℵ0. By the upward Löwenheim-Skolem theorem, we may assume that |M | > 2ℵ0

(since the condition n < |ψ(M, b̄n)| < ℵ0 can be expressed by a formula in LM ).
Let D be an ultrafilter over ω, and define N = Mω/D , ē = (ēn : n < ω)/D . By
Theorem 1.6.8, note that N |= ψ(b, ē) iff there is a D ∈ D such that for every
n ∈ D, M |= ψ(b(n), ēn). Therefore there is some b′ ∈

∏
n∈ω ψ(M, ēn) such that

||b′ = b|| = D, and so b ∈ π(
∏
n∈ω ψ(M, ēn)). But as each n < |ψ(M, ēn)| < ℵ0,

so |ψ(N, ē)| = |π(
∏
n∈ω ψ(M, ēn))| ≤ 2ℵ0 < |M | ≤ |N | (the last equality by

Corollary 1.6.9). This implies that {ψ(x, ē) ∧ x 6= a : a ∈ φ(N, ē)} is a type
with cardinality < |N | and is thus realized in N as it is locally saturated (since
N |= T ), a contradiction.

Lastly, we shall define by induction a sequence (b̄α : α < |M0|) such that

• |= ∃≥nψxψ(x, b̄α)
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• For every α1 < · · · < αm′ < |M0|, |= ¬∃x
∧
k≤m′ ψ(x, b̄αk)

For α < ω, we can take b̄n to be the sequence as defined previously. Then, given
α ≥ ω, suppose b̄β has been constructed satisfying these conditions for β < α.
So consider the set:

p(ȳ) = {∃≥nψxψ(x, ȳ)} ∪ {¬∃xψ(x, ȳ) ∧
∧
k<m′

ψ(x, b̄βk) : β1 < · · · < βm′−1 < α}

We claim that p(ȳ) is satisfiable: for any finite subset q ⊆ p, there is some n < ω
such that b̄n does not appear in q, and therefore by the inductive hypothesis
satisfies q. Thus by compactness p(ȳ) is satisfiable and therefore realized by some
b̄α. This construction gives us (b̄α : α < |M0|), and as each |= ∃≥nψxψ(x, b̄α),
by the definition of nψ, each ψ(x, b̄α) is a nonalgebraic formula.

To complete the proof, let β = D(θ(x, ā)), which is minimal amongst nonal-
gebraic formulas by assumption. So for every α < |M0| ≥ |T |, D(ψ(x, b̄α)) ≥ β.
But by construction {ψ(x, b̄α) : α < |M0|} is m′-almost contradictory, and as
θ(x, ā) is a conjunct in each ψ(x, āα), by the definition of the degree this implies
that D(θ(x, ā)) ≥ β + 1, a contradiction.

Corollary 3.4.6. If T is λ-categorical for some λ > |T |, then there is a nonal-
gebraic weakly minimal formula θ(x, ā)

Proof. We have proven previously that such a T satisfies all the conditions
listed at the beginning of this section. Now, since the degree of a nonalgebraic
formula is an ordinal, in particular the ordinals which are the degree of some
nonalgebraic formula φ(x, b̄) is well-ordered. Therefore there is a minimal degree
β ≥ 0 for nonalgebraic formulas, and by the above theorem any formula θ(x, ā)
with D(θ(x, ā)) = β is weakly minimal (as ā is contained in some model M with
|M | > |T | by the upward Löwenheim-Skolem theorem).

Lemma 3.4.7. Suppose A partitions the nonalgebraic weakly minimal formula
θ(x, ā), and for every formula φ, ψφ(x, āi) is a φ-partition with āi ∈ A. If
B ⊇ A, satisfies:

1. For every φ and i, |{c ∈ B :|= ψφ(c, āi)}| > |T |

2. For every formula ψ, if b̄ ∈ B is such that |= ∃xψ(x, b̄) ∧ θ(x, ā), then
there is a c ∈ B such that |= ψ(c, b̄) ∧ θ(c, ā)

Then there is a model M ⊇ B with θ(M, ā) ⊆ B

Proof. Consider B = {B′ : B′ ⊇ B,B′ satisfies (2), b ∈ B′ − B ⇒2 θ(b, ā)}: if
C ⊆ B is a chain (under inclusion), then clearly

⋃
C ∈ B. Thus by Zorn’s

lemma, there is a maximal B∗ ∈ B. We will show that B∗ is an elementary
substructure of M̄ , which proves the claim as θ(B∗, ā) = θ(B, ā) ⊆ B.

We will proceed by the Tarski-Vaught test: for a b̄1 ∈ B∗, suppose |=
∃xφ1(x, b̄1). Pick a formula φ(x, b̄) with b̄ ∈ B∗ such that D(φ(x, b̄)) ≥ 0 is mini-
mal amongst formulas such that |= ∀xφ(x, b̄)→ φ1(x, b̄1). Since D(φ(x, b̄)) ≥ 0,
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φ(x, b̄) is satisfiable and so let a realize φ(x, b̄). If |= θ(a, ā), then |= ∃xθ(x, ā)∧
φ(x, b̄), and therefore as ā ∈ B ⊆ B∗ and B∗ satisfies (2), there is some a′ ∈ B∗
such that |= φ(a′, b̄) ∧ θ(a′, ā). This implies that |= φ1(a′, b̄1), and so by the
Tarski-Vaught test we are done. Otherwise, it suffices to show that B∗ ∪ {a}
satisfies (2), for then the maximality of B∗ in B guarantees that a ∈ B∗, and
again we are done by Tarski-Vaught test.

