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8.1 Introduction
{S8.1}

In this chapter we derive the Black-Scholes formulas for the price of a call
option and the price of a put option as the limit of the option prices in an
N -period binomial model as the number of steps N goes to infinity. We also
derive the Black-Scholes partial differential equation, and we verify that the
Black-Scholes formulas are solutions of the Black-Scholes partial differential
equation. We discuss the “Greeks,” the partial derivatives of the function
given by the Black-Scholes formulas.

To take the limit in an N -period binomial model, we need two major
theorems from probability theory, the Law of Large Numbers and the Central
Limit Theorem. We present these in the next two sections, and in Section
8.4, we use them to obtain the Black-Scholes formulas.

8.2 The Law of Large Numbers
{S8.1a}{T8.1a.1}

Theorem 8.2.1 Let X1, X2, . . . be a sequence of independent random vari-
ables, all with the same distribution. Assume each random variable has
expected value m and a finite variance. (All the random variables must
have the same expected value and variance because they all have the same
distribution.) Then the probability is one that

lim
N→∞

1

N

N∑

n=1

Xn = m. (8.2.1) {8.1a.1}
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For the limit of an N -period binomial model, we will use the Law of
Large Numbers in the context of coin tossing. Suppose we toss a fair coin
repeatedly and count the number of heads. Indeed, let

Xn =

{
+1 if the n-th coin toss results in H,
−1 if the n-th coin toss results in T.

(8.2.2){8.1a.2}

These random varialbes Xn are independent and all have the same distri-
bution. The expected value of each Xn is 1 and the variance of each Xn is
also 1. We define

MN =
N∑

n=1

Xn, (8.2.3){8.1a.2a}

and call the process Mn, M1, M2, . . . a symmetric random walk. The Strong
Law of Large numbers says that the probability is one that

lim
N→∞

MN

N
= 0. (8.2.4){8.1a.3}

We also consider the random variables X+
n , which are given by

X+
n =

{
1 if the n-th coin toss results in H,
0 if the n-th coin toss results in T.

The random variables X+
1 , X+

2 , . . . are independent and indentically dis-
tributed. They all have expected value 1

2 , and their common variance, 1
4 , is

finite. We define

HN =
N∑

n=1

X+
n , (8.2.5){8.1a.4}

which is the number of heads in the first N tosses. The Law of Large
Numbers applied to the sequence X+

1 , X+
2 , . . . , implies that with probability

one,

lim
N→∞

HN

N
=

1

2
. (8.2.6){8.1a.5}

The ratio of the number of heads to the number of tosses converges to 1
2 .

Finally, we consider the random variables X+
n − Xn, which are given

by

X+
n − Xn =

{
0 if the n-th coin toss results in H,
1 if the n-th coin toss results in T.
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The random variables X+
1 −X1, X

+
2 −X2, . . . are indpendent and identically

distributed. They all have expected value 1
2 , and their common variance, 1

4 ,
is finite. We define

TN =
N∑

n=1

(X+
n − Xn), (8.2.7){8.1a.6}

which is the number of tails in the first N tosses. The Law of Large Numbers
applied to the sequence X+

1 −X1, X
+
2 −X2, . . . implies that with probability

one,

lim
N→∞

TN

N
=

1

2
. (8.2.8) {8.2.8a}

The ratio of the number of tails to the number of tosses converges to 1
2 .

Finally, note that X+
n +(X+

n −Xn) is equal to 1, regardless of whether
the n-th toss results in H or T . Therefore,

HN + TN =
N∑

n=1

[
X+

n + (X+
n − Xn)

]
= N. (8.2.9) {8.1a.8}

This just says that in N tosses, the number of heads plus the number of
tails is equal to the number of tosses. On the other hand,

HN − TN =
N∑

n=1

[
X+

n − (X+
n − Xn)

]
=

N∑

n=1

Xn = MN . (8.2.10) {8.1a.9}

We said we were tossing a “fair” coin, by which we mean that the
probability p̃ of a H on each toss is 1

2 and hence the probability q̃ of a T

is also 1
2 . We use the notation of risk-neutral probabilities p̃, q̃, P̃ and Ẽ

here because in the derivation of the Black-Scholes formulas in this chapter,
we shall use the Law of Large Numbers under the risk-neutral probability
measure.

Equation (8.2.6) says we should expect about half the coin tosses to
result in H. This does not mean that if H gets ahead in the first several
coin tosses, there is a need for T to catch up. For example, if we toss
the coin 10 times and get a H on every toss, there is no need to then get
more tails than heads on subsquent tosses. In particular, it is not true that
the probabilty of a T on the eleventh toss is more than 1

2 . The tosses are
independent, and the outcome of the first ten tosses has no bearing on the
eleventh toss. The probability of a T on the eleventh toss is still 1

2 . Consider
the case that there are 10 heads in the first ten tosses. If from that point on
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there are as many tails as heads, so that T never catches up, then after 100
tosses there are 55 heads and H100

100 = 0.55, after 1000 tosses there are 505

heads and H1000

1000 = 0.505, and after 10, 000 tosses there are 5005 heads and
H10,000

10,000 = 0.5005. The ratio HN

N is converging to 1
2 , even though the number

of heads is always ahead of the number of tails by the same amount.

In fact, if we toss the coin N times, it is normal to have the number
of heads differ from N

2 by about
√

N . In 100 tosses, we should not be

surprised if the number of heads differs from 50 by about
√

100 = 10. In
10, 000 tosses, we should not be surprised if the number of heads differs from
5, 000 by about

√
10, 000 = 100. Note that if we have 50 + 10 = 60 heads in

the first 100 tosses, then H100

100 = 0.60. If we have 5000 + 100 = 5100 heads

in the first 10, 000 tosses, then
H10,000

10,000 = 0.51. The ratio HN

N is converging

to 1
2 , even though HN is getting farther from N

2 as N gets bigger. The Law
of Large Numbers does not guarantee that the number of heads in the first
N tosses is close to N

2 , and in fact, these two quantities typically get farther
apart rather than closer as N → ∞.

