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My research interests are in set theory, dynamics, order theory, graph theory,
and geometric group theory. Much of my work has centered on structures satis-
fying multiplicative invariance relations. The basic techniques used to study such
structures resemble the basic techniques used to study self-similar sets and iter-
ated function systems, with the structures playing the role of attractors. The work
also has connections to the theory of paradoxical decompositions and non-amenable
groups.

In my thesis, I solved the cube problem for linear orders, originally posed by
Sierpiński in 1958. The problem is to determine whether there exists a linear order
that is isomorphic to its lexicographically ordered cartesian cube but is not isomor-
phic to its square. The corresponding question has been answered positively for
many different kinds of structures, including groups, rings, graphs, Boolean alge-
bras, and topological spaces of various kinds. However, the answer to Sierpiński’s
question is negative: every linear order isomorphic to its cube is already isomorphic
to its square. Subsequently, I solved a related problem of Sierpiński’s by construct-
ing a pair of non-isomorphic linear orders that are both left-hand and right-hand
divisors of one another.

More recently, I have been working on problems concerning locally finite graphs
that are motivated by questions about Cayley graphs of finitely generated groups.
I am especially interested in the dividing line between amenable and non-amenable
groups. Non-amenability of a finitely generated group can be characterized in terms
of an isoperimetric criterion on the Cayley graph of the group, which in turn can
be used to decompose the Cayley graph into uniformly splitting trees.

One can ask more generally when isoperimetric conditions on a locally finite
graph yield the existence of certain uniform subgraphs of the graph, or even a
decomposition into such subgraphs. In this direction, I proved that every locally
finite graph G contains a pruned tree T that, in a precise sense, splits as early
and as often as possible. The proof uses a matroid on the vertices of G whose
independent sets are precisely those collections of vertices that can serve as sources
for pairwise disjoint infinite one-sided paths. I also proved that every locally finite
graph G with at most countably many ends is bilipschitz equivalent to a graph G′

that can be partitioned into a collection of infinite paths realizing each of its ends
exactly once.

1. Cube Problems

Suppose that (C,×) is a class of structures with an associative product, like
the class of groups with the direct product or the class of topological spaces with
the topological product. It is often possible to find examples of infinite structures
X ∈ C that are isomorphic to their own squares. If X ∼= X2, then X ∼= X3 as well.
The question of whether the converse holds for a given class C, that is, whether
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X3 ∼= X =⇒ X2 ∼= X for all X ∈ C, is called the cube problem for C. If it has a
positive answer, then C is said to have the cube property.

For “large” or “general” classes of structures, the cube property typically fails.
There exist groups, rings, modules, topological spaces, Boolean algebras, graphs,
and partial orders that are isomorphic to their cubes but not their squares, to name
a few examples. See [1] [2] [6] [9] [10] [13] [14] [19] [20] [21] [22], or my paper [3] for
a detailed list of these results and further historical context.

In his 1958 book Cardinal and Ordinal Numbers, Sierpiński asked whether there
exists a counterexample to the cube property for the class (LO,×) of linear orders
under the lexicographical product. Despite the wealth of counterexamples that
have been constructed for other classes, Sierpiński’s question remained open until
I showed that in fact the cube property holds for (LO,×).

Theorem 1. (E.) If X is a linear order such that X3 ∼= X, then X2 ∼= X. More
generally, for any order X and n > 1 we have Xn ∼= X =⇒ X2 ∼= X.

The proof is in my paper [3].
Also in Cardinal and Ordinal Numbers, Sierpiński asked if there exist non-

isomorphic orders X and Y that are both left-handed and right-handed divisors
of one another (that is, X ∼= AY ∼= Y B and Y ∼= CX ∼= XD for some orders
A,B,C,D). This problem is related to the cube problem: if there were an order
X isomorphic to its cube but not its square, then X and Y = X2 would give such
orders. There is no such X, but the answer to Sierpiński’s question is still positive.

Theorem 2. (E.) There exist non-isomorphic orders X,Y of size 2ℵ0 that divide
one another on both the left and right.

See [4]. There are, however, no countable examples of such orders.

2. Function Systems and Self-Similar Structures

My solutions to Sierpiński’s problems rely on a general theorem I proved about
bijections between Cartesian products of an infinite set X and itself. The theorem
can be ported into many contexts to characterize when a structure X is isomorphic
to a product of itself, or power of itself.