So for a contradiction, assume that B∗ ∪ {a} does not satisfy (2) i.e. there
is a formula ρ1(x, a, c̄1) with c̄1 ∈ B∗ such that |= ∃xρ(x, a, c̄) (where we define
ρ(x, a, c̄) = ρ1(x, a, c̄1) ∧ θ(x, ā)) but there is no b ∈ B∗ such that |= ρ(b, a, c̄).
Let d be such that |= ρ(d, a, c̄), and as |= θ(d, ā), by Lemma 3.4.2(1) suppose
that |= ψρ(d, āρ). So ρ(x, a, c̄) ∧ θ(x, ā) is satisfiable (by d), and by definition
of ψρ(x, āρ) as part of the ρ-partition of θ(x, ā), either ψρ(x, āρ) ∧ ρ(x, a, c̄) is
algebraic or ψρ(x, āρ) ∧ ¬ρ(x, a, c̄) is algebraic.

Claim. ψρ(x, āρ) ∧ ρ(x, a, c̄) is algebraic.
Assuming for a contradiction that ψρ(x, āρ)∧¬ρ(x, a, c̄) is algebraic, then all

but finitely many elements of ψρ(M̄, āρ) are in ρ(M̄, a, c̄). But by assumption
|ψρ(B, āρ)| > |T |, and therefore there must be some b ∈ B ⊆ B∗ such that
|= ψρ(b, āρ) ∧ ρ(b, a, c̄), which contradicts the definition of ρ(x, a, c̄). So it must
be the case that ψρ(x, āρ) ∧ ρ(x, a, c̄) is algebraic.

This implies that ρ(x, a, c̄) is algebraic as |ψρ(B, āρ)| > |T | by assumption.
Thus there is some m < ω such that |= ∃≤mxρ(x, a, c̄). Now, define

χ(z, b̄, c̄) = ∃xφ(x, b̄) ∧ ρ(z, x, c̄) ∧ (∃≤myρ(y, x, c̄))

Choosing x = a shows that |= χ(d, b̄, c̄), and by its definition above d /∈ B∗.
So if (again by Lemma 3.4.2(1)) |= ψχ(d, āχ), then let us define χ1(x, ā∗) =
χ(x, b̄, c̄) ∧ ψχ(x, āχ), so that |= χ1(d, ā∗).

Claim. ā∗ ∈ B∗
Note that we have defined ā∗ = b̄ a c̄ a āχ, and by assumption āχ ∈ A ⊆

B ⊆ B∗ since A partitions θ(x, Ā). Likewise, we defined c̄ = c̄1 a ā, with
c̄1 ∈ B∗ by definition and ā ∈ A ⊆ B∗ by assumption as A partitions θ(x, ā).
Finally, we defined b̄ ∈ B∗, and so indeed ā∗ ∈ B∗.
Claim. χ1(x, ā∗) is a nonalgebraic formula

Note by definition of d, |= ρ(d, a, c̄), and therefore by definition of ρ, |=
θ(d, ā). Therefore |= χ1(d, ā∗) ∧ θ(d, ā), and thus |= ∃χ1(x, ā∗) ∧ θ(x, ā). Since
ā∗ ∈ B∗ and B∗ satisfies (2), there is a d0 ∈ B∗ such that |= χ1(d0, ā

∗)∧θ(d0, ā).
Now, suppose for an n < ω, d0, . . . , dn ∈ B∗ has been defined such that for each
i ≤ n, |= χ1(di, ā

∗) ∧ θ(di, ā) ∧
∧
j<i di 6= dj . Since d /∈ B∗, |= χ1(d, ā∗) ∧

θ(d, ā) ∧
∧
i≤n d 6= di, and therefore (again, as B∗ satisfies (2)) there is a dn+1

such that |= χ1(dn+1, ā
∗)∧ θ(dn+1, ā)∧

∧
i<n+1 dn+1 6= di. So inductively there

are (dn : n < ω) ⊆ B∗ such that for each n < ω, |= χ1(dn, ā
∗). Therefore

χ1(x, ā∗) is a nonalgebraic formula.

Recalling that ψχ(x, āχ) is χ-minimal, that χ1(x, ā∗) = χ(x, b̄, c̄)∧ψχ(x, āχ)
is nonalgebraic implies that ψχ(x, āχ) ∧ ¬χ(x, b̄, c̄) is algebraic. Then, as in the
previous case, as |ψχ(B, āχ)| > |T |, all but finitely many of the elements in
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ψχ(B, āχ) realize the formula χ1(x, ā∗) i.e. |χ(B, b̄, c̄)| ≥ |T |+. So let (bk : k <
|T |+) be such that for each k < |T |+, |= χ(b, b̄k, c̄), so that the set

{φ(x, b̄) ∧ ρ(bk, b̄, c̄) ∧ (∃≤myρ(y, x, c̄)) : k < |T |+}

is a set of satisfiable formulas with parameters in B∗ but the set is m+1-almost
contradictory. Thus by the definition of degree,

D(φ(x, b̄)) > inf{D(φ(x, b̄) ∧ ρ(bk, b̄, c̄) ∧ (∃≤myρ(y, x, c̄))) : k < |T |+}

But each φ(x, b̄)∧ρ(bk, b̄, c̄)∧ (∃≤myρ(y, x, c̄)) |= φ(x, b̄) and φ(x, b̄) |= φ1(x, b̄1),
thus contradicting that φ(x, b̄) has minimal degree. This contradiction shows
that ρ1(x, a, c̄1) cannot exist, and therefore B∗ ∪ {a} satisfies (2). The maxi-
mality of B∗ in B thus implies that a ∈ B∗, and therefore by the Tarski-Vaught
test, B∗ is an elementary substructure of M̄ . This completes the proof.

