Exam #1 Review Fall 2017

1. Find all solutions to the linear system of equations

Express the solution set in vector form.

2. Is the vector $\begin{bmatrix} -4\\2\\6 \end{bmatrix}$ a linear combination of the vectors

$$\begin{bmatrix} 0\\-2\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-2 \end{bmatrix}, \begin{bmatrix} 4\\0\\-8 \end{bmatrix}?$$

Either find all such linear combinations, or explain why there are none.

3. V is a set on which two operations, \oplus and \odot , are defined. The set is \mathbb{R}^2 , and \odot is the usual scalar multiplication, but \oplus is defined by

$$\left[\begin{array}{c} u_1\\ u_2 \end{array}\right] + \left[\begin{array}{c} v_1\\ v_2 \end{array}\right] = \left[\begin{array}{c} u_2 + v_2\\ u_1 + v_1 \end{array}\right]$$

- (a) Show that vector space axiom 7 is satisfied.
- (b) Show that vector space axiom δ is not satisfied.
- (c) Is vector space axiom 3 satisfied? (Naturally, you should provide either a proof or a counterexample.)
- 4. Let P represent the statement

$$\forall x \in \mathbb{R} \quad (\exists y \in \mathbb{R} \quad (x = y^2 \text{ or } x = -y^2))$$

- (a) Find an expression for the negation of this statement, $\neg P$. Simplify your expression as much as possible.
- (b) One of P or $\neg P$ is true. Give a proof for whichever one it is.
- 5. Consider the system of equations

- (a) What is the augmented matrix for this system?
- (b) Use elementary row operations to put the matrix into reduced echelon form. Perform one operation at at time and indicate clearly which row operations are used.
- (c) Write the solution to the system in vector form.

6. Is the vector $\begin{bmatrix} 2\\ -4\\ 1 \end{bmatrix}$ a linear combination of the vectors

	1		2		-1	
	1	,	1	,	1	?
	2		0		6	

- (a) Write down a system of linear equations in standard form whose solution will provide an answer to this question.
- (b) Solve the system from part (a). Either give a description of all such linear combinations, or explain how you know there are none.
- 7. Consider the system

Note that the augmented matrix of this system is in reduced echelon form.

- (a) Suppose that a = b = 0. Find the vector form of the solution set in this case.
- (b) When a = b = 0, is the solution set closed under addition? (i.e. does it satisfy the first axiom in the definition of a vector space?)
- (c) Suppose that a = 2 and b = -1. Find the vector form of the solution set in this case.
- (d) When a = 2 and b = -1, is the solution set closed under addition? (i.e. does it satisfy the first axiom in the definition of a vector space?)
- 8. Let P represent the statement

$$\forall m \in \mathbb{Z} \quad (x = 7m + 3 \implies \exists n \in \mathbb{Z} \quad (x^2 = 7n + 2))$$

- (a) Find an expression for the negation of this statement, $\neg P$. Simplify your expression as much as possible.
- (b) One of P or $\neg P$ is true. Give a proof for whichever one it is.

Definition 1 Let V be a set with two operations, addition and scalar multiplication. If $\mathbf{u}, \mathbf{v} \in V$, we denote their sum as $\mathbf{u} + \mathbf{v}$. If $\mathbf{u} \in V$ and c is a scalar, we denote their scalar product as $c\mathbf{u}$.

We say that V is a vector space if the following axioms hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all scalars c, d:

- 1. $\mathbf{u} + \mathbf{v} \in V$
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. There exists a vector $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all vectors $\mathbf{u} \in V$
- 5. For each vector $\mathbf{u} \in V$ there is a vector $(-\mathbf{u}) \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- $\textit{6. } c\mathbf{u} \in V$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. $1\mathbf{u} = \mathbf{u}$