21 - 241

Exam #2 Review, Fall 2018

1. Let

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Find all the eigenvalues of the matrix A. For each eigenvalue, express the eigenspace as a span of vectors.

2. Let

	1	1	2 -]		1	2	-2]
A =	1	2	3	and	B =	-2	-4	4
	1	3	4_			1	2	-2

- (a) Compute the product AB. Your response should make clear how you arrived at your result.
- (b) Is there an $n \times n$ matrix M such that AM = B? Either find such a matrix, or explain how you know there is not.
- 3. (a) Compute the determinant of the matrix

$$\left[\begin{array}{rrrr} 3 & 6 & 9 \\ 2 & 4 & 9 \\ 1 & 4 & 2 \end{array}\right]$$

by performing row operations to reduce it to a triangular form.

(b) Determine conditions on the values a, b, and c that ensure the matrix

$$\left[\begin{array}{rrrr}a&a&a\\a&b&b\\a&b&c\end{array}\right]$$

is invertible.

4. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & 3 & a \end{bmatrix}$$

where $a \in \mathbb{R}$.

- (a) For what values of a will this matrix be invertible?
- (b) Suppose that a = 1. What is the inverse of the matrix A in this case?

5. Consider the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & -1 \\ 0 & 3 & 1 \end{bmatrix}$$

where $a \in \mathbb{R}$.

(a)
$$\mathbf{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
 is an eigenvector of A . What is it's corresponding eigenvalue?

- (b) $\lambda = 2$ is an eigenvalue of A. Express the eigenspace E_2 as a span of vectors.
- 6. Consider the matrix

$$A = \left[\begin{array}{rrrr} a & a & a \\ a & a^2 & a^2 \\ a & a^2 & a^3 \end{array} \right].$$

- (a) Compute det(A) by expanding across the second row, using the Laplace expansion method. Simplify your answer by collecting terms and/or factoring.
- (b) For what values of a does this matrix fail to be invertible?
- 7. (a) For what values of $a \in \mathbb{R}$ will the matrix

$$\left[\begin{array}{rrrr} -3 & 0 & -2 \\ a & 2 & 0 \\ a & a & -1 \end{array}\right]$$

fail to be invertible?

(b) The matrix

$$A = \left[\begin{array}{rrrr} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{array} \right]$$

is invertible. Find it's inverse, A^{-1} .

8. Consider the matrix

$$\left[\begin{array}{rrrr} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{array}\right]$$

- (a) Find all the eigenvalues of the matrix A.
- (b) Describe each eigenspace of A as a span of vectors.
- 9. Let A and B be $n \times n$ matrices, and P an invertible $n \times n$ matrix such that

$$A = PBP^{-1}.$$

- (a) Suppose that \mathbf{v} is an eigenvector of A with corresponding eigenvalue λ , i.e. $A\mathbf{v} = \lambda \mathbf{v}$, with $\mathbf{v} \neq \mathbf{0}$. Show that λ is also an eigenvalue of B. Determine an eigenvector of B that corresponds to the eigenvalue λ .
- (b) If

$$P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 5 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

and \mathbf{v} is an eigenvector of A, find an eigenvector of the matrix B.