Theorem 3. (E.) Given sets A and X, it is possible to characterize, without the
axiom of choice, exactly when there is a bijection F : A × X → X. Specifically,
there is such a bijection if and only if X can be partitioned into a family of subsets
X =

⋃
{Iu : u ∈ Aω}, indexed by points in Aω, such that any two subsets Iu, Iv

that are indexed by tail-equivalent points u, v are of the same cardinality.

Here, u, v ∈ Aω are tail-equivalent if there exist finite sequences r, s ∈ A<ω

and an infinite tail u′ ∈ Aω such that u = ru′ and v = su′. I use the notation
X = Aω(I[u]) to mean that X can be partitioned into such a family of subsets.

Given a class of structures (C,×) and a fixed structure A ∈ C, it is often possible
to adapt the proof of the theorem to characterize those structures X ∈ C such that
A ×X ∼= X. One may think of such structures X in this way: they may only be
obtained by “replacing” each point u in the direct product Aω by structures Iu ∈ C
such that tail-equivalent points are replaced by isomorphic structures. How to turn
this into a concrete result depends on context. Here are some examples.

Theorem 4. (E.)
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a. Fix a group G, and suppose X is a group such that G × X ∼= X. Then
there is a subgroup H ≤ Gω that is closed under tail-equivalence, and a
normal subgroup N E X, such that X/N is isomorphic to H.

b. Fix a topological space T . For any topological space X, we have T×X ∼= X
if and only if X ∼= Tω(I[u]), where the topology on Tω can be the product
topology, the box topology, or any intermediate topology that is “closed
under multiplication by T .”

c. Fix a linear order L and let × denote the lexicographical product. Then
for any order X, we have L×X ∼= X if and only if X ∼= Lω(I[u]) for some
collection of linear orders I[u].

See my thesis [5]. My solution to the cube problem for linear orders crucially
relies on part (c.) of Theorem 4.

An iterated function system (IFS) is a finite collection of contraction mappings
{f1, . . . , fn} on some complete metric space. A fundamental result, due to Hutchin-
son [8], is that any such system has a unique attractor. That is, there is a unique
compact set K such that K =

⋃
fi(K). Moreover, this attractor is naturally

homeomorphic to a quotient of Cantor space (on n symbols), and under this home-
omorphism each fi becomes the shift map u 7→ iu.

Theorem 4 can be viewed as an analogue to Hutchinson’s result. If A and X
are structures such that A × X ∼= X, then X can be decomposed into “A-many
copies of itself.” Hence there is a collection of mappings {fa : a ∈ A} such that for
each a ∈ A, the map fa sends X onto the ath copy of itself within itself, and we
have X =

⋃
fa(X). Moreover there is a natural isomorphism identifying X, not as

a quotient of Cantor space, but as a replacement of Aω. Under this isomorphism
the fa become shift maps on Aω. Since there is no notion of metric, the fa are not
contractions. As a result, the iterated images of X under a sequence of these maps
need not converge to a point, as they do in the case of an IFS. However, they do
converge to a substructure (or, in certain instances, the “coset of a substructure”),
and it is possible to show that substructures associated to tail-equivalent sequences
are isomorphic.

An elaboration of this idea yields the following.

Theorem 5. (E.) Given a set X, it is possible to characterize, without the axiom
of choice, when there is a bijection F : X×X → X. There is such an F if and only
there is a family of functions {f : 2ω → Xω} that is closed under dyadic dissection
and concatenation.

It is generally not as easy to characterize those structures X from a given class
C that are isomorphic to their own squares, as it is to characterize those satisfying
AX ∼= X. However, in many cases the proof of Theorem 5 can be adapted to get
useful information about such X.

3. Building Combinatorial Structures Using Isoperimetry Conditions
in Cayley Graphs

Suppose that Γ is a finitely generated group. We say that Γ admits a paradoxical
decomposition if there is a partition Γ = A1∪. . .∪An∪B1∪. . .∪Bm and a collection
of group elements g1, . . . , gn, h1, . . . , hm in Γ such that

Γ =
⋃
i

giAi =
⋃
j

hjBj .
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A group Γ is said to be paradoxical if it admits a paradoxical decomposition.
Tarski showed that a group is paradoxical if and only if it is non-amenable.

If Γ is paradoxical, then the Cayley graph G of Γ with respect to the generators
gi, hj contains a bijection F : 2 × Γ → Γ. Such bijections are characterized by
Theorem 4, whose proof yields a kind of “representation theorem” for paradoxical
groups Γ that can be used to recover the following result of Kevin Whyte.