8.3 The Central Limit Theorem
{S8.2}

In the discussion of fair coin tossing in Section 8.2, we saw that

lim
N→∞

HN

N
=

1

2
, (8.2.6)

but that this does not guarantee that HN and N
2 are close. However, there

are some conclusions we can draw from (8.2.6). One of them is that if we
divide by N to a power larger than 1 in (8.2.6), we will get a limit of zero.
For example,

lim
N→∞

HN

N
√

N
= lim

N→∞

HN

N
· lim

N→∞

1√
N

=
1

2
· 0 = 0. (8.3.1){8.3.1}

If we divide by N to a power between 0 and 1, we will get ∞. For example,

lim
N→∞

HN√
N

= lim
N→∞

HN

N
· lim

N→∞

√
N =

1

2
· lim

N→∞

√
N = ∞. (8.3.2){8.3.2}

If we begin instead with (8.2.4),

lim
N→∞

MN

N
= 0, (8.2.4)
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and replace N in the denominator by different powers of N , the situation is
more complicated. Analogous to (8.3.1), we have

lim
N→∞

MN

N
√

N
= lim

N→∞

MN

N
· lim

N→∞

1√
N

= 0 · 0 = 0. (8.3.3){8.3.3}

However,

lim
N→∞

MN√
N

= lim
N→∞

MN

N
· lim

N→∞

√
N, (8.3.4) {8.3.4}

and this leads to the indeterminant form 0 ·∞. In such a situation, the limit
could be anything, and could even fail to exist. In fact, if we toss a coin
repeatedly and write down the resulting sequence

M1,
M2√

2
,
M3√

3
,
M4√

4
, . . . , (8.3.5) {8.3.5}

this sequence of numbers will never settle down and have a limit.

Despite that fact that the sequence in (8.3.5) does not have limit, we
can say something about what happens to MN√

N
as N gets large. We can plot

the histogram of the distribution of the random variable MN√
N

, and we discover

that as N gets large, this histogram takes a particular shape, namely, the
“bell-shaped curve.”

We work out the details for the case N = 25. In this case,

M25√
25

=
1

5
M25.

In 25 tosses, the number of heads that can occur is any integer between
0 and 25. If H25 = 0, then T25 = 25 and M25 = H25 − T25 = −25, so
1
5M25 = −5. This is the smallest possible value for 1

5M25. If H25 = 1, then
T25 = 24, M25 = −23, and 1

5M25 = −23
5 = −4.6. With each increase in H25

of one head, there is a decrease in T25 of 1 and hence an increase in M25 of
2 and an increase in 1

5M25 of 2
5 = 0.4. At the upper extreme, if H25 = 25,

then T25 = 0, M25 = 25 and 1
5M25 = +5. This is the largest possible value

for 1
5M25. The set of possible values for 1

5M25 is thus

x0 = −5, x1 = −4.6, x2 = −4.2, . . . , x12 = −0.2, x13 = 0.2, . . . , x25 = 5.

The probabilities that 1
5M25 takes these values are given by the formula

P̃

{
1

5
M25 = xk

}
=

25!

k!(25 − k)!
· 1

225
, k = 0, 1, . . . , 25. (8.3.6) {8.3.6}
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We record these probabilities in Table 8.3.1 below.

k xk P̃
{

1
5M25 = xk

}
hk ϕ(xk)

0 -5.0 2.980 × 10−8 7.451 × 10−8 1.487 × 10−6

1 -4.6 7.451 × 10−7 1.863 × 10−6 1.014 × 10−5

2 -4.2 8.941 × 10−6 2.235 × 10−5 5.894 × 10−5

3 -3.8 6.855 × 10−5 1.714 × 10−4 2.919 × 10−4

4 -3.4 3.770 × 10−4 9.425 × 10−4 1.232 × 10−3

5 -3.0 0.001583 0.003958 0.0044
6 -2.6 0.005278 0.01319 0.0136
7 -2.2 0.01433 0.03581 0.0355
8 -1.8 0.03223 0.08058 0.0790
9 -1.4 0.06089 0.1522 0.1497
10 -1.0 0.09742 0.2435 0.2420
11 -0.6 0.1328 0.3321 0.3332
12 -0.2 0.1550 0.3875 0.3910
13 0.2 0.1550 0.3875 0.3910
14 0.6 0.1328 0.3321 0.3332
15 1.0 0.09742 0.2435 0.2420
16 1.4 0.06089 0.1522 0.1497
17 1.8 0.03223 0.08058 0.0790
18 2.2 0.01433 0.03581 0.0355
19 2.6 0.005278 0.01319 0.0136
20 3.0 0.001583 0.003958 0.0044
21 3.4 3.770 × 10−4 9.425 × 10−4 1.232 × 10−3

22 3.8 6.855 × 10−5 1.714 × 10−4 2.919 × 10−4

23 4.2 8.941 × 10−6 2.235 × 10−5 5.894 × 10−5

24 4.6 7.451 × 10−7 1.863 × 10−6 1.014 × 10−5

25 5.0 2.980 × 10−8 7.451 × 10−8 1.487 × 10−6

Table 8.3.1

We can use this table to construct the histogram in Figure 8.3.2. Above
each of the points xk we construct a bar. The width of each bar is 0.4. For
example, the bar constructed above x13 = 0.2 has its left side at 0.0 and its
right side at 0.4. The adjacent bar, the one constructed above x14 = 0.6,
shares the side at 0.4 with the bar constructed above x13 = 0.2 and has
its right side at 0.8. The width of the bar constructed above x14 = 0.6 is
0.8 − 0.4 = 0.4.

We construct the bars in the histogram so that the area in the bar
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above each xk is the P̃{1
5M25 = xk}. This means that the height of the bar

above xk is

hk =
1

0.4
P̃

{
1

5
M25 = xk

}
. (8.3.7) {8.3.7}

In Table 8.3.1, we record the values of hk as well as the probabilities P̃
{

1
5M25 = xk

}

given by (8.3.6).

1√
2π

= 0.3989

−3.0
−2.6

−2.2
−1.8

−1.4
−1.0

−0.6
−0.2

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0

Figure 8.3.2: Histogram for 1
5M25 with normal curve y = 1√

2π
e−x2/2. {F8.3.1}

The standard normal density is

ϕ(x) =
1√
2π

e−
x2

2 . (8.3.8) {8.3.8}

The values of this function are reported in the last column of Table 8.3.1,
and the graph of this function is superimposed on the histogram in Figure
8.3.2. We see that this function is a good approximation to the heights of
the bars in the histogram. In particular

hk ≈ ϕ(xk), k = 0, 1, . . . , 25, (8.3.9) {8.3.9}
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where ≈ means “is approximately equal to.”

Suppose that for some continuous function f(x), we want to evaluate

Ẽ

[
f

(
1

5
M25

)]
.