Theorem 3.4.8. If θ(x, ā) is a nonalgebraic weakly minimal formula, A parti-
tions θ(x, ā) with |A| = |T | and M is a model with |M | > |T | and M ) A where
every nonalgebraic p ∈ S1(A) with θ(x, ā) ∈ p is realized |M | times in M , then
M is a saturated model.

Proof. Note that for any formula φ, if ψφ(x, āi) is a φ-partition of θ(x, ā) with
āi ∈ A ( M , then by definition for any m ∈ M , if |= ψφ(c, āi) then |= θ(c, ā).
But this implies that θ(x, ā) ∈ tp(c/A), and therefore by assumption tp(c/A)
is realized |M | times in M . Since ψφ(x, āi) ∈ tp(c/A) too, thus |{c ∈ M :|=
ψφ(c, āi)}| = |M | > |T | i.e. M satisfies condition (1) of the above lemma.

So suppose for a contradiction that M is not saturated, and let p be a
complete type with |p| < |M | which is omitted by M , with B ⊆ M such that
p ∈ S1(B). Since |p| < |M | > |T |, this implies that |B| < |M |. Choose a
formula φ(x, b̄) with b̄ ∈ M − B such that p ∪ {φ(x, b̄)} is satisfiable and that
φ(x, b̄) has minimal degree amongst such formulas: such a choice always exists
as B (M .

Define p′ = p ∪ {φ(x, b̄)}, and let a realize p′. By definition of p, necessarily
a /∈M . Therefore, if M ∪{a} satisfies condition (2) of the previous lemma, then
by that lemma there is a N �M with a ∈ N such that θ(N, ā) = θ(M ∪{a}, ā).
Of course, for any m ∈ M with |= θ(m, ā), θ(x, ā) ∈ tp(m/A), and therefore
by assumption tp(m/A) is realized |M | times in M , and in particular θ(x, ā)
is realized |M | times in M i.e. θ(x, ā) is a nonalgebraic formula. Thus by
Corollary 3.2.4, if N � M then θ(N, ā) ) θ(M, ā). Therefore we conclude that
either M∪{a} does not satisfy condition (2) of the previous lemma, or |= θ(a, ā)
so that θ(N, ā) = θ(M ∪ {a}, ā) ) θ(M, ā).

If M ∪ {a} does not satisfy condition (2) of the above lemma, then there
exists a formula φ̄(x, a, c̄0) with c̄0 ∈ M such that |= ∃xθ(x, ā) ∧ φ̄(x, a, c̄0)
but no element of M satisfies this formula. In this case, define φ(x, a, c̄) =
φ̄(x, a, c̄0) ∧ θ(x, ā). Otherwise, if M ∪ {a} satisfies condition (2) of the above
lemma, then as shown above |= θ(a, ā), so let ψ(x, a, c̄) = θ(x, ā) ∧ x = a. Thus
in either case, ψ(x, a, c̄) is such that |= ∃xψ(x, a, c̄) but ψ(x, a, c̄) is not satisfied
by any element of M . Let d be an element which satisfies this formula.
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Define B′ = B ∪ A ∪ c̄, so that B′ ⊆ M but |T | ≤ |B′| < |M |, and let
q = tp(d/B′). q cannot be an algebraic type, since as B′ ⊆ M , any element
which realizes an algebraic type over B′ is an element of M , which contradicts
that d /∈M . However, since θ(x, ā) ∈ q and A ⊆ B′ partitions θ(x, ā), by Lemma
3.4.4(2), q|A is a minimal type. So for any formula χ(x, ē), either q|A∪{χ(x, ē)}
is algebraic or unsatisfiable, or q|A ∪ {¬χ(x, ē)} is algebraic or unsatisfiable. In
particular, if χ(x, ē) ∈ q, then as d satisfies the type q|A ∪ {χ(x, ē)}, and so
by the same reasoning as above it is a nonalgebraic type. This implies that
q|A ∪ {¬χ(x, ē)} is algebraic. Thus, if we define C = {c ∈ M :|= q|A(c)}, for
every formula χ(x, ē) ∈ q, χ(x, ē) is realized by all but finitely many members
of C. Therefore q is realized by all but |q| · ℵ0 = |q| = |B′| < |M | members of
C.

As q is a complete type over B′ ⊇ A, q|A ∈ S1(A), and as θ(x, ā) ∈ q|A
(since ā ∈ A as A partition θ(x, ā)), by assumption q|A is realized |M | times
in M i.e. |C| = |M |. By the above observation, q is realized |M | − |B′| = |M |
many times in M , and so as |M | > |T |, let (dk : k < |T |+) ⊆ M be a sequence
of distinct elements in M which realize q.

Now, if q|A ∪ {¬ψ(x, a, c̄)} is an algebraic type, then all but finitely many
elements of C would satisfy ¬ψ(x, a, c̄). But as |M | = |C|, this contradicts
that for every m ∈ M , |= ¬φ(x, a, c̄). However, q|A ∪ {¬ψ(x, a, c̄)} is indeed
satisfiable, namely by d. Thus necessarily q|A ∪ {ψ(x, a, c̄)} is an algebraic type
(since q|A is a minimal type). Therefore there is some ρ(x, ā∗) ∈ q|A such that
ψ(x, a, c̄) ∧ ρ(x, ā∗) is algebraic: if not, then (since q|A is closed under finite
conjugation) the set (using new constants (cn : n < ω))⋃

{q|A(cn) : n < ω} ∪ {ψ(cn, a, c̄) : n < ω} ∪ {cm 6= cn : n 6= m}

is satisfiable by compactness, and therefore the type is nonalgebraic. Defining
ψ′(x, a, c̄′) = ψ(x, a, c̄) ∧ ρ(x, ā∗), this implies that there is an m < ω such that
|= ∃≤mxψ′(x, a, c̄′). Note that as c̄′ = c̄ a ā∗ with ā∗ ∈ A and c̄ ∈ B′ by
definition, c̄′ ∈ B′.

