Exam #1 Reference Table

I. Trigonometric Identities

1.
$$\tan^2 \theta + 1 = \sec^2 \theta$$

2.
$$\cot^2 \theta + 1 = \csc^2 \theta$$

3.
$$\sin^2 \theta = \frac{1}{2} [1 - \cos(2\theta)]$$

4.
$$\cos^2 \theta = \frac{1}{2} [1 + \cos(2\theta)]$$

5.
$$\sin \theta \cos \theta = \frac{1}{2} \sin(2\theta)$$

6.
$$\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)]$$

7.
$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

8.
$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

9.
$$\sin(2\theta) = 2\sin\theta\cos\theta$$

10.
$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$

II. Error Estimates for Numerical Integration

The expressions below give an upper bound for approximations to $\int_a^b f(x)dx$ using the trapezoid rule, the midpoint rule, and Simpson's rule. In the expressions below K is a number such that $|f''(x)| \leq K$ for $a \leq x \leq b$ and M is a number such that $|f^{(4)}(x)| \leq M$ for $a \leq x \leq b$. The number n represents the number of subintervals into which [a, b] is divided.

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$

$$|E_M| \le \frac{K(b-a)^3}{24n^2}$$

$$|E_S| \le \frac{M(b-a)^5}{180n^4}$$