D. Handron

Final Exam — Review

1. Let W be a subspace of \mathbb{R}^n and W^{\perp} its orthogonal complement. Show that for any $\mathbf{v} \in \mathbb{R}^n$

$$\operatorname{proj}_W(\operatorname{proj}_{W^{\perp}}(\mathbf{v})) = \mathbf{0}$$

- 2. Let $\mathcal{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ be a basis for \mathbb{R}^n , and $P = [p_{ij}]_{i,j}$ an invertible $n \times n$ matrix.
 - (a) For $i \in \{1, \ldots, n\}$ set $\mathbf{u}_i = p_{1i}\mathbf{v}_1 + \ldots + p_{ni}\mathbf{v}_n$. Show that $\mathcal{C} = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n .
 - (b) Show that P is the change of basis matrix $P_{\mathcal{B}\leftarrow \mathcal{C}}$.

3. Let

$$A = \left[\begin{array}{rr} -14 & -20\\ 12 & 17 \end{array} \right]$$

- (a) Find the eigenvalues of A.
- (b) Find a basis for each eigenspace of A.
- (c) Is A diagonalizable? Either find a diagonalization or explain why it is not.
- 4. (a) Use the Gram-Schmidt process (or "modified" Gram-Schmidt process) to find an orthonormal basis for

$$\operatorname{span}\left(\left[\begin{array}{c}1\\1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\1\\0\end{array}\right], \left[\begin{array}{c}0\\0\\1\\1\end{array}\right]\right)\right)$$

5. (25 points) Let \mathcal{B} be the basis $\{1, x, x^2\}$ for the vector space \mathcal{P}_2 , and \mathcal{C} be the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ for the vector space \mathbb{R}^2 .

Let $T: \mathcal{P}_2 \to \mathbb{R}^2$ be the linear transformation given by

$$T(p(x)) = \left[\begin{array}{c} \int_0^1 p(x) \, dx \\ p(0) \end{array}\right]$$

Find the matrix $[T]_{\mathcal{C}\leftarrow\mathcal{B}}$ for the linear transformation T with respect to the bases \mathcal{B} and \mathcal{C} .