Finally, define p′′ = p′∪{ψ′(d, x, c̄′)∧∃≤myψ′(y, x, c̄′)}. We have shown that
a satisfies p′′, and additionally, since c̄′ ∈ B′ and each dk realizes q = tp(d/B′),
a satisfies each type pk = p′ ∪ {ψ′(dk, x, c̄′)∧ ∃≤myψ′(y, x, c̄′)} for k < |T |+. Of
course, each dk is distinct, and therefore the set

{φ(x, b̄) ∧ ψ′(dk, x, c̄′) ∧ ∃≤myψ′(y, x, c̄′) : k < |T |+}

is a m+ 1-almost contradictory set of satisfiable sentences. By the definition of
degree, thus

D(φ(x, b̄)) > inf{D(φ(x, b̄) ∧ ψ′(dk, x, c̄′) ∧ ∃≤myψ′(y, x, c̄′)) : k < |T |+}

Since each p∪{φ(x, b̄)∧ψ′(dk, x, c̄′)∧∃≤myψ′(y, x, c̄′)} is satisfiable (by a), this
contradicts the minimality of D(φ(x, b̄)). Thus the proof is completed.

Corollary 3.4.9. For every λ > |T |, T has a saturated model of cardinality λ.
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Proof. By Corollary 3.4.6, there is a nonalgebraic weakly minimal formula
θ(x, ā), and so for any elementary substructure M0 of the universal model with
ā ∈M0, by Lemma 3.4.4(1) there is an A ⊆M0 with |A| ≤ |T | which partitions
θ(x, ā), and we may in fact take A = |T | by adding in unnecessary elements
from the universal model. So by the upward Löwenheim-Skolem theorem, let
M be a model with A (M and |M | = λ. Now, since T is |T |-stable (by Propo-
sition 3.2.1), |A| ≤ |T | implies that |S1(A)| ≤ |T |, so for every p ∈ S1(A) with
p nonalgebraic, let (cpi : i < λ) be new constants. Then the set

ThM (M)∪
⋃
{p(cpi )∪{c

p
i 6= cpj : i < j < λ} : i < λ, p ∈ S1(A) a nonalgebraic type}

is satisfiable by compactness. But since this set has cardinality λ, by the down-
ward Löwenheim-Skolem theorem it has a model N of size λ. Clearly M � N
and for each p ∈ S1(A) which is nonalgebraic, p is realized λ = |N | times in N .
Moreover, since the inclusion map A ↪→ N is an elementary map, and the prop-
erties of being weakly minimal formula and partition a weakly minimal formula
are expressible in the language, even in N θ(x, ā) is a weakly minimal formula
partitioned by A. N thus satisfies the conditions of the above theorem, and is
therefore a saturated model of cardinality λ.

3.5 Finale

Suppose T is a complete theory that is λ-categorical for some λ > |T |.

Lemma 3.5.1. Suppose M is a model with |T | ≤ κ < |M |, θ(x, ā) is nonal-
gebraic weakly minimal with A ( M partitioning it, |A| = |T |, and M � N .
Define B = M ∪ {c ∈ N :|= θ(c, ā), tp(c/A) is realized > κ times in M}. Then
B satisfies the conditions of Lemma 3.4.7

Proof. We first prove the following claim:

Claim. Suppose b realizes some algebraic p ∈ S1(A). Then there is a formula
φ(x, ā) ∈ p for every c, if |= φ(c, ā) then tp(c/A) = tp(b/A) = p i.e. φ(x, ā)
isolates the type p

By compactness, if p is algebraic then there is a finite q ( p which is al-
gebraic, and as p is closed under conjugation there is some φ(x, ā) ∈ p which
is an algebraic formula. So suppose m < ω is such that |= ∃=mxφ(x, ā), and
let b1, . . . , bk be distinct elements which satisfy φ(x, ā), with b = b1. Then, for
k ≤ m, let ψk(x, āk) ∈ p be such that |= ¬ψk(bk, āk) if such a formula exists,
and otherwise (if tp(bk/A) = tp(b1/A) = p) let ψk(x, āk) = (x = x). Then the
formula φ(x, ā) ∧

∧
k≤m ψk(x, āk) isolates p.

For condition (1) of Lemma 3.4.7, note that if ψφ(x, āi) is part of the φ-
partition of θ(x, ā), then by definition it is nonalgebraic, and thus by Corollary
3.2.4 |ψφ(M, āi)| = |M | > κ ≥ |T | since āi ∈ A ( M . Therefore condition (1)
is satisfied by B.

So suppose for a contradiction thatB does not satisfy condition (2) of Lemma
3.4.7, so that there exists a formula φ′(x, b̄′, c̄) with b̄′ ∈M and c̄ ∈ B−M such
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that |= ∃xφ′(x, b̄′, c̄) ∧ θ(x, ā) but for every b ∈ B, |= ¬(φ′(b, b̄′, c̄) ∧ θ(b, ā). Let
d /∈ B be such that |= φ′(d, b̄′, c̄)∧ θ(d, ā), and by Lemma 3.4.2(1), suppose that
|= ψφ′(d, āi). Define φ(x, b̄, c̄) = φ′(x, b̄′, c̄) ∧ θ(x, ā) ∧ ψφ′(x, āi), so that b̄ ∈M .