This would require that we compute the probabilities of P̃{1
5M25 = xk}, as

we have done, and then evaluate the sum

Ẽ

[
f

(
1

5
M25

)]
=

25∑

k=0

f(xk)P̃

{
1

5
M25 = k

}
=

25∑

k=0

f(xk)(hk × 0.4). (8.3.10){8.3.10}

This is already a long computation when the number of tosses is 25, as
in (8.3.10), and it becomes extremely time consuming when the number of
tosses is larger, say N = 100 or N = 1000. Fortunately, we can avoid this
computation because we can get a good approximation to the expected value
in (8.3.10) by using (8.3.9) to replace hk in (8.3.10) and by ϕ(xk):

Ẽ

[
f

(
1

5
M25

)]
≈

25∑

k=0

f(xk)ϕ(xk) × 0.4. (8.3.11){8.3.11}

The right-hand side of (8.3.11) is an approximating sum for a Riemann
integral. In fact, if we wanted to approximate the Riemann integral

∫ ∞

−∞
f(x)ϕ(x) dx, (8.3.12){8.3.12}

as a sum, we would choose some points on the real line, say x0 = −5.0, x1 =
−4.6, . . . , x25 = 5.0, and above each of these points we would build a rect-
angle. Since the distance between the points is 0.4, we could build the
rectangles to be centered at these points and each with width 0.4. Since
f(x)ϕ(x) is the function we want to integrate, we would make the height of
the rectangle at xk equal to f(xk)ϕ(xk). This would result in the sum on
the right-hand side of (8.3.11), which is therefore an approximation to the
Riemann integral ∫ 5

−5
f(x)ϕ(x) dx. (8.3.13){8.3.13}

But when |x| > 5, ϕ(x) is very small (see the last column in Table 8.3.1),
and so, provided f(x) does not grow too rapidly as x → ∞ or x → −∞,
the difference between the integral in (8.3.13) and the integral in (8.3.12)
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is small. In general, we will use this approximation only for functions f(x)
that satisfy

|f(x)| ≤ C for all x ∈ R (8.3.14){8.3.14}

for some constant C. Such a function is said to be bounded, and for such a
function, the difference between (8.3.13) and (8.3.12) can be ignored when
the number of coin tosses is large. For a bounded function, we have the
approximation

Ẽ

[
f

(
1

5
M25

)]
≈
∫ ∞

−∞
f(x)ϕ(x) dx. (8.3.15) {8.3.15}

Saying that two things are approximately equal, as we just did in
(8.3.15), is not a precise mathematical statement. We make precise the
idea we are trying to capture in (8.3.15) using limits. The precise statement
for the situation we have been discussing is the Central Limit Theorem,
which we now state.

{T8.3.1}
Theorem 8.3.1 (Central Limit) Let X1, X2, · · · be a sequence of inde-
pendent, identically distributed random variables under a probability mea-
sure P̃. Assume that ẼXn = 0 and Var(Xn) = 1. (The expected value and
the variance is the same for each Xn because all these random variables have
the same distribution.) Let f(x) be a bounded function defined on the real
line that is continuous except possibly at finitely many points. Then

lim
N→∞

Ẽ

[
f

(
1√
N

N∑

n=1

Xn

)]
=

∫ ∞

−∞
f(x)ϕ(x) dx. (8.3.16) {8.3.16}

It can happen that the random variables we wish to study are of the
form

γ√
N

N∑

n=1

Xn + YN ,

where the sequence X1, X2, . . . is as in the Central Limit Theorem, γ is a
real number, and Y1, Y2, . . . is a sequence of random variables converging to
a real number y. For such a case, we have the following generalization of
the Central Limit Theorem.

{T8.3.2}
Theorem 8.3.2 (Generalized Central Limit) Let X1, X2, · · · be a se-
quence of independent, identically distributed random variables under a prob-
ability measure P̃. Assume that ẼXn = 0 and Var(Xn) = 1. Let γ be a real



10 CHAPTER 8. BLACK-SCHOLES

number and let Y1, Y2, . . . be a sequence of random variables such that, with
probability 1,

lim
N→∞

YN = y,

where y is a real number. Let f(x) be a bounded function defined on the real
line that is continuous except possibly at finitely many points. then

lim
N→∞

Ẽ

[
f

(
γ√
N

N∑

n=1

Xn + YN

)]
=

∫ ∞

−∞
f(γx + y)ϕ(x) dx. (8.3.17){8.3.17}

We close this section with a few observations about the standard normal
density ϕ(x). This function is positive for every x ∈ R, and ϕ integrates to
one: ∫ ∞

−∞
ϕ(x) dx = 1. (8.3.18){8.3.18}

We shall use (8.3.18) without deriving it. (To derive (8.3.18), write

(∫ ∞

−∞
ϕ(x) dx

)2

=

∫ ∞

−∞
ϕ(x) dx ·

∫ ∞

−∞
ϕ(y) dy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dx dy,

and change to polar coordinates to compute the right-hand side, which turns
out to be 1.)

The cumulative standard normal distribtion is

N(x) =

∫ x

−∞
ϕ(y) dy. (8.3.19){8.3.19}

For x ∈ R, N(x) is the area under the graph of ϕ to the left of the point x.
Because is symmetric, (i.e., ϕ(y) = ϕ(−y) for all y ∈ R), the area under the
graph of ϕ to the left of x, which is N(x), is the same as the area under the
graph of ϕ to the right of −x. But the total area under the graph of ϕ is 1
and the area under the graph to the left of −x is N(−x), so the area under
the graph to the right of −x is 1 − N(−x). In other words,

N(x) = 1 − N(−x) for all x ∈ R. (8.3.20){8.3.23}

From the definition of N(x), we see that

N ′(x) = ϕ(x). (8.3.21){8.3.20}
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In particular, N ′(x) is strictly positive, so N is strictly increasing. From the
definition of N(x), it is apparent that

lim
x→−∞

N(x) = 0. (8.3.22){8.3.21}

From (8.3.18), we have

lim
x→∞

N(x) =

∫ ∞

−∞
ϕ(y) dy = 1. (8.3.23){8.3.22}

8.4 The Black-Scholes Formulas
{S8.4}

In this section we develop the Black-Scholes formula for European puts and
calls.

8.4.1 Scaling of interest rate and volatility

We consider a stock with initial price per share S0. On this stock we have
a put option expiring at a positive time τ (measured in years) and having a
positive strike price K. We divide the time between 0 and τ into N steps,
so that each step corresponds to a period of time of length τ

N .1

We want to build a binomial model which has N steps between time
zero and time τ . To simplify the computations, we will design this model so
that the risk-neutral probabilities are p̃ = q̃ = 1

2 . If the up factor per period
is u and the down factor is d, where 0 < d < 1 + r < u, then in order to
have

p̃ =
1 + r − d

u − d
=

1

2
, q̃ =

u − 1 − r

u − d
=

1

2
,

we must have
2(1 + r − d) = u − d = 2(u − 1 − r),

and so u − (1 + r) = (1 + r) − d. We call this common value σ, which is
positive. In other words,

σ = u − (1 + r) = (1 + r) − d, (8.4.1) {8.4.1a}
1A stock price can change only when it is possible to trade it, which generally means

only when the exchange on which it is traded is open. In practice, one needs to account

for this fact when dividing the time interval between zero and τ into steps. For example,

suppose τ = 1

4
years, so we have a “three-month option.” In three months there are

approximately 66 trading days. Thus, If we take N = 66, we are dividing time into steps

of one trading day each and are excluding non-trading days from consideration. In these

notes we ignore these so-called day count issues.
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or equivalently,
u = 1 + r + σ, d = 1 + r − σ. (8.4.2) {8.4.2a}

