21-124 MODELING WITH DIFFERENTIAL EQUATIONS

LECTURE 3:

1. WORKING IN MATLAB

You can use MATLAB as a fancy calculator by simply typing in the expression
you want to evaluate, using
+ - % / -
as is standard practice. MATLAB also has a number of standard commands, like
sqrt (), sin(), cos() and exp().

One of the things we will frequently want MATLAB to do for us is plot graphs.
In order to do so, we will need to use vectors. A short vector can be defined by
typing in the entries. Entering v=[1,2,3] creates the row vector

v=[1 2 3]

You can also use spaces instead of commas. Entering v=[1;2;3] creates the row

vector
1

w= | 2
3
You can achieve the same thing by entering w=v".
The command t=3:.2:7 creates the row vector t whose entries are

[3 32 34 ... 68 7]
Now, if you type y=sin(t) you will get the numerical equivalent of the vector
y =/ sin(3) sin(3.2) sin(3.4) ... sin(6.8) sin(7) ].

Now you can plot a graph of the sin function by using the plot command. Enter
plot(t,y), and MATLAB will produce a separate window with the graph in it. The
command plot(u,v) takes the vectors u and v as input. These vectors must be
the same length. MATLAB plots the points (u1,v1), (u2,v2),... and connects them
with straight lines.

If you want to plot y = t2, you need to define y using
y=t. 2
The dot before the carrot tells MATLAB to square each entry separately, rather
than using matrix multiplication.

There is an optional third argument for the plot command. If you enter
plot(t,y,’r?) the graph will be plotted in red and plot(t,y,’m’) produces a
magenta graph. On the other hand, plot(t,y,’--’) produces a graph with a
dashed line. Experiment with some of the other options: c, y, k, g, w, o, x, +, *, -.
and :. They can be combined as well, like plot (t,y, ’g*:).

You can get a complete description of the plot command by entering help plot.
In fact most of MATLAB’s commands have a help file.
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One last thing is MATLAB’s diary command. When you enter diary on, MAT-
LAB begins saving everything that transpires to a text file named “diary”. This
continues until you enter diary off. You can then edit this text file using emacs.
If you enter diary filename instead of diary on, the session will be saved to a
text file called “filename”.

2. FuNcTION M-FILES

The basic format for a function M-file is:

function w=foo(x,y,z)
w= x.*sin(y) + z.72

If this file is saved as foo.m in the same directory you use to run MATLAB, then en-
tering foo(5,3,11) on the MATLAB command line will cause MATLAB to compute
5sin(3) + 112.

I should call to your attention one of MATLABs built in functions:

1 z>0
sign(x) = 0 z=0
-1 <0

This function can be used to define some other useful functions. I introduced two
of these in class:

function y=heavy(a,x)
y = ( sign(x-a) + 1 )./2;
which steps up from 0 to 1 at £ = a, and

function y=lght(b,x)

y = ( sign(b-x) + 1 )./2;
which steps down from 1 to 0 at £ = b. We can also define
function y=rect(a,b,x)

y = ( sign(x-a) + sign(b-x) )./2;

this steps up from 0 to 1 at £ = a and then back down to 0 at x = b.
These three can then be used to define piecewise continuous functions, such as

4 < -2
flz)=¢ 2 -2<z<1
1 z>1

This function can be defined using the function M-file
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function y=fctn(x)

y=lght (-2,x) .*4 + rect(-2,1,x).*x."2 + heavy(1l,x).*1;

3. NUMERICAL METHODS

Euler’s method for computing numerical solutions is usually described as fol-
lows: to compute an approximate solution to the differential equation % = f(t,y)
satisfying the initial condition y(¢9) = yo, we choose a timestep At and for each

tr = to + kAt the value
Y = Yr_1+ At fte 1,96 1)

is computed which approximates y(tx).
If we can compute an analytic solution y(t), then y'(t) = f(¢,y(¢)). Using the
Fundamental Theorem of Calculus, we see that

y(tk)_y(tk—l)Z/k Y (t)dt =

tp—1 tr

tr

F(t,y(t))dt.

Solving this for y(¢x) we get the exact equation
t

y(te) = y(ye-1) + ' F(t,y(t))dt.

te—1

Now, f::fl f(t,y(t))dt is the area under the curve y'(t) between t; ; and tg.
The quantity At - f(tx_1,yx—1) approximates this area using a rectangle of height
f(tk_l, yk—l) ~ y’(tk—l) and width At =t — tp_1.

When a number of steps are combined, what we are actually doing is approxi-
mating a definite integral using a Riemann Sum (with the left endpoint rule).

In 21-117 several methods of numerical integration are introduced: the Left
Endpoint Rule, the Midpoint rule, the Trapezoid Rule, and Simpson’s Rule. When
the Trapezoid rule is adapted for solving differential equations, the result is the
second order Runge-Kutta method (or improved Euler’s method). An adaptation
of Simpson’s rule becomes the fourth order Runge-Kutta method. These are both
available in dfield. In the Options menu, clicking on “Solver” allows you to choose
Euler’s method, Runge-Kutta 2, Runge-Kutta 4 or the Dormond-Prince method.
The Dormond-Prince solver is a more sophisticated method that uses a variable
step size to improve accuracy.

There are M-files available that will compute Euler’s method, and Runge-Kutta
method approximations to solutions of differential equations. You can download
the M-files eul.m, rk2.m and rk4.m, all of which are provided (for academic use)
by John Polking.

The use of these files is the same in each case. Suppose you wish to compute a
solution to the differential equation

dy

i funct(t,y),

on the interval [s,¢] with initial condition y(s) = b, and timestep d. First,
you must write a function M-file for the function funct, which accepts two input
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arguments (even if it is an autonomous equation). Then enter at the MATLAB
prompt

[t,yl=eul(’funct’, [s,t],b,d)

The output will be two vectors, t and y. The vector t contains all the ¢;’s, i.e.
t=[s,s+d,s+2d,...]. The vector y contains the approximations y; =~ y(¢;). To
produce a graph of the approximate solution, use the command plot(t,y).

4. APPENDIX: BUILT-IN FUNCTIONS

MATLAB makes available many commonly used functions. Below is a partial list.
If you wish to learn more about one of them use the help command to learn more,
e.g. help logil0.

4.1. Elementary Functions. abs(), sqrt(), sign().
4.2. Trigonometric Functions. sin(), cos(), tan(), cot (), sec(), csc().

4.3. Inverse Trigonometric Functions. asin(), acos(), atan(), acot(), asec(),
acscQ).

4.4. Exponential and Logarithm Functions. exp(), log(), 1og10()