If φ(x, b̄, c̄) is not algebraic, then as ψφ′(x, āi) is φ′-minimal, ψφ′(x, āi) ∧
¬φ′(x, b̄′, c̄) is either unsatisfiable or algebraic. In either case, all but finitely
many elements of ψφ′(x, āi) satisfy φ′(x, b̄, c̄). But as ψφ′(x, āi) is nonalgebraic
by definition and āi ∈M , by Corollary 3.2.4 |ψφ′(M, āi)| = |M | > ℵ0, and thus
there is some m ∈ M so that |= ψφ′(m, āi) ∧ φ′(m, b̄′, c̄). But as |= ψφ′(m, āi)
implies that |= θ(m, ā), therefore |= θ(m, ā)∧ φ′(m, b̄, c̄), contradicting the defi-
nition of φ′(x, b̄′, c̄). Thus we conclude that φ(x, b̄, c̄) is an algebraic formula.

Let A∗ = A ∪ b̄ ∪ {m ∈ M : tp(m/A) = p, θ(x, ā) ∈ p, |p(M)| ≤ κ} ⊆ M , so
that |A∗| ≤ |A|+ℵ0 + |S1(A)| ·κ ≤ κ (since |A| = |T | ≤ κ and as T is |T |-stable,
|S1(A)| = |T |), and let c̄ = (c0, . . . , cn). We wish to define a c̄′ = (c′0, . . . , c

′
n) ∈

M with tp(c0 . . . cn/A
∗) = tp(c′0 . . . c

′
n/A

∗), and we shall do so by induction with
the hypothesis that for a 0 ≤ k ≤ n, tp(c0 . . . ck−1/A

∗) = tp(c′0 . . . c
′
k−1/A

∗), thus
eliminating the need to treat the base case separately:

1. If tp(ck/A
∗ ∪ {ci : i < k}) is an algebraic type, by the first claim in this

proof, there is a formula ρ(x, c0, . . . , ck−1, ē) ∈ tp(ck/A
∗ ∪ {ci : i < k})

which isolates the type. Of course, since ck satisfies this sentence, |=
∃xρ(x, c0, . . . , ck−1, ē), and so by the inductive hypothesis, |= ∃xρ(x, c′0, . . . , c

′
k−1, ē).

But this formula has parameters in M , and thus by the Tarski-Vaught
test (since M � M̄), there is a c′k ∈M with |= ρ(c′k, c

′
0, . . . , c

′
k−1, ē). Now,

since ρ(x, c0, . . . , ck−1, ē) isolates tp(ck/A
∗ ∪ ci : i < k), for every formula

χ(x, c0, . . . , ck−1, ē
′) ∈ tp(ck/A∗ ∪ {ci : i < k}),

|= ∀xρ(x, c0, . . . , ck−1, ē)→ χ(x, c0, . . . , ck−1, ē
′)

And so again by the inductive hypothesis,

|= ∀xρ(x, c′0, . . . , c
′
k−1, ē)→ χ(x, c′0, . . . , c

′
k−1, ē

′)

This implies that tp(c0 . . . ck/A
∗) = tp(c′0 . . . c

′
k/A

∗), completing the in-
ductive step.

2. If pk = tp(ck/A
∗ ∪ {ci : i < k}) is a nonalgebraic type, then for a

formula ρ(x, c0, . . . , ck−1, ē) ∈ pk, note that as |= θ(ck, ā), there is a
ā∗ ∈ A ⊆ A∗ such that |= ψρ(ck, ā

∗) i.e. ψρ(x, ā
∗) ∈ pk|A. Since ad-

ditionally θ(x, ā) ∈ pk|A ∈ S1(A) and A partitions θ(x, ā), by Lemma
3.4.4(2) pk|A must be a minimal type, so it cannot be that both pk|A ∪
{ρ(x, c0, . . . , ck−1, ē)} and pk|A ∪ {¬ρ(x, c0, . . . , ck−1, ē)} are nonalgebraic
types. Of course, ρ(x, c0, . . . , ck−1, ē) ∈ pk and pk is nonalgebraic by as-
sumption, so it must be the case that pk|A ∪ {¬ρ(x, c0, . . . , ck−1, ē)} is
either algebraic or unsatisfiable. By the inductive hypothesis, as pk|A =
tp(ck/A), so necessarily pk|A ∪ {¬ρ(x, c′0, . . . , c

′
k−1, ē)} is algebraic or un-

satisfiable. Thus all but finitely many elements which realize pk|A sat-
isfy the formula ρ(x, c′0, . . . , c

′
k−1, ē). Now, as |A∗| ≤ κ ≥ |T |, |pk| ≤ κ,
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and therefore there are at most κ choice of ρ(x, c0, . . . , ck−1, ē) ∈ pk.
Thus there are at most κ · ℵ0 = κ elements in M which realize pk|A
but not ρ(x, c′0, . . . , c

′
k−1, ē) for some ρ(x, c0, . . . , ck−1, ē). But as pk|A =

tp(ck/A) and ck ∈ B − M , by definition of B, pk|A is realized > κ
times in M , and so there is some c′k ∈ M which realizes pk|A and such
that for every ρ(x, c0, . . . , ck−1, ē) ∈ pk = tp(ck/A

∗ ∪ {c0, . . . , ck−1}),
|= ρ(c′k, c

′
0, . . . , c

′
k−1, ē) i.e. tp(c0 . . . ck/A

∗) = tp(c′0 . . . c
′
k/A

∗).

