
21-260 Differential Equations D. Handron

Week #15 Written Assignment: Due on Friday, December 6.

1. Linearization of Non-Linear Systems. In first semester calculus, you learned that the
linear approximation to a differentiable function f(x) at the point x = a is f(x) ≈ f(a) +
f ′(a)(x− a). A differentiable function of two variables, F (x, y), also has a linearization at
a point (a, b). It is given by

F (x, y) ≈ F (a, b) +
∂F

∂x

∣∣∣∣
(a,b)

(x− a) +
∂F

∂y

∣∣∣∣
(a,b)

(y − b)

The non-linear system
x′ = F (x, y), y′ = G(x, y)

Has an equilibrium point at (a, b) if both F (a, b) = 0 and G(a, b) = 0. At the equilibrium
point of a non-linear system we can consider the linearized system

x′ =
∂F

∂x

∣∣∣∣
(a,b)

(x− a) +
∂F

∂y
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(a,b)

(y − b)

y′ =
∂G

∂x
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(a,b)

(x− a) +
∂G

∂y
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(a,b)

(y − b)

or

u′ =
∂F

∂x

∣∣∣∣
(a,b)

u+
∂F

∂y
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(a,b)

v

v′ =
∂G

∂x
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(a,b)

u+
∂G

∂y

∣∣∣∣
(a,b)

v

where u = x− a and v = y − b.

(a) Consider the non-linear system

x′ = y − x(x− 1)

y′ = −y + x(x+ 1)

Find the nullclines for the system and use them to sketch a phase portrait for the
system.

(b) The system in part (a) has an equilibrium point at (0, 0). Find the linearization of
this system at (0, 0). Find the general solution to the linearized system.

(c) Sketch a phase portrait for the linearized system in part (b). Note that the qualita-
tive behavior of solutions near the equilibrium point in part (a) is very close to the
behavior of solutions in (b).
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(d) Now consider the system

x′ = y − x(x− 1)

y′ = y − x(x+ 1)

This system also has an equilibrium point at (0, 0. Sketch the nullclines, and indicate
the directions that solution curves must cross the nullclines. Note that (0, 0) appears
to be a spiral. (Or a center. Or maybe an impoper node...) But do the solution
curves move toward the equilibrium point or away? It’s hard to tell, isn’t it.

(e) The solutions near (0, 0) will behave in a way similar to the linearized system at
(0.0). Find the linearization of the system in (d) at the point (0, 0). Determine the
type and stability of the equilibrium point. Use that information to sketch a phase
portrait for the non-linear system in part (d).

2. The Heat Eqauation Consider the differential equation

∂u

∂t
= k

∂2u

∂x2
, k > 0

This equation models the flow of head in a one-dimensional rod: u(x, t) represents the
temperature of the object at position x and time t. Using the technique of separation of
variables, as we did in class for the wave equation, look for non-zero solutions of the form
u(x, t) = X(x)T (t).

(a) Substitute u(x, t) = X(x)T (t) into the heat equation to get an expression involving
X(x), X ′′(x), T (t), and T ′(t).

(b) Divide by kX(x)T (t) to separate the variables. Explain why the left and right sides
must be constants. (Use −λ as this “separation constant”). Show that X must satisfy
a particular second order linear differential equation, and T must satisfy a first order
equation.

(c) Assume the ends of the rod are kept at a constant temperature of zero: u(0, t) =
u(L, t) = 0. What conditions does this place on the function X(x)?

(d) Explain why the allowable solutions for X are X(x) = Xn(x) = c sin(nπx
L

)

(e) Show that the allowable solutions for T are T (t) = Tn(t) = Ce−
n2π2kt
L2

(f) Using the fact that the heat equation is a linear equation, argue that the solution to
the heat equation must be of the form

u(x, t) =
∞∑
n=1

cne
−n

2π2kt
L2 sin(

nπx

L
)

3. Consider the wave equation problem

∂2u
∂t2

= α2 ∂2u
∂x2

u(0, t) = 0
u(L, t) = 0
u(x, 0) = 0

∂u
∂t

(x, 0) = g(x)
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In class we looked at problems where the initial velocity was zero, and the initial displace-
ment was non-zero. In the above problem the situation is reversed.

Apply the technique of separation of variables to this problem:

(a) Assuming that u has the form u(x, t) = X(x)T (t), rewrite the wave equation in terms
of X(x) and T (t). Divide in order to ”separate” the variables, and replace the partial
differential equation with an appropriate pair of ordinary differential equations.

(b) Replace the conditions u(0, t) = 0 and u(L, t) = 0 with suitable conditions for the
functions X and T . We are interested in conditions that allow for a non-zero u(x, t).

(c) Replace the condition u(x, 0) = 0 with suitable conditions for the functions X and
T . We are interested in conditions that allow for a non-zero u(x, t).

(d) Find the allowable solutions un(x, t) = Xn(x)Tn(t).

(e) How can these solutions be combined to solve the above problem?

4. Using the linearity of the wave equation, solve the wave equation problem

∂2u
∂t2

= α2 ∂2u
∂x2

u(0, t) = 0
u(L, t) = 0

u(x, 0) = sin(πx
L

)
∂u
∂t

(x, 0) = sin(2πx
L

)
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