Exam #3 Review

1. Consider the system of differential equations

$$\frac{dx}{dt} = -5x + 2y$$
$$\frac{dy}{dt} = -x - 2y$$

- (a) Find the solution of the system that satisfies the initial conditions x(0) = 2, y(0) = 3.
- (b) Sketch graph that shows the trajectory of the solution you found in part (a). On a second set of axes, sketch a phase portrait for the system of differential equations.
- 2. Consider the second order, linear differential equation

$$y'' + y = \mathcal{U}(t - \pi) + k\delta(t - \frac{3\pi}{2}).$$

which models the motion of a mass-spring system under the influence of an external force.

- (a) Find the solution to the equation satisfying the initial conditions y(0) = 0, y'(0) = 0using the Laplace transform method. It may help to know that $\frac{1}{s(s^2+1)} = \frac{1}{s} - \frac{s}{s^2+1}$.
- (b) Is there a value of k that results in the mass remaining stationary for $t > \frac{3\pi}{2}$?
- 3. Consider the system of differential equations

$$\begin{array}{rcl} x' &=& x & +2y \\ y' &=& -5x & -y \end{array}$$

- (a) Find the solution to the system satisfying the initial conditions x(0) = -2, y(0) = 1.
- (b) Find the x- and y-nullclines for the system. Use the nullclines and information from the analytic solution you found in (a) to sketch a phase portrait for the system.
- (c) Make a mark next to each term that describes this system:

_____ center _____ spiral ______ sink ____ node _____ saddle ______ stable _____ asymptotically stable ______ source _____ simplex ______ unstable

4. Consider the differential equation

$$x'' + 4x = 2\delta(t - \pi) + \delta(t - T_1) + \delta(t - T_2)$$

where $\pi < T_1 < T_2$.

- (a) Find a solution to this equation satisfying x(0) = 0, x'(0) = 0. Your answer should depend on T_1 and T_2 .
- (b) Are there values for T_1 and T_2 such that x(t) = 0 for all $t > T_2$?
- 5. Consider the system of equations

$$\frac{\frac{dx}{dt}}{\frac{dx}{dt}} = y$$
$$\frac{\frac{dx}{dt}}{\frac{dx}{dt}} = 2x + y$$

- (a) Find the solution of the system satisfying the initial condition x(0) = 3, y(0) = 2.
- (b) Describe the behavior of this solution (in the phase plane) as $t \to \infty$.
- (c) Describe the behavior of this solution (in the phase plane) as $t \to -\infty$.
- (d) Sketch a graph of this solution.
- (e) Make a mark next to each term that describes this system:

center	spiral	$_$ sink	node	$_$ saddle
stable	asymptotically stable	source	$_$ simplex	$_$ unstable

6. Consider the system of equations

$$\frac{dx}{dt} = 7x - y$$
$$\frac{dx}{dt} = x + 5y$$

- (a) Find a value of A such that $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = e^{6t} \begin{bmatrix} 4 \\ 5 \end{bmatrix} + te^{6t} \begin{bmatrix} A \\ A \end{bmatrix}$ is a solution to the system.
- (b) Determine the nullclines for this system. Where in the phase plane do solutions move upward? Downward? To the left? To the right? Sketch a graph showing the null clines, and the directions solutions travel when they cross the nullclines.
- (c) Sketch a phase portrait for this system.
- (d) Make a mark next to each term that describes this system:

_____ center _____ spiral ______ sink ____ node _____ saddle ______ stable _____ asymptotically stable ______ source _____ simplex ______ unstable

7. Consider the system of differential equations

$$\frac{dx}{dt} = -5x + 2y$$
$$\frac{dy}{dt} = -x - 2y$$

(a) Find the solution of the system that satisfies the initial conditions x(0) = 2, y(0) = 3.

- (b) Sketch graph that shows the trajectory of the solution you found in part (a). On a second set of axes, sketch a phase portrait for the system of differential equations.
- 8. Consider the system of differential equations

$$\frac{dx}{dt} = y - x^2$$
$$\frac{dy}{dt} = x - y^2$$

- (a) Find the x-nullclines, where $\frac{dx}{dt} = 0$. Sketch the x-nullclines in the xy-plane. Determine where in the plane solutions are traveling to the right and where they are traveling to the left.
- (b) Find the *y*-nullclines, where $\frac{dy}{dt} = 0$. Sketch the *y*-nullclines in the *xy*-plane. Determine where in the plane solutions are traveling upward and where they are traveling downward.
- (c) Use the information from parts (a) and (b) to sketch a phase portrait for the system.

A Short List of Laplace Transforms

	Function	Transform	
1.	1	$\frac{1}{s}$	
2.	e^{at}	$\frac{1}{s-a}$	
3.	t^n	$\frac{n!}{s^{n+1}}$	
5.	$\sin(kt)$	$\frac{k}{s^2 + k^2}$	
6.	$\cos(kt)$	$\frac{s}{s^2 + k^2}$	
?.	$t\cos(kt)$	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$	
?.	$t\sin(kt)$	$\frac{2ks}{(s^2+k^2)^2}$	
9.	$e^{at}\sin(kt)$	$\frac{k}{\left(s-a\right)^2+k^2}$	
10.	$e^{at}\cos(kt)$	$\frac{s-a}{(s-a)^2+k^2}$	
12.	$u_c(t)$	$\frac{e^{-cs}}{s}$	
13.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	
14.	$e^{ct}f(t)$	F(s-c)	
17.	$\delta(t-c)$	e^{-cs}	
18(a).	f'(t)	sF(s) - f(0)	
18(b).	f''(t)	$s^{2}F(s) - sf(0) - f'(0)$	
		1	