Returning back to our main argument, note that |= φ(d, b̄, c̄) and φ(x, b̄, c̄) is
an algebraic formula. Thus tp(d/A∗c̄) is an algebraic type, so using the same
argument as case 1 in the above induction, we can find a d′ ∈ M such that
tp(c̄ a d/A∗) = tp(c̄′ a d′/A∗). Note if d′ ∈ A, then (x = d′) ∈ tp(c̄′ a d′/A∗) =
tp(c̄ a d/A∗), and so d = d′ ∈ A∗ ⊆M , contradicting that d /∈M by definition.
So d′ ∈M−A∗, and therefore by definition of A∗, tp(d′/A) = tp(d/A) is realized
> κ times in M . Therefore by definition of B, {c ∈ N : tp(c/B) = tp(d/B)} ⊆ B
(as B ⊇M ⊇ A), but for any such c, |= φ′(c, b̄′, c̄)∧θ(c, ā) as all these parameters
are in B, which contradicts the definition of φ′(x, b̄′, c̄). This completes the proof
by contradiction, so B must satisfy condition (2) of Lemma 3.4.7.

Theorem 3.5.2. If T is λ-categorical for some λ > |T |, then T is µ-categorical
for every µ > |T |

Proof. By Corollary 3.4.9, for every µ > |T |, T has a saturated model of car-
dinality |µ|. By Lemma 1.5.10, saturated models of the same cardinality are
isomorphic, and so it suffices to show that there are no unsaturated models of
T with cardinality > |T |.

So for a contradiction, assume that M is an unsaturated model with |M | >
|T |. By Theorem 3.4.6, there is a nonalgebraic weakly minimal formula θ(x, ā),
and so by Lemma 3.4.4(1) there is a set A with |A| = |T | which partitions θ(x, ā).
Since M is not saturated, by Theorem 3.4.8 there must be some nonalgebraic
type p0 ∈ S1(A) with θ(x, ā) ∈ p0 which is realized ≤ κ many in M , where
ℵ0 ≤ κ < |M |. Pick any λ1 > |M |, and by the proof of Corollary 3.4.9 there is
an N �M with |N | = λ1 such that N is a saturated model.

As in the previous lemma, define B = M ∪ {c ∈ N :|= θ(x, ā), tp(c/A) =
p, |p(M)| > κ}.
Claim. |B| = λ1

We first show that there is some p ∈ S1(A) with θ(x, ā) ∈ p such that
|p(M)| > κ: for otherwise we would have

|θ(M, ā)| ≤
∑

p∈S1(A),θ(x,ā)∈p

|{c ∈M :|= p(c)}| ≤ κ · |S1(A)| < |M |

with the last inequality holding because T is |T |-stable (by Proposition 3.2.1)
and |A| = |T | < |M |. But θ(x, ā) is a nonalgebraic formula, so this contradicts
Corollary 3.2.4.

Next, we shall define inductively (ci : i < λ1) ⊆ N such that each ci realizes
p: if (ci : i < α) has been defined, then consider the set p ∪ {x 6= ci : i < α}:
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this is an incomplete type over N with cardinality < λ1 = |N |, and as N is
saturated, it must realize this type, say by cα ∈ N . Thus |p(N)| = λ1, and as
p(N) ⊆ B, |B| = λ1.

By the previous lemma, B satisfies the conditions of Lemma 3.4.7, so there
is a model M ′ ⊇ B with θ(M ′, ā) = θ(B, ā). Of course, |M ′| ≥ |B| = λ1, and
additionally if c ∈M ′ is such that |= p0(c), then |= θ(c, ā), and thus c ∈ B. But
by assumption p0 is realized ≤ κ times in M , so in fact c ∈M by the definition
of B. This implies that M ′ is a model of cardinality λ1 such that p0 is realized
≤ κ times in M ′.

Now, λ1 > |M | was chosen arbitrarily in the above prove, so in particular
we can choose M ′ �M with |M ′| = i(2|T |)+(κ). Since p0 is a type over A with
|A| = |T |, we can add A into the language without increasing the size of the
language, so that p0 can be considered as a type over the empty set. Then by
Vaught’s Two Cardinal theorem for cardinals far apart (Theorem 2.6.2), there
is a model N ′ of T with cardinality λ where p0 is realized ≤ |T | times. But by
Theorem 3.4.9 there is a saturated model of T of cardinality λ, and as p0 is a
nonalgebraic type we have shown above that p0 must be realized λ times. This
contradicts that T is λ-categorical.
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Appendix A

Ramsey-type Theorems

The following proof from [Ho 97] uses the compactness theorem to prove this
celebrated result of combinatorics:

Theorem A.0.1 (Ramsey’s Theorem). Suppose X is a linearly ordered set
of size ℵ0. Then for every 0 < k, n < ω and f : [X]k −→ n, there is some
infinite Y ⊆ X such that f is constant on [Y ]k.

Proof. Note that there is an natural bijections between [X]k, {A ⊆ X : |A| = k},
{B ⊆⊆ ω : |B| = k} and [ω]k. So WLOG suppose X = ω.

We proceed by induction on k. For k = 1, the statement follows by the
pigeonhole principle. Then inductively, suppose for every n < ω and g : [ω]k −→
n there is an infinite Y ⊆ ω with g constant on [Y ]k. For a given f : [ω]k+1 −→ n,
let L be the language with the following signature:

• For every i < ω, there is a constant symbol ī.

• There is a function symbol F with arity k + 1.

• There is a binary relation symbol <.

We define a L-structure W with domain ω by:

• For every i < ω, īW = i

• For every increasing ā ∈ [ω]k+1, FW (ā) = f(ā). For a b̄ ∈ ωk+1 that is
not strictly increasing, we let FW (b̄) = 0.

• <W is simply the usual ordering on ω.

By the Upward Löwenheim-Skolem theorem there is a proper elementary exten-
sion V of W . Note that:

1. W |= ∀x0, . . . , xn−1F (x0, . . . , xn−1) < n̄

2. W |= ∀x, y(x = y∧x ≮ y∧ y ≮ x)∨ (x < y∧x 6= y∧ y ≮ x)∨ (y < x∧x 6=
y ∧ x ≮ y)
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3. For every m < ω, W |= ∃=mx(x < m̄)

Thus V satisfies those formulas as well. Therefore if v ∈ V \W then for every
w ∈W , w <V v. So let v be some fixed element in V \W .

