21-124 MODELING WITH DIFFERENTIAL EQUATIONS

LECTURE 7: AUTONOMOUS SYSTEMS AND THE PREDATOR-PREY EQUATIONS

1. AUTONOMOUS SYSTEMS OF DIFFERENTIAL EQUATIONS

1.1. General Form. The general form of a (two-dimensional) autonomous system
is

dz _

@ =9(z,y)
It is autonomous because the functions f and g do not depend on the independent

variable. It is two-dimensional since the system has two dependent variables.
We can write this pair of equations as a single vector equation:

(E]-[2e9]-#((3])

If we introduce the vector Y = [ 33/: ] , then we can write this as

(1.2) ‘% = F(Y).

1.2. Solutions. A solution to the system 1.1 is a pair of functions, z(¢) and y(t),
such that

o'(t) = f(x(t),y(t))

y'(t) = g(x(t), y(2))-

For example, it is a straightforward matter to check that the system
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has as a solution the pair z(t) = sin(t), y(t) = cos(t). To verify this, one need only
compute z'(t) = cos(t) = y(t) and y'(t) = —sin(t) = —z(t).
A solution to the equation 1.2 is a vector valued function

z(t)
Y(t) = .
® [ y() ]
Such that ¥ (t) = F(Y(t)). The functions z(t) and y(t) are the same as in the
solution to the system 1.1. The difference is merely one of notation and point of
view. In the first case, we view the functions as two separate objects (z(t) and
y(t)) that work together, while in the second case, we view the solution as a single

object (Y (t)) composed of two pieces (z(t) and y(t)).
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1.3. Existence and Uniqueness. The statement about existence and uniqueness
parallels the general existence and uniqueness we discussed in 21-260 (Edwards and
Penney, p. 23). The hypotheses in both cases relate to the functions on the right
hand side of the equations, and the derivatives of those functions with respect to
the dependent variables.

Theorem 1 (Existence and Uniqueness). If f, g, %, %, Z—Z and Z—Z are contin-
uous in a rectangle R in the xzy-plane containing the point (a,b), there there is a
solution satisfying the initial conditions z(0) = a, y(0) = b.

Moreover this solution is unique for as long as it remains in the rectangle R.

The main reason we are interested in this theorem is that, provided the hypothe-
ses are satisfied, a solution curve represents a barrier in the phase plane (zy-plane),
in much the same way that an equilibrium point of an ordinary first order differen-
tial equation represents a barrier in the phase line for that equation. If Uniqueness
holds, then solution curves can not cross.

For example, if a solution curve of a closed system is periodic (forms a closed
orbit), then solutions with initial conditions inside the loop must remain forever
inside the loop.

2. THE PREDATOR-PREY EQUATIONS

The predator-prey model is based on the following assumptions:

e In the absence of predators, the prey population increases at a rate propor-
tional to its size.

e The size of the prey population is reduced at a rate proportional to the number
of interactions between the predators and the prey. (We take this rate to be
the size of the predator population times the size of the prey population.)

e The size of the predator population increases at a rate proportional to the
number of interactions between the predators and the prey.

e In the absence of prey, the predator population decreases at a rate propor-
tional to its size.

If R is the size of the prey population (rabbits) and F is the size of the predator
population (foxes), then the mathematical model is:

dE _ R — BRF
# _ p | sRF
a — Y+

Just as we can use dfield to study a single differential equation, the MATLAB
routine pplane can be used to study a system of two differential equations. You will
have to download pplane6.m and ppn6out .m from the same site you got dfield5.m.
(You can use the version for MATLAB 6.0 if that is what you are using. These notes
will assume you are using version 5.)

Once you have downloaded the files, type pplaneb at a MATLAB prompt. If you
have used dfield in the past, then pplane will seem familiar. The interface is quite
similar.

After you enter the equations for ' and 3’ and click “proceed”, pplane will
open a new window showing a coordinate grid with axes labeled z and y. This is
the “phase plane” for the system. On this plane, the vector field for the equations
you entered is shown. This vector field shows the direction that solution curves



21-124 MODELING WITH DIFFERENTIAL EQUATIONS 3

will travel. You should read pp. 375 to 377 in Edwards and Penney to learn more
about this vector field and the phase plane.
Using pplane, we can investigate the Predator-Prey system

;i—R = .2R - .03RF
4f = —3F + .01RF

We find that the solution curves form (apparently) closed loops. We can follow
the solution around one of the loops, interpreting how the populations are affecting
each other along the way. Let’s begin at the point where the rabbit population
reaches it’s maximum.

Here the fox population is moderate in size. This is a good situation for the
foxes. There are plenty of rabbits, so food is easy to find. At the same time there
are not too many foxes, so there is not much competition for the rabbits. Thus the
fox population is able to increase it’s size. At the same time, the foxes are depleting
the rabbit population, which decreases in size.

By the time the fox population has reached it’s maximum size, the rabbit pop-
ulation has been severely reduced. The large number of foxes can no longer find
enough game to sustain itself, and the fox population begins to decrease. There
are still a large number of foxes, though, and they continue to eat the rabbits at
a rate that exceeds the rabbit’s birth rate. For the next portion of the cycle, both
populations decrease.

Eventually, the fox population decreases to a point where there are no longer
enough of them to keep the rabbit population in check. The rabbit population
begins to increase. As it does so, the fox population continues to decrease.

Once the rabbit population recovers sufficiently, the small fox population can
now find the food that it needs to survive and grow. For the next portion of the
cycle, both populations increase, eventually returning us to our starting point.

Since the solutions form closed loops, they divide the plane into two regions.
If you click an initial condition inside a solution curve, MATLAB computes a new
solution, which is a smaller cycle contained inside the first. Repeating this produces
a series of “concentric” loops, which seem to focus onto a single point. In fact this
is an equilibrium point for the system.

Recall that for the first order autonomous equation,

dy

N

praliC)
the equilibrium points were computed by solving Z—f =0 or h(y) = 0. In the case
of a system, in vector notation, we must have % =0or

E% :g(.’l:,y):O

In the case of our Predator-Prey Equations, this becomes

4R _ R(a—BF) =0

1
af _ p(Zry 4 5R) = 0.

There are two possibilities:

R=0 q F =6.67
F=0 an R =130
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The first possibility agrees with our intuition. If we begin with no rabbits and no
foxes, we never expect to have any in the future. The second case, on the other
hand, represents the situation where the two populations are in exact balance.



