21-124 MODELING WITH DIFFERENTIAL EQUATIONS

LECTURE 4: MATLAB, M-FILES AND NUMERICAL METHODS
EXPERIMENTS AND DISCUSSION

We will be investigating the differential equation

dy
— =yt
at Y
This is a linear differential equation, and one can show (or verify) that the solution
satisfying y(0) = 1 is y(¢t) = —t — 1 + 2¢*.
You may wish to use the diary command to create a record of your work for
later reference.

1. Write an M-file that will compute the function f(¢,y) = y + ¢t. I will assume
below that you have named the function funct, and your M-file funct.m.

2. We will create an approximate solution and compare it to the exact solution.

(a) Use the command eul to create an approximate solution to the differential
equation. The commands
>> h=.5;
>> [teul,yeull=eul (’funct’, [0,3],1,h);
will create two vectors, teul and yeul. Executing
>> plot(teul,yeul)
will produce a graph of the approximate solution with initial condition
y(0) = 1 over the interval [0, 1].

(b) You can use the command t=0:.1:3; to define a vector t. Create a
vector y so that the command plot(t,y) will produce a graph of the
exact solution y(t) = —t — 1 + 2¢".

(c) Produce a graph that shows both the exact and approximate solutions.
This gives a (visual) idea of how closely the approximate solution matches
the exact solution.

(d) We want to get a more precise understanding of the error in our approx-
imation. We can compute the value of the exact solution for each time
in the vector teul by executing
>> yexact=-teul-1-exp(teul);

Then the vector abs(yexact-yeul) is the difference between the com-
puted solution and the exact solution.

>> maxerror=max (abs (yexact-yeul))

sets maxerror to be the largest difference between the exact and approx-
imate solutions.



RECTURE 4: MATLAB, M-FILES AND NUMERICAL METHODSEXPERIMENTS AND DISCUSSION

3. We can repeat this process for any step size h we choose. It gets to be tedious
to repeat this over and over, though. The commands we need to enter for a
given choice of h are

[teul,yeul]l =eul (’funct’,[0,3],1,h);

plot(teul,yeul,’*’)

hold on

t=0:.1:3;

y=—-t-1+2xexp(t);

plot(t,y)

hold off

yexact=-teul-1+2*exp(teul) ;

maxerror=max (abs (yexact-yeul))

Create a text file that contains these exact lines, and name it script.m
(This is an example of a script M-file, as opposed to the function M-files we’ve
seen earlier. Now, you can get a graph and error analysis for any given step
size (say h=.02) with the command

>> h=.02;script

Try several different step sizes, to see what happens.

4. You can keep track of all the step sizes you try and the error associated with
each by executing

>> heul=[heul,h];

>> erreul=[erreul ,maxerror];

If you want to start over, you can initialize each with the command

>> heul=[];erreul=[];

Modify the script M-file you wrote before so that it will update the heul
and erreul vectors each time, and also so it will divide the step size in half
after each iteration. (Then you only have to choose an initial step size.)

After several iterations (5-10) plot erreul versus heul. What is the shape
of the curve? You can plot the data on a log-log plot using the command

>> loglog(heul,erreul)

5. You can repeat this procedure for the Modified Euler’s Method (rk2.m) and
the fourth order Runge-Kutta Method (rk4.m). All you have to do is modify
a few lines in your script file. Change all the occurrences of “eul” to “rk2”
and then “rk4”. Make sure you change the names of the vectors teul and
yeul also, so you don’t erase the data you have gathered.



21-124 MODELING WITH DIFFERENTIAL EQUATIONS

6. Now combine all the data you gathered on a single log-log plot:
>> loglog(heul,erreul)
>> hold on
>> loglog(hrk2,errrk2)
>> loglog(hrk4,errrk4)
>> hold off
What does this tell you about the relative errors in each method?