For i < ω, we inductively choose mi ∈ ω such that

• If j < i, then mj < mi

• For j0 < · · · < jk−2 < i, V |= F (mj0 , . . . ,mjk−2
,mi) = F (mj0 , . . . ,mjk−2

, v)

Suppose mj has been chosen for j < i. Then for every j0 < · · · < jk−2 < i,
let l(j0, . . . , jk−2) = FV (j0, . . . , jk−2, v) (note that FV (j0, . . . , jk−2, v) < n by
assumption). Define the formula φ(x) to be

mi−1 < x ∧
∧

0≤j0<···<jk−2<i

F (mj0 , . . . ,mjk−2
, x) = l(mj0 , . . . ,mjk−2

)

Note that φ(x) is a formula in L. So as V |= φ(v), V |= ∃xφ(x) and therefore
W |= φ(m) for some m ∈ ω. If we let mi = m, then mi satisfies the above
conditions.

Let A = {mi : i < ω}, and define g : [A]k −→ n by g(ā) = f(ā, b) where
(ā, b) ∈ [A]k+1. The above conditions on choosing mi ensures that g is well-
defined. But as A is order-isomorphic to ω, by the induction hypothesis there
is an infinite B ⊆ A with g constant on [B]k.

Claim. f is constant on [B]k+1.
Let c̄, d̄ ∈ [B]k+1, and let b ∈ B be such that ck−1, dk−1 < b. Thus by

definition of A, f(c̄) = f(c̄|k, b) = g(c̄|k) and f(d̄) = f(d̄|k, b) = g(d̄|k). But as
g is constant on [B]k, g(c̄|k) = g(d̄|k). Thus f is constant on [B]k+1 and the
theorem is proven.

The following extension, originally a result in combinatorics, similarly has a
model-theoretical proof (due to Simpson):

Theorem A.0.2 (Erdös-Rado Theorem). Let α be an infinite cardinal, n <
ω and suppose that X is a linearly ordered set with |X| > in(α). Then for any
f : [X]n+1 −→ α, there is a Y ⊆ X with |Y | > α and such that f is constant
on [Y ]n+1.

Remark. Recall that we define i0(α) = α, iβ+1(α) = 2iβ(α) and for a limit δ,
iδ(α) =

⋃
i<δ ii(α).

Proof. The case is trivial for n = 0 by the pigeonhole principle. We then proceed
by induction: Suppose that the theorem holds for some n. As in the proof above,
we may assume that X = |X| (where |X| is the cardinal number of X as a Von
Neumann ordinal), so that α ⊆ X. Consider the signature with:

• For every i < α, a constant symbol ī.

• A relation symbol R of arity n+ 3.
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Given a f : [X]n+2 −→ α, let M be a structure in this signature with domain
X by interpreting:

• For every i < α, īM = i.

• For ā ∈ Xn+3, ā ∈ RM iff ā|n+2 ∈ [X]n+2 and f(ā|n+2) = an+2.

Claim. There is a N �M with |N | = in+1(α) such that for every A ⊆ N with
|A| < in(α), if p ∈ S1(A) is realized in M then it is realized in N .

We will construct N by an elementary chain: let N0 = 〈in+1(α)〉Sk so that
|N0| = in+1(α). If Ni is defined for some i < in(α)+, then for every A ⊆ Ni
with |A| < in(α) and p ∈ S1(A), if p is realized in M then choose a mp with
M |= p(mp). Define Bi = {mp ∈ M : A ⊆ Ni, |A| < in(α), p ∈ S1(A)}, and
let Ni+1 = 〈Ni ∪Bi〉Sk. Note that there are in+1(α)in(α) choices of A, and for
each A there are at most 2in(α) 1-types over A, so

|Bi| ≤ in+1(α)in(α) · 2in(α) = (2in(α))in(α) · 2in(α) = in+1(α)

This guarantees that |Ni+1| = in+1(α). For a limit δ ≤ in(α)+, let Nδ =⋃
i<δ Ni. Then by construction, Nin(α)+ is the desired elementary substructure.

Let c ∈ M\N . Let us define the sequence b̄ = (bi : i < in(α)) inductively:
If b̄|i is defined, let bi ∈ N be such that tp(bi/b̄|i) = tp(c/b̄|i) (bi is guaranteed
to exist by definition of N). Note that as c /∈ N , every bi is distinct.

Define the function g : [b̄]n+1 −→ α by the following: for any ā ∈ [b̄]n+1, let
ā′ be such that Rang ā′ = Rang ā∪{c} (i.e. ā′ is (ā, c) but rearranged such that
ā′ ∈ [X]n+2. Then g(ā) = f(ā′). By the induction hypothesis, since |b̄| > in(α),
there is a Y ⊆ Rang b̄ such that |Y | > α and g is constant on [Y ]n+1, with say
g([Y ]n+1) = {j} for some j < α. Thus for any (bi0 , . . . , bin+1

) ∈ [Y ]n+2, assum-
ing WLOG i0 < · · · < in+1, (b̄|′n+1, j) ∈ RM . But since tp(c/{bi0 , . . . , bin}) =
tp(bin+1

/{bi0 , . . . , bin}) by definition, (bi0 . . . , bin+1
, j) ∈ RM i.e. f(bi0 , . . . , bn+1) =

j. This proves that f is constant on [Y ]n+2.
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Appendix B

Historical Remarks

B.1 Chapter 1

Chapter 1 concerns mostly introductory model theory, which by now is well-
established and can be found in any textbook on model theory. The overall
approach and all the proofs are based on lectures given by Freitag at University
of California, Berkeley in Fall 2014, which are in turn loosely based on the
exposition given in [Ho 97].