The risk-neutral expected return between time n and time n + 1 is
defined to be

Ẽ

[
Sn+1 − Sn

Sn

]
= p̃

uSn − Sn

Sn
+ q̃

dSn − Sn

Sn

=
1

2
(u − 1) +

1

2
(d − 1)

=
1

2
(r + σ) +

1

2
(r − σ)

= r, (8.4.3)

which is what the expected return must be under the risk-neutral measure.
To determine the risk-neutral variance of the return between time n and
time n + 1, we first compute

Ẽ

[(
Sn+1 − Sn

Sn

)2
]

= p̃

(
uSn − Sn

Sn

)2

+ q̃

(
dSn − Sn

Sn

)2

=
1

2
(u − 1)2 +

1

2
(d − 1)2

=
1

2
(r + σ)2 +

1

2
(r − σ)2

= r2 + σ2. (8.4.4)

The risk-neutral variance of the return is

Var

[
Sn+1 − Sn

Sn

]
= Ẽ

[(
Sn+1 − Sn

Sn

)2
]
−
(

Ẽ

[
Sn+1 − Sn

Sn

])2

= (r2 + σ2) − r2

= σ2. (8.4.5)

Having thus computed the one-period expected return and variance of
return, we next compute the expected return and variance of return for N
periods. To do this, we need the formulas

E

[
Sn+1

Sn

]
= p̃u + q̃d =

1

2
(1 + r + σ) +

1

2
(1 + r − σ) = 1 + r (8.4.6){8.4.6a}

and

Ẽ

[
S2

n+1

S2
n

]
= p̃u2+ q̃d2 =

1

2
(1+r+σ)2+

1

2
(1+r−σ)2 = (1+r)2+σ2. (8.4.7){8.4.7a}
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The actual return over the N periods beginning at time zero is SN−S0

S0
. Using

the independence of the random variables S1

S0
, S2

S1
,. . . ,

SN−1

SN−2
,

SN−1

SN
and using

(8.4.6), we compute

Ẽ

[
SN

S0

]
= Ẽ

[
S1

S0
· S2

S1
· · · · · SN−1

SN−2
· SN

SN−1

]

= Ẽ

[
S1

S0

]
· Ẽ

[
S2

S1

]
· · · · · Ẽ

[
SN−1

SN−2

]
· Ẽ

[
SN

SN−1

]

= (1 + r)N . (8.4.8)

The expected return over the N periods beginning at time zero is

Ẽ

[
SN − S0

S0

]
= Ẽ

[
SN

S0

]
− 1 = (1 + r)N − 1. (8.4.9) {8.4.9a}

To compute the variance of the expected return, we first use (8.4.8), inde-

pendence of
S2

1

S2

0

,
S2

2

S2

1

, . . . ,
S2

N−1

S2

N−2

,
S2

N

S2

N−1

, and (8.4.7) to compute

Ẽ

[(
SN − S0

S0

)2
]

= Ẽ

[
S2

N − 2SNS0 + S2
0

S2
0

]

= Ẽ

[
S2

N

S2
0

]
− 2Ẽ

[
SN

S0

]
+ 1

= Ẽ

[
S2

1

S2
0

· S2
2

S2
1

· · · · ·
S2

N−1

S2
N−2

· S2
N

S2
N−1

]
− 2(1 + r)N + 1

= Ẽ

[
S2

1

S2
0

]
· Ẽ

[
S2

2

S2
1

]
· · · · · Ẽ

[
S2

N−1

S2
N−2

]
· Ẽ

[
S2

N

S2
N−1

]
− 2(1 + r)N + 1

=
(
(1 + r)2 + σ2

)N − 2(1 + r)N + 1. (8.4.10)
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The variance of the N -period return is

Var

[
SN − S0

S0

]

= Ẽ

[(
SN − S0

S0

)2
]
−
(

Ẽ

[
SN − S0

S0

])2

=
(
(1 + r)2 + σ2

)N − 2(1 + r)N + 1 −
(
(1 + r)N − 1

)2

=
(
(1 + r)2 + σ2

)N − 2(1 + r)N + 1 −
(
(1 + r)2N − 2(1 + r)N + 1

)

=
(
(1 + r)2 + σ2

)N − (1 + r)2N . (8.4.11)

We divide the time interval [0, τ ] into N steps, each of which will have
lenth τ

N , and we ultimately let N → ∞. When we do that, the average
growth rate of the stock will be the continuously compounding rate. We
would like the interest rate for this continuously compounding to be r per
year. In particular, we want to have Ẽ[SN ] = erτS0, or equivalently, we
want to have the N -period risk-neutral expected return on the stock to be

Ẽ

[
SN − S0

S0

]
= erτ − 1. (8.4.12){8.4.12a}

But in order to have interest rate r per year, we cannot also have interest
rate r per period, which is a fraction of year. Indeed, comparing (8.4.12) to
(8.4.9), we see that the interest accrued over each period should be computed
using rτ

N rather than r. This makes sense because when r is the annual
interest rate, the interest accrued on $1 over a time period of length τ

N
should be rτ

N . If we substitute rτ
N for r in (8.4.9) and then let N → ∞, we

obtain the desired expected return,

lim
N→∞

Ẽ

[
SN − S0

S0

]
= lim

N→∞

(
1 +

rτ

N

)N
− 1 = erτ − 1, (8.4.13)

where the limit is justified by substituting a = rτ and b = 0 into Lemma
8.4.1, which follows.

{L8.4.1}
Lemma 8.4.1 Let a and b be real numbers. Then

lim
N→∞

(
1 +

a

N
+

b

N2

)N

= ea. (8.4.14){8.4.14a}
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Proof: We make the change of variable x = 1
N in the following calulation:

lim
N→∞

ln

(
1 +

a

N
+

b

N2

)N

= lim
x→0

ln
(
1 + ax + bx2

) 1

x

= lim
x→0

ln(1 + ax + bx2)

x
.

This leads to the indeterminant form 0
0 , and so we use L’Hopital’s rule to

compute

lim
x→0

ln(1 + ax + bx2)

x
= lim

x→0

a + 2bx

1 + ax + bx2
= a.

We have computed the logarithm of the limit in (8.4.14) and gotten a, so
the limit in (8.4.14) is ea.

We also want to have a limiting variance for the stock return as N → ∞.
The variance is given by (8.4.11). We have already seen that we should
replace r by rτ

N . To guarantee that there is a meaningful limit as N → ∞ in

(8.4.11), we similarly replace σ2 by σ2τ
N , or equivalently, replace σ by σ

√
τ√

N
.

