21-241 Matrices and Linear Transformations

Homework #10: Due on Friday, November 2.

- 1. (a) Let \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^n . Explain why $\mathbf{v} \mathbf{w}$ can be thought of as an arrow pointing from \mathbf{w} to \mathbf{v} . [Hint: think about the "tip-to-tail" rule for vector addition.]
 - (b) Explain why $\{t\mathbf{v} + (1-t)\mathbf{w} : t \in [0,1]\}$ is the set of vectors on the line segment with endpoints \mathbf{v} and \mathbf{w} .
 - (c) Let S be a subspace of \mathbb{R}^n , and suppose that $\mathbf{v}, \mathbf{w} \in S$. Show that S contains the line segment with endpoints \mathbf{v} and \mathbf{w} .
- 2. [Poole, Section 6.1, Problem #38.] Let \mathscr{F} denote the set of functions mapping \mathbb{R} to \mathbb{R} . For $f, g \in \mathscr{F}$ and $c \in \mathbb{R}$ define $f \oplus g : \mathbb{R} \to \mathbb{R}$ and $c \odot f : \mathbb{R} \to \mathbb{R}$ by

$$(f \oplus g)(x) = f(x) + g(x)$$

and

$$(c \odot f)(x) = c \cdot f(x)$$

 ${\mathscr F}$ is a vector space under these operations.

Let $W = \{ f \in \mathscr{F} : f(-x) = f(x) \}$. Determine whether W is a subspace of \mathscr{F} .

3. [Poole, Section 6.1, Problem #48.] Let V be a vector space with subspaces U and W. Define the sum of U and W to be

$$U + W = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W\}$$

- (a) If $V = \mathbb{R}^3$, U is the x-axis, and W is the y-axis, what is U + W?
- (b) Show that for any subspaces U and W of a vector space V, U + W is a subspace of V.
- (c)
- 4. (a) Let V be a vector space and $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} \subseteq V$ a linearly independent set of vectors. Show that if $\mathbf{w} \in V$ and $\mathbf{w} \notin \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ then $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{w}\}$ is a linearly independent set.
 - (b) Let W be a vector space and $S = {\mathbf{w}_1, \ldots, \mathbf{w}_k}$ a set of vectors in W. Show there is a linearly independent subset of S that has the same span as S.