B.1.1 Section 1.1

This section is mostly basic definitions, and the claims are all basic observations.
Chang attributes most of these definitions to [Ta 35].

B.1.2 Section 1.2

Again, most of these are basic observations, and Chang attributes most of them
to [Ta 35]. In particular, 1.2.13 to 1.2.15 are from [TV 57].

B.1.3 Section 1.3

The idea and basic properties of Skolemization were first given in [Sk 20], and
although the history is convoluted, the Downward Löwenheim-Skolem theorem
(1.3.6) is generally attributed independently to [Lö 15] and [Sk 20]. However,
both papers only proved the case for a countable theory, and Chang attributes
both the statement and the proof of the general case to [TV 57].

B.1.4 Section 1.4

The compactness theorem (1.4.7) for countable languages was first given in
[Go 30] and the generalization to uncountable languages was given in [Ma 36].
However, their proofs are based on a proof-theoretical approach from Gödel’s
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completeness theorem, which is not the model-theoretical approach we gave.
Our proof is based on [He 49], and this idea of building models using constants
(commonly known as Henkin constructions) is used in various forms through-
out the exposition. Finally, the Upward Löwenheim-Skolem theorem (1.4.10) is
commonly attributed to Tarski (neither Löwenheim nor Skolem actually pub-
lished the upward part of the theorem, and many account suggest that Skolem
thought the it was meaningless due to his philosophical denial of uncountable
sets), and the statement of the theorem as given here is again attributed to
[TV 57].

B.1.5 Section 1.5

The idea of types and saturated models goes back to Hausdorff, although model
theory was just beginning when he presented this idea and Hausdorff did not
made any connection between his ideas and model theory. The given definitions
of saturation and universality, and the results 1.5.8-1.5.10 are all from [MV 62].
In particular, the proof for 1.5.8 is directly based on what was given in [Bu 96],
while the proofs for 1.5.9 and 1.5.10 are based on [Ho 97]

B.1.6 Section 1.6

The general idea of ultraproducts and the main theorem (1.6.8) are both from
[ Lo 55]. The given proof is based on that given in [Ho 97].

B.2 Chapter 2

Globally, many claims and their proofs are based on their exposition in [Sh 90],
although they often arise from earlier work of Shelah.

B.2.1 Section 2.1

The idea of λ-stability was first given in [Ro 64], the definition of stable the-
ories in [Sh 69], and the results 2.1.3-2.1.13 are all from [Sh 71], though the
proofs given are based on [Sh 90]. 2.1.14-2.1.16 are essentially due to [Sh 69a],
although the proofs given here were suggested by [HR 71] and Scanlon (by per-
sonal correspondence).

B.2.2 Section 2.2

The idea of λ-prime models and λ-isolated types are from [Sh 69a], which gen-
eralize prime models and isolated types introduced in [Mo 65]. Shelah actually
proved the main result 2.2.7 in [Sh 69a], but for that prove he used tools which
we did not introduce. Our approach of 2.2.5-2.2.8 was suggested in [HR 71].
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B.2.3 Section 2.3

The idea of an indiscernible sequence was first given in [EM 56], as is the claim
and proof of 2.3.2. The idea of connected and asymmetric was first given in
[Eh 57], and 2.3.6-2.3.8 was stated and proved in [Sh 71]. 2.3.9 was suggested
in [Ha 75], and 2.3.11 was given in [Sh 90]. 2.3.12 and 2.3.14 were stated and
proved in [HR 71].

B.2.4 Section 2.4

Definability and the φ-2-rank were introduced in [Sh 71], based on the idea
of Morley rank from [Mo 65]. Practically every result in this section is from
[Sh 71], and their proofs follows the exposition in [Sh 90].

B.2.5 Section 2.5

Shelah first proved a more general version of the main result 2.5.9 in [Sh 69],
although the proof was set-theoretical and required an argument involving the
GCH and absoluteness. The approach here was suggested in [Ha 75], where
2.5.1-2.5.7 are stated and proved.

B.2.6 Section 2.6

As mentioned in the remark at the end of the section, the result that we proved
differs from [Va 65] in two ways:

1. Σ(x) is a single unary predicate in Vaught’s proof

2. Vaught proved the theorem for any κ ≥ χ ≥ |T |, with |M | = κ and
Σ(M) = χ

In [Mo 65a], an alternative proof was given where (1) was generalized to any
1-type of T , although Morley only proved the statement for the countable case.
It was stated as an exercise in [CK 77] that the proof for countable T generalizes
to an uncountable language, although the author has had difficulty verifying this
claim. This approach using 2.6.1 is based on an answer given by Haykazyan on
mathoverflow.net (http://mathoverflow.net/questions/222504/how-to-extend-morleys-
omitting-type-theorem-to-uncountable-languages). 2.6.1 itself was proved in
[TZ 12], where it was attributed to Shelah. The author suspects that this attri-
bution is due to Shelah having used a similar technique in [Sh 90] in the proof
of a theorem generalizing both Vaught’s result and a related result by Morley
on omitting types.

B.2.7 Section 2.7

The main results 2.7.11 and 2.7.12 were given in [EM 56]. The approach of the
entire section is based on [Ho 97].
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B.3 Chapter 3

The entirety of this chapter follows [Sh 74], although we go into more detail in
some proofs.

B.4 Appendix A

Ramsey’s theorem (A.0.1) was first given in [Ra 30], and the proof here follows
the proof from [Ho 97]. The Erdös-Rado theorem (A.0.2) was first given in
[ER 56], and the proof here follows that in [CK 77], although Chang and Keisler
attributes the proof to Simpson.
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