With this substitution and again using Lemma 8.4.1, we obtain the limiting
variance of return

lim
N→∞

Var

[
SN − S0

S0

]

= lim
N→∞

((
1 +

rτ

N

)2
+

σ2τ

N

)N

− lim
N→∞

(
1 +

2rτ

2N

)2N

= lim
N→∞

(
1 +

(2r + σ2)τ

N
+

r2τ2

N2

)N

− e2rτ

= e(2r+σ2)τ − e2rτ . (8.4.15)

Note that if we had instead replaced σ by στ
N , then the limiting variance of

SN−S0

S0
would be zero, so that there would be no randomness left as N → ∞.

For that reason, we replace σ by σ
√

τ√
N

rather than by στ
N .

We now return to the formula (8.4.2) for the up and down factors in
the N period model. When we divide the time interval [0, τ ] into N periods,
we take these to be

u = 1 +
rτ

N
+

σ
√

τ√
N

, d = 1 +
rτ

N
− σ

√
τ√

N
. (8.4.16) {8.4.17a}

With these choices of u and d, the risk-neutral probabilities are still p̃ = q̃ =
1
2 .
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The parameter σ in (8.4.16) is called the volatility of the stock. This
parameter describes how much the stock price moves over time and is thus
a measure of the risk associated with investing in the stock.

When one builds a binomial model for a stock price on an interval of
time from 0 to τ , dividing [0, τ ] into N steps, one first estimates the volatility
from price data and then takes the up and down factors to be either those
given by (8.4.16) or by

u = eσ
√

τ/
√

N , d = e−σ
√

τ/
√

N . (8.4.17){8.4.1}

The formulas (8.4.16) and (8.4.17) are quite close, as we now show.

Recall from Taylor’s Theorem that if a function f(x) has continuous
first and second derivatives, then

f(x) = f(0) + f ′(0)x +
1

2
f ′′(ξ)x2, (8.4.18){8.4.3}

where ξ is a point between 0 and x. So long as we restrict attention to
x ∈ [−1, 1], the term f ′′(ξ) is bounded by a constant, and we may rewrite
(8.4.18) as

f(x) = f(0) + f ′(0)x + O(x2), (8.4.19){8.4.4}

where we use the notation O(x2) to denote any term that is bounded by a
constant times x2 so long as x ∈ [−1, 1].

Applying Taylor’s Theorem to f(x) = ex, for which f ′(0) = 1, we
obtain from (8.4.19) that

ex = 1 + x + O(x2). (8.4.20){8.4.5}

If N > σ2τ , then we can replace x by ±σ
√

τ/
√

N , which is in [−1, 1], and
(8.4.20) yields

e±σ
√

τ/N = 1 ± σ
√

τ√
N

+ O

(
1

N

)
, (8.4.21){8.4.6}

where we use the notation O( 1
N ) to denote any term that can be bounded by

1
N times a constant that does not depend on N . From (8.4.21) we see that
the choice of u and d in (8.4.17) is close to the choice in (8.4.16), and in fact
the difference is no larger than a constant times 1

N . Because the choices in
(8.4.16) and (8.4.17) are so close for large values of N , either choice will lead
to the same Black-Scholes formulas; we make the choice (8.4.16) because it
makes the derivation of the formulas simpler.
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8.4.2 Black-Scholes price of a put

Consider an N -period binomial model with up and down factors u and d
given by (8.4.16) and with per-period interest rate rτ

N . The risk-neutral
probabilities are

p̃ =
1 + rτ

N − d

u − d
=

σ
√

τ/
√

N

2σ
√

τ
√

N
=

1

2
, q̃ = 1 − p̃ =

1

2
. (8.4.22) {8.4.7}

This model is the result of dividing τ years into N steps, and so SN is the
stock price at time τ . This stock price is

SN = S0u
HN dTN , (8.4.23) {8.4.8}

where HN is the number of heads obtained in N coin tosses, and TN is the
number of tails. In this subsection we price a put, so we are interested in
computing

P0 =
1

(1 + rτ
N )N

Ẽ
[
(K − SN )+

]
=

1

(1 + rτ
N )N

Ẽ

[(
K − S0u

HN dTN
)+]

(8.4.24) {8.4.9}
for some positive strike price K. In particular, we want to compute the limit
in (8.4.24) as N → ∞. We can use Lemma 8.4.1 to compute the limit of the
discount term in (8.4.9). In fact, Lemma 8.4.1 implies

lim
N→∞

1

(1 + rτ
N )N

= e−rτ . (8.4.25) {8.4.25}

We use the Law of Large Numbers and the Central Limit Theorem
to compute the limit of the expected value in (8.4.24). In particular, we
compute

lim
N→∞

Ẽ

[(
K − S0u

HN dTN
)+]

, (8.4.26) {8.4.10}

and this will result in the Black-Scholes formula for the price of a put. For
large values of N , the put price in the N -period binomial model will be close
to the price given by the Black-Scholes formula.

We first work out the Taylor series expansion for the function f(x) =
ln(1 + x). We need the first two derivatives and their values at zero, which
are as follows:

f(x) = ln(1 + x), f(0) = 0,

f ′(x) =
1

1 + x
, f ′(0) = 1,

f ′′(x) = − 1

(1 + x)2
, f ′′(0) = −1.
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According to Taylor’s Theorem,

ln(1 + x) = f(0) + xf ′(0) +
1

2
x2f ′′(x) + O(x3) = x− 1

2
x2 + O(x3). (8.4.27) {8.4.11}

Now

lnSN

= ln
(
S0u

HN dTN
)

= lnS0 + HN lnu + Tn ln d

= lnS0 + HN ln

(
1 +

rτ

N
+

σ
√

τ√
N

)
+ TN ln

(
1 +

rτ

N
− σ

√
τ√

N

)

= lnS0 + HN

(
rτ

N
+

σ
√

τ√
N

− σ2τ

2N
+ O

( 1

N
√

N

))

+TN

(
rτ

N
− σ

√
τ√

N
− σ2τ

2N
+ O

( 1

N
√

N

))

= σ
√

τ
HN − TN√

N
+ lnS0 +

(
r − 1

2
σ2

)
τ

HN + TN

N

+
HN

N
O
( 1√

N

)
+

TN

N
O
( 1√

N

)

= σ
√

τ
MN√

N
+ lnS0 +

(
r − 1

2
σ2

)
τ +

HN

N
O
( 1√

N

)
+

TN

N
O
( 1√

N

)
,

(8.4.28)

where we have used (8.2.10) and (8.2.9) in the last step. We define

YN = lnS0 +

(
r − 1

2
σ2

)
τ +

HN

N
O
( 1√

N

)
+

TN

N
O
( 1√

N

)
.

According to (8.3.1) and the analogous equation for TN , with probability
one,

lim
N→∞

YN = lnS0 +

(
r − 1

2
σ2

)
τ. (8.4.29){8.4.14}

Furthermore, MN is given by (8.2.3), where the random variables X1, X2, . . .
are independent and identically distributed with expected value 0 and vari-
ance 1. The Generalized Central Limit Theorem, Theorem 8.3.2, implies
that for any bounded, continuous function f(x) defined on R,

lim
N→∞

Ẽ [f(lnSN )] =

∫ ∞

−∞
f

(
xσ

√
τ + lnS0 +

(
r − 1

2
σ2

)
τ

)
ϕ(x) dx.

