Practice Final Exam Problems

(1) Consider a 3-period binomial interest rate model with

$$R_0 = .08, \quad R_1(H) = .085, \quad R_1(T) = .075,$$

$$R_2(H, H) = .09, \quad R_2(H, T) = R_2(T, H) = .08, \quad R_2(T, T) = .07.$$

The risk-neutral measure is a binomial product measure with probability of heads equal to .5.

- (a) Compute the bond prices $B_{0,1}$, $B_{0,2}$, and $B_{0,3}$.
- (b) Find the forward interest rate $F_{0,2}$.
- (c) Find the 3-period swap rate SR_3
- (d) Let V be a zero coupon bond with face value 100, and maturity 3. Find the arbitrage-free price at time 0 of a European put option on V with exercise date 2 and strike price 93.
- (2) Consider a 3-period binomial interest rate model with

$$R_0 = .10, R_1(H) = .12, R_1(T) = .08,$$

$$R_2(H, H) = .14, \quad R_2(H, T) = R_2(T, H) = .10, \quad R_2(T, T) = .06.$$

The risk-neutral measure is a binomial product measure with probability of heads equal to .5 Let V be a coupon bond with coupon rate q=.1, maturity 3 and face value 1,000. The bond is putable at time 1 and callable at time 2. More specifically, at time 1 the holder can sell the bond back to the issuer for 1,000 after the coupon is paid (and receive no further payments); if the put option was not exercised at time 1, the issuer can purchase the bond from the holder for 1,000 after the coupon is paid at time 2 (and make no further payments). Find the time-0 price V_0 of the bond. Be sure to explain your reasoning carefully.

(3) Consider a 3-period binomial interest rate model with

$$R_0 = .10, R_1(H) = .12, R_1(T) = .08,$$

$$R_2(H, H) = .14, \quad R_2(H, T) = R_2(T, H) = .10, \quad R_2(T, T) = .06.$$

The risk-neutral measure is a binomial product measure with probability of heads equal to .5.

Let V be a security that pays $\frac{100}{D_3}$ at time 3.

- (a) Find the arbitrage-free price V_0 of V at time 0.
- (b) Let $For_{0,3}$ and $Fut_{0,3}$ denote the forward and futures prices at time 0 for delivery of V at time 3. Without doing explicit computations, what can you say about the relationship between $For_{0,3}$ and $Fut_{0,3}$? Explain.
- (c) Compute the forward price $For_{0,3}$. (You may take it for granted that $B_{0,3} = .75231$.)
- (d) Determine the futures price process $(Fut_{n,3})_{0 \le n \le 3}$.
- (4) Consider an N-period binomial interest rate model with interest rate process $(R_n)_{0 \le n \le N-1}$. The risk-neutral measure is a binomial product measure with probability of heads equal to .5. Let V be a PO strip maturing at time N (i.e., a principal only strip from a pool of mortgages maturing at time N.) Let $m \in \{1, 2, \dots, N-1\}$ be given and let $For_{0,m}$ and $Fut_{0,m}$ be the forward and futures prices at time 0 for delivery of V at time m. What would you expect to be the relationship between $For_{0,m}$ and $Fut_{0,m}$? Explain.

The next problem is concerned with an N-period Ho-Lee model with

$$R_n(\omega_1, \cdots, \omega_n) = \Lambda_n + \sigma M_n(\omega_1, \cdots, \omega_n),$$

where $\Lambda_0, \dots, \Lambda_{N-1}, \sigma > 0$ are constants and $M_0 = 0$,

$$M_n(\omega_1, \cdots, \omega_n) = \#H(\omega_1, \cdots, \omega_n) - \#T(\omega_1, \cdots, \omega_n).$$

The risk-neutral measure is assumed to be a binomial product measure with probability of heads equal to .5.

- (5) Here we look at calibration of the model above using bond prices in the simple case when N = 2. Let $B_{0,i}^{market}$ denote observed market prices and $B_{0,i}^{model}$ denote prices predicted by the model of a zero-coupon bond with face value 1 and maturity i.
 - (a) Show that for any choice of $\sigma > 0$, and any observed values of $B_{0,i}^{market}$, i = 1, 2 it is possible to choose Λ_0 , Λ_1 so that we have

$$B_{0,i}^{market} = B_{0,i}^{model}, \quad i = 1, 2.$$

(Your formula for Λ_1 should involve sigma.)

- (b) Assume that $0 < B_{0,2}^{market} < B_{0,1}^{market} < 1$. Do all choices of σ lead to positive interest rates?
- (c) Suppose that $B_{0,1}^{market} = .9445$ and $B_{0,2}^{market} = .8883$. Find R_0 , $R_1(H)$, and $R_1(T)$ for each of the choices $\sigma = .01$ and $\sigma = .005$.

(6) Consider an N-period binomial model with interest rate process $(R_n)_{0 \le n \le N-1}$, let A > 0 be a given constant and let V be a security that pays the amount

$$V_N(\omega) = A(1 - R_{N-1}(\omega))$$

at time N.

- (a) Let $For_{0,N}$ be the forward price at time 0 for delivery of V at time N. Find a formula that expresses $For_{0,N}$ in terms of A and the forward interest rate $F_{0,N-1}$.
- (b) Let $\operatorname{Fut}_{n,N}$ denote the futures prices at time n for delivery of V at time N. Assume that the interest rate process has the special form

$$R_n(\omega) = \Lambda_n + \sigma M_n(\omega),$$

where $\Lambda_0, \Lambda_1, \dots \Lambda_{N-1}, \sigma > 0$ are constants and

$$M_n(\omega) = \#H(\omega_1, \omega_2, \cdots, \omega_n) - \#T(\omega_1, \omega_2, \cdots, \omega_n),$$

and that the risk-neutral measure is a binomial product measure with probability of heads equal to .5. Find formulas expressing $\operatorname{Fut}_{n,N}(\omega_1,\cdots,\omega_n)$ in terms of $A,\Lambda_0,\Lambda_1,\cdots,\Lambda_{N-1},\sigma,\#H(\omega_1,\cdots,\omega_n),\#T(\omega_1,\cdots,\omega_n)$ for $n=0,1,2,\cdots,N-1$. (Your formula for $\operatorname{Fut}_{n,N}$ might not involve all of those quantities.)

- (7) Consider a pool of mortgages with maturity 2. Assume the one-period mortgage rate is Y = 0.10 and the pool size is P = 10,000,000.
 - (a) In the absence of prepayments, compute the level monthly payment, as well as the principal payments, interest payments and remaining balance for times n = 1, 2.
 - (b) Repeat the above calculation, but now assume prepayments at a one period CPR of 10%.
 - (c) For the interest rate model of Problem 1, price the IO MBS security assuming no prepayments and 10% CPR.