21 - 260

Differential Equations

D. Handron

Week #7 Written Assignment: Due on Friday, October 11.

1. (Method of undetermined coefficients III) Solve the initial value problem

$$y'' + 10y' + 25y = e^{-5x}, \quad y(0) = 0, \ y'(0) = 0$$

2. Assume that the system described by the equation

$$mx'' + \beta x' + kx = 0$$

is critically damped and that the initial conditions are $x(0) = x_0$ and $x'(0) = v_0$.

- (a) Show that if $x_0 \neq 0$ and $v_0 = 0$ then $x \to 0$ as $t \to \infty$ but that $x(t) \neq 0$ whenever t > 0.
- (b) If x_0 is positive, determine a condition on v_0 that will ensure that the mass passes through its equilibrium position after it is released.
- 3. Logarithmic Decrement. A solution to the equation

$$mx'' + \beta x' + kx = 0$$

can be written in the form

$$x(t) = Ae^{-\lambda t}\sin(\mu t + \phi)$$

where $\lambda = \frac{\beta}{2m}$ and $\mu = \sqrt{\omega^2 - \lambda^2}$. (Recall that $\omega^2 = \frac{k}{m}$.)

- (a) For the damped oscillation described by $x(t) = Ae^{-\lambda t} \sin(\mu t + \phi)$ show that the time between successive maxima is $T_d = 2\pi/\mu$. [Note: because of the exponential term, the maxima of x(t) do not occur at the same time as the maxima of $\cos(\mu t - \delta)$.]
- (b) Show that the ratio of the displacements at two successive maxima is given by

 $e^{\lambda T_d}$.

Observe that this ratio does not depend on which pair of maxima is chosen. The natural logarithm of this ratio is called the logarithmic decrement and is denoted by Δ .

(c) Show that $\Delta = \frac{\pi\beta}{m\mu}$.

Since m, μ , and Δ are quantities that can be measured easily for a mechanical system, this result provides a convenient and *practical* method for determining the damping constant of the system, which is more difficult to measure directly.

4. When we discussed second order, linear, homogeneous, constant-coefficient equations we first found exponential solutions by finding roots of the auxiliary equation, $am^2 + bm + c = 0$. When the equation had a double root, i.e. $am^2 + bm + c = a(m-r)^2$, we needed to find a second solution to form a fundamental set of solutions. We verified that in that case, $y(t) = te^{rt}$ is a solution, but without any motivation for why that is a reasonable thing to consider. The purpose of this problem is to provide motivation for that choice.

We'll consider the example

$$y'' + 4y' + 4y = 0. (1)$$

- (a) Using the auxiliary equation, show that the only exponential solutions to (1) are $c_1 e^{-2t}$.
- (b) Justify the claim: any solution y(t) to equation (1) can be written as $y(t) = u(t)e^{-2t}$ for some function u(t).
- (c) Substitute $y = u(t)e^{-2t}$ into equation (1) to find a differential equation that u(t) must satisfy if $u(t)e^{-2t}$ is a solution.
- (d) Solve that differential equation to find all possible functions u(t)
- (e) Use the results above to write the general solution to equation (1)