(8.4.30){8.4.20}
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To get the put payoff, we take

f(x) = (K − ex)+ (8.4.31){8.4.21}

so that
f(lnSN ) = (K − SN )+. (8.4.32) {8.4.22}

This function is continuous and bounded between 0 and K, and thus satisfies
the conditions of the Generalized Central Limit Theorem. Using (8.4.25) and
(8.4.30), we see that the limit as N → ∞ of the put price P0 in (8.4.24) is

lim
N→∞

1

(1 + rτ
N )N

Ẽ
[(

K − SN

)+]
(8.4.33)

= e−rτ

∫ ∞

−∞

(
K − exp

{
xστ + lnS0 +

(
r − 1

2
σ2

)
τ

})+

ϕ(x) dx

=
e−rτ

√
2π

∫ ∞

−∞

(
K − S0 exp

{
xστ +

(
r − 1

2
σ2

)
τ

})+

exp

{
−x2

2

}
dx.

(8.4.34)

It remains to compute the right-hand side of (8.4.34). We must first
determine the values of x for which

K − S0 exp

{
xστ +

(
r − 1

2
σ2

)
τ

}
> 0, (8.4.35) {8.4.36}

so that the integrand on the right-hand side of (8.4.34) is not zero. Inequality
(8.4.35) is equivalent to each of the following inequalities:

K > S0 exp

{
xσ

√
τ +

(
r − 1

2
σ2

)
τ

}
,

K

S0
> exp

{
xσ

√
τ +

(
r − 1

2
σ2

)
τ

}
,

ln
K

S0
> xσ

√
τ +

(
r − 1

2
σ2

)
τ

− ln
S0

K
−
(

r − 1

2
σ2

)
τ > xσ

√
τ ,

− 1

σ
√

τ

[
ln

S0

K
+

(
r − 1

2
σ2

)
τ

]
> x.

We define

d2 =
1

σ
√

τ

[
ln

S0

K
+

(
r − 1

2
σ2

)
τ

]
. (8.4.36) {8.4.37}
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Then (8.4.35) is equivalent to

x < −d2. (8.4.37) {8.4.38}

We only need to integrate the right-hand side of (8.4.34) over values of x
satisfying (8.4.37); for other values of x, the integrand in (8.4.34) is zero.
Thus, the right-hand side of (8.4.34) is

e−rτ

√
2π

∫ −d2

−∞

(
K − S0 exp

{
xσ

√
τ +

(
r − 1

2
σ2

)
τ

})
exp

{
−x2

2

}
dx

=
e−rτK√

2π

∫ −d2

−∞
e−x2/2 dx − S0√

2π

∫ −d2

−∞
exp

{
−1

2
(x − σ

√
τ)2
}

dx.

(8.4.38)

The first term on the right-hand side of (8.4.38) is e−rτKN(−d2). In the
second term, we make the change of variable y = x − σ

√
τ . To find the

upper limit of integration, we note that when x = −d2,

y = −d2 − σ
√

τ

= − 1

σ
√

τ

[
ln

S0

K
+

(
r − 1

2
σ2

)
τ

]
− σ

√
τ

= − 1

σ
√

τ

[
ln

S0

K
+

(
r − 1

2
σ2

)
τ + σ2τ

]

= − 1

σ
√

τ

[
ln

S0

K
+

(
r +

1

2
σ2

)
τ

]
= −d1,

where

d1 =
1

σ
√

τ

[
ln

S0

K
+

(
r +

1

2
σ2

)
τ

]
. (8.4.39){8.4.40}

The second term on the right-hand side of (8.4.38) is

− S0√
2π

∫ −d1

−∞
e−y2/2 dy = −S0N(−d1).

We have thus determined that the right-hand side of (8.4.38) is

e−rτKN(−d2) − S0N(−d1).

This is the Black-Scholes price of a put. We summarize with a theorem.



8.4. THE BLACK-SCHOLES FORMULAS 21

{T8.4.2}
Theorem 8.4.2 The Black-Scholes price of a put with strike price K and
expiration time τ on a stock with volatility σ, obtained as the limit of the
put price in a binomial model, is

lim
N→∞

1

(1 + rτ
N )N

Ẽ
[(

K − SN

)+]
= e−rτKN(−d2) − S0N(−d1), (8.4.40){8.4.41}

where d1 and d2 are given by (8.4.39) and (8.4.36).

8.4.3 Black-Scholes price of a call

We derived the Black-Scholes price of a put rather than a call because the
put pay-off function is bounded (see (8.4.31)), and this is required in order
to use the Generalized Central Limit Theorem. The call payoff function is
unbounded (in place of (8.4.31), for the call we would have f(x) = (ex−K)+,
and this has limit ∞ as x → ∞), and so we cannot directly apply the
Generalized Central Limit Theorem to the call pricing problem. However,
we can use put-call parity to derive the call price from the put price, and
we do that now.

{T8.4.3}
Theorem 8.4.3 The Black-Scholes price of a call with strike price K and
expiration time τ on a stock with volatility σ, obtained as the limit of the
call price in a binomial model, is

lim
N→∞

1

(1 + rτ
N )N

Ẽ
[(

SN − K
)+]

= S0N(d1) − e−rτKN(d2), (8.4.41) {8.4.42}

where d1 and d2 are given by (8.4.39) and (8.4.36).

Proof: Let

C0 =
1

(1 + rτ
N )N

Ẽ
[(

SN − K)+
)]

,

and recall from (8.4.24) the price of the put

P0 =
1

(1 + rτ
N )N

Ẽ
[(

K − SN )+
)]

.

Because (
SN − K

)+ −
(
K − SN

)+
= SN − K,
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we have

C0 − P0 =
1

(1 + rτ
N )N

Ẽ
[
SN − K

]

But Sn

(1+ rτ
N

)n , n = 0, 1, . . . , N, is a martingale under the risk-neutral proba-

bility measure, so

C0 − P0 = S0 −
K

(1 + rτ
N )N

.

From this equation, Theorem 8.4.2, and equation (8.4.25), we have

lim
N→∞

C0 = lim
N→∞

P0 + S0 − lim
N→∞

K

(1 + rτ
N )N

= e−rτKN(−d2) − S0N(−d1) + S0 − e−rτK

= S0

(
1 − N(−d1)

)
− e−rτK

(
1 − N(−d2)

)
. (8.4.42)

Finally, we use (8.3.20) to obtain (8.4.41) from (8.4.42).

8.4.4 Summary of formulas

For future reference, we record here the Black-Scholes formulas for the price
of a call and a put. In these formulas, s is the price of the underlying stock
at the time of pricing and τ is the time until expiration of the option. If the
option expires at T and the time of pricing is t, where 0 ≤ t < T , then

τ = T − t, (8.4.43){8.4.44}

and s is the stock price at time t. The variables d1 and d2 depend on both
τ and s, and we indicate that explicitly in (8.4.44)–(8.4.47) below.

The Black-Scholes price of a call is

c(t, s) = sN
(
d1(τ, s)

)
− e−rτKN

(
d2(τ, s)

)
, (8.4.44){8.4.45}

and the Black-Scholes price of a put is

p(t, s) = e−rτKN
(
− d2(τ, s)

)
− sN

(
− d1(τ, s)

)
, (8.4.45){8.4.46}

where

d1(τ, s) =
1

σ
√

τ

[
ln

s

K
+

(
r +

1

2
σ2

)
τ

]
, (8.4.46)

d2(τ, s) =
1

σ
√

τ

[
ln

s

K
+

(
r − 1

2
σ2

)
τ

]
. (8.4.47)
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Using (8.3.20), we derive from (8.4.44) and (8.4.45) the put-call parity rela-
tionship

c(t, s) − p(t, s) = s
[
N
(
d1(τ, s)

)
+ N

(
− d1(τ, s)

)]

−e−rτK
(
N
(
d2(τ, s)

)
+ N

(
− d2(τ, s)

)]

= s − e−rτK. (8.4.48)

8.5 Black-Scholes Partial Differential Equation
{S8.5}

The Black-Scholes functions c(t, s) and p(t, s) satisfy a partial differential
equation that plays an important role in the construction of replicating
portfolios. In this section we begin with the backward recursion developed
for the binomial model and pass to the limit to derive the partial differential
equation satisfied by both the call and the put formulas.

8.5.1 Fixing a time t

Consider a time interval [0, τ ], which we divide into N periods, each of
length τ

N . The annual interest rate is r and the stock volatility is σ. The
parameters in this N -period model depend on N , and we use a subscript N
to remind us of this fact. The up and down factors are

uN = 1 +
rτ

N
+

σ
√

τ√
N

, dN = 1 +
rτ

N
− σ

√
τ√

N
.

We set
rN =

rτ

N
.

The risk-neutral probabilities are

p̃ =
1 + rN − dN

uN − dN
=

1

2
, q̃ =

uN − 1 − rN

uN − dN
=

1

2
.

When we divide the time interval [0, τ ] into N periods, we need to be
clear about what we mean by “time.” If τ = 1

4 , then in a 50-period model,
the beginning of period zero will be time 0 and the beginning of period 25
will at time 1

8 . In a 100-period model with τ = 1
4 , time 1

8 is at the beginning
of period 50. We shall speak of “the beginning of period 25” rather than
“time 25.” When we say “time,” we mean a number between 0 and τ , not
a value of n in the binomial model.
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The backward recursion for the N -period model is

vn,N (s) =
1

1 + rN

[
1

2
vn+1,N (uNs) +

1

2
vn+1,N (dNs)

]
. (8.5.1) {8.5.1}

Here we denote by vn,N the value of an option in the N -period model at
the beginning of period n. We denote by vN,N (s) the payoff of the option
at time N . For a call, vN,N (s) = (s − K)+ if the stock price at time τ is s.

We fix a time t and consider the value of an option at this time in a
sequence of binomial models. We do that by letting both n and N go to
infinity in such a way that t = nτ

N remains fixed. For example, if τ = 1
4 and

we want to consider the time t = 1
8 , in the 50 period model we choose n = 25

and in the 100 period model we choose n = 50. In general, we would always
take n = N

2 and let both n and N goes to infinity. With τ = 1
4 and t = 1

8
we would not consider odd values of N , since there is no period beginning
at time t = 1

8 when we divide [0, 1
4 ] into an odd number of periods.

We denote by v(t, s) the limit of vn,N (s) as N → ∞ where we also let
n → ∞ so that the ratio nτ

N is always equal to t. If we are considering a
call, then v(t, s) will be the Black-Scholes call price c(t, s) given by (8.4.44);
if we are considering a put, then v(t, s) will be the p(t, s) given by (8.4.45).

When t = nτ
N , then period n + 1 begins at time t + τ

N . We replace
vn,N (s) in (8.5.1) by the limit v(t, s), replace vn+1,N(uNs) by v(t+ τ

N , uNs),
and replace vn+1,N (dNs) by v(t+ τ

N , dNs). We are replacing one set of terms
by other terms that are only approximately the same. This introduces an
error, and the size of that error depends on the value of N . In fact, the error
is not larger than a constant times 1

N
√

N
, so we say the error is O( 1

N
√

N
). It

is difficult to show that this is the size of the error, and we do not do so.

8.5.2 Expansion of backward recursion formula

We write (8.5.1) as

vn+1,N (uNs) + vn+1,N (dNs) − 2(1 + rN )vn,N (s) = 0

and make the replacements just described. Because of the error introduced,
we no longer have 0 on the right-hand side of the equation, but instead have
O( 1

N
√

N
). Indeed, we have

v
(
t +

τ

N
, uNs

)
+v
(
t +

τ

N
, dNs

)
−2(1+rN )v(t, s) = O

(
1

N
√

N

)
. (8.5.2){8.5.2}
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We rearrange the left-hand side of (8.5.2) to obtain
[
v
(
t +

τ

N
, uNs

)
− v(t, uNs)

]
+ [v(t, uNs) − v(t, s)]

+
[
v
(
t +

τ

N
, dNs

)
− v(t, dNs)

]
+ [v(t, dNs) − v(t, s)] (8.5.3)

−2rNv(t, s) = O

(
1

N
√

N

)
.

We now apply Taylor’s Theorem. In (8.5.4) and (8.5.5) below, we hold
the second argument of v fixed and apply Taylor’s Theorem to the variable
t. To simplify notation, we denote ∂v

∂t by vt. In (8.5.6) and (8.5.7), we hold
the first argument of v fixed and apply Taylor’s Theorem to the variable s.
In this case we denote ∂v

∂s by vs and ∂2v
∂s2 by vss. We have the four expansions

v
(
t +

τ

N
, uNs

)
= v(t, uNs) + vt(t, uNs)

τ

N
+ O

(
1

N2

)
, (8.5.4)

v
(
t +

τ

N
, dNs

)
= v(t, dNs) + vt(t, dNs)

τ

N
+ O

(
1

N2

)
, (8.5.5)

v(t, uNs) = v(t, s) + vs(t, s)(uN − 1)s +
1

2
vss(t, s)(uN − 1)2s2

+O
(
(uN − 1)3s3

)
, (8.5.6)

v(t, dNs) = v(t, s) + vs(t, s)(dN − 1)s +
1

2
vss(t, s)(dN − 1)2s2

+O
(
(dN − 1)3s3

)
. (8.5.7)

Because uN − 1 = O( 1√
N

) and dN − 1 = O( 1√
N

), the O(·) terms appearing

on the right-hand side of (8.5.6) and (8.5.7) are O( 1
N
√

N
). Furthermore,

(uN − 1)2 =
σ2τ

N
+ O

(
1

N
√

N

)
+ O

(
1

N2

)
.

But here is no need to write O( 1
N2 ) in an equation containing O

(
1

N
√

N

)
,

because anything that is bounded by a constant times 1
N2 is also bounded

by a constant times O( 1
N
√

N
). Thus,

(uN − 1)2 =
σ2τ

N
+ O

(
1

N
√

N

)
, (8.5.8) {8.5.8}

and similary

(dN − 1)2 =
σ2τ

N
+ O

(
1

N
√

N

)
(8.5.9) {8.5.9}



26 CHAPTER 8. BLACK-SCHOLES

Using (8.5.4), (8.5.6), (8.5.5) and (8.5.7), in that order, we see that the first
four terms on the left-hand side of (8.5.3) are

v
(
t +

τ

N
, uNs

)
− v(t, uNs) =

τ

N
vt(t, uNs) + O

(
1

N2
,

)
(8.5.10)

v(t, uNs) − v(t, s) =

(
rτ

N
+

σ
√

τ√
N

)
svs(t, s) +

σ2τs2

2N
vss(t, s)

+O

(
1

N
√

N

)
, (8.5.11)

v
(
t +

τ

N
, dNs

)
− v(t, dNs) =

τ

N
vt(t, dNs) + O

(
1

N2

)
, (8.5.12)

v(t, dNs) − v(t, s) =

(
rτ

N
− σ

√
τ√

N

)
svs(t, s) +

σ2τs2

2N
vss(t, s)

O

(
1

N
√

N

)
. (8.5.13)

We substitute these expressions into (8.5.3), and again do not write any
O( 1

N2 ) terms because an O( 1
N
√

N
) term is present. This yields

τ

N
vt(t, uNs) +

τ

N
vt(t, dns) +

2rτ

N
svs(t, s) +

σ2τs2

N
vss(t, s) −

2rτ

N
v(t, s)

= O

(
1

N
√

N

)
. (8.5.14)

We multiply (8.5.14) by N
2τ to obtain the expanded backward recursion for-

mula

vt(t, uNs) + vt(t, dNs)

2
+ rsvs(t, s) +

1

2
σ2s2vss(t, s) − rv(t, s) = O

(
1√
N

)
.

(8.5.15){8.5.11}

8.5.3 Black-Scholes partial differential equation

Equation (8.5.15) is a Taylor expansion of the binomial backward recursion
formula (8.5.1). As a last step in this discussion, we let N → ∞. We observe
that limN→∞ uN = 1 and limN→∞ dN = 1, so

lim
N→∞

vt(t, uNs) + vt(t, dNs)

2
=

vt(t, s) + vt(t, s)

2
= vt(t, s).
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As N → ∞, the right-hand side of (8.5.15) converges to zero. Thus, taking
the limit in (8.5.15), we obtain the Black-Scholes partial differential equation

rv(t, s) = vt(t, s) + rsvs(t, s) +
1

2
σ2s2vss(t, s). (8.5.16){8.5.12}

Equation (8.5.16) is satisfied by both c(t, s) given by (8.4.44) and p(t, s)
given by (8.4.45).

8.5.4 Delta hedging

In the binomial model, we can replicate an option by trading in the un-
derlying stock and borrowing or investing in the money market account as
necessary to finance this. If the price of a share of stock at the beginning of
period n is s, then the number of shares of the stock held by the replicating
portfolio from the beginning to the end of period n is

∆n =
vn+1,N(uNs) − vn+1,N (dNs)

(uN − dN )s
. (8.5.17) {8.5.13}

For large values of N , it is possible to replace (8.5.17) by a simpler formula
by determining the limit in (8.5.17) as N → ∞.

Again we fix t and let N and n both approach infinity so that t = nτ
N

remains constant. We first observe that

(uN − dN )s =
2σs

√
τ√

N
. (8.5.18) {8.5.14}

In (8.5.17) we substitute (8.5.18), we replace vn+1,N (uNs) by v(t+ τ
N , uNs),

and we replace vn,N (dNs) by v(t+ τ
N , dNs). This introduces an error O( 1

N
√

N
),

so that (8.5.17) becomes

∆(t, s) =

√
N

2σs
√

τ

[
v
(
t +

τ

N
, uNs

)
− v

(
t +

τ

N
, dNs

)
+ O

(
1

N
√

N

)]
.

(8.5.19) {8.5.15}
We call the expression in (8.5.19) ∆(t, s) rather than ∆n because as N → ∞
(and along with it, n → ∞), this expression will depends on the time t and
the underlying stock price s at that time but not on the period n.
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Using (8.5.10) and (8.5.12) in the second equality below, we have

∆(t, s)

=

√
N

2σs
√

τ

[(
v
(
t +

τ

N
, uNs

)
− v
(
t, uN (s)

))
+
(
v(t, uNs) − v(t, dNs)

)

−
(
v
(
t +

τ

N
, dNs

)
− v(t, dNs)

)]
+ O

(
1

N

)

=

√
N

2σs
√

τ

[
τ

N
vt(t, uNs) + v(t, uNs) − v(t, dNs) − τ

N
vt(t, dNs)

+O

(
1

N2

)]
+ O

(
1

N

)

=

√
N

2σs
√

τ

[
v(t, uNs) − v(t, dNs)

]
+ O

(
1√
N

)
. (8.5.20)

From (8.5.6), (8.5.7), (8.5.8), (8.5.9), and (8.5.18), we have

v(t, uNs) − v(t, dNs) = vs(t, s)(uN − dN )s + O

(
1

N

)

=
2σs

√
τ√

N
vs(t, s) + O

(
1

N

)
. (8.5.21)

Substitution of (8.5.21) into (8.5.20) yiels

∆(t, s) = vs(t, s) + O

(
1√
N

)
. (8.5.22){8.5.22}

Letting N → ∞, we see that at each time t, if the stock price is s, the
replicating portfolio should hold

∆(t, s) = vs(t, s). (8.5.23){8.5.23}

This is called the delta of the option. When we hold ∆(t, s) shares of the
underlying stock at time t, we are said to be “delta hedging.”

For a call option, whose price is given by (8.4.44), the delta of the
option is

cs(t, s) = N
(
d1(τ, s)

)
. (8.5.24){8.5.24}

For the put option, whose price is given by (8.4.45), the delta of the option
is

ps(t, s) = N
(
d1(τ, s)

)
− 1 = −N

(
− d1(τ, s)

)
. (8.5.25){8.5.25}