Theorem. (Whyte [23]) (“Geometric Von Neumann Conjecture”) Any finitely gen-
erated non-amenable group Γ has a Cayley graph G that can be partitioned into
subgraphs that are each isomorphic to a 4-regular tree.

Any group Γ containing a copy of the free group F2 on two generators also has a
Cayley graph that can be partitioned into 4-regular trees: the pieces of the partition
are just the cosets of F2. Von Neumann conjectured that every non-amenable group
contains a copy of F2. This turned out to be false in general, but Whyte’s theorem
shows that the graph-theoretic version of the conjecture holds.

In the paper in which he proved his theorem, Whyte asked if the “Geometric
Burnside Conjecture” holds: does every finitely generated infinite group Γ have a
Cayley graph that can be partitioned into bi-infinite paths (i.e. copies of the Cayley
graph of Z)? Whyte’s theorem above implies the answer is yes for groups with at
least three ends. Seward later showed that the answer is yes for finitely generated
infinite groups with at most two ends. In fact he showed something stronger: every
finitely generated infinite group Γ with at most two ends has a Cayley graph G
with a Hamiltonian path. That is, G contains a subgraph isomorphic to Z that
includes every vertex of G. This follows from a purely graph-theoretic result that
Seward proved.

Theorem. (Seward [15]) Any infinite, locally finite graph with at most two ends
is bilipshitz equivalent to a bi-infinite path.

I proved the following generalization of this result.

Theorem 6. (E.) Suppose G is an infinite, locally finite graph, and E is a count-
able, dense subset of its space of ends. There is a bilipschitz equivalent graph G′

that can be partitioned into a family of subgraphs P , each isomorphic to a one-
sided path, such that for each e ∈ E, there is exactly one p ∈ P converging to e. In
particular, if G has only countably many ends, it is bilipshitz equivalent to a graph
that can be partitioned into a set of paths realizing each of its ends exactly once.

I am in the process of writing up this result.

The proof of Whyte’s theorem depends on the so-called “Gromov doubling con-
dition” that characterizes non-amenability. It says that a finitely generated group
Γ is non-amenable if and only if it has a Cayley graph G in which the vertex bound-
ary ∂(A) of any finite set of vertices A is of size at least |A|. Whyte uses Hall’s
matching theorem to translate this condition into a decomposition of the Cayley
graph by regular trees. In turn, one may view these trees as concretely witnessing
the doubling condition, since any subset of vertices in a regular tree satisfies it.

Given an arbitrary finite set of vertices A in a locally finite graph G, let us say
that an isoperimetry condition is any condition that gives a lower bound on the size
of the vertex boundary |∂(A)| in terms of |A|. One can ask if there is a general way
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of witnessing isoperimetry conditions in a graph G by a combinatorial structure
(like a regular tree), or a collection of such structures.

I proved that there is a general way of translating between isoperimetry condi-
tions satisfied by a graph G and combinatorial structures that can be decomposed
into infinite paths.

Theorem 7. (E.) Let G = (V,E) be a locally finite graph. Define a (finite or
infinite) set of vertices I = {x1, x2, . . .} to be independent iff there are pairwise
vertex-disjoint infinite paths p1, p2, . . . whose sources are x1, x2, . . . respectively.
Let I denote the collection of independent sets. Then (V, I) is a matroid.

Using this result, I proved that, given a vertex x in a locally finite graph G,
there is a pruned tree T rooted at x that, in a precise sense, splits as early and as
often as possible. This T can be viewed as a witness to any isoperimetry condition
satisfied by sets of vertices X containing the root x.

I am also in the process of writing up this result.

4. Everywhere Isomorphic Linear Orders

I have also studied partitions of linear orders into suborders that are isomorphic
on every open interval. I proved that complete orders never admit decompositions
into two such suborders.

Theorem 8. (E.) It is not possible to decompose (R, <) into two suborders that
are isomorphic to one another on every open interval. That is, if R = A ∪ B is a
partition of R, there is an open interval I = (a, b) such that A∩ I is not isomorphic
to B ∩ I (as orders). More generally, it is impossible to decompose any dense,
complete linear order L into two everywhere isomorphic pieces.

The proof depends crucially on the completeness of R. And if we delete a count-
able dense subset, in fact we get can get such a decomposition.

Theorem 9. (E.) There is a partition of the irrationals into two everywhere iso-
morphic suborders. That is, there is a partition R \Q = A∪B such that for every
open interval I, we have A ∼= A ∩ I ∼= B ∩ I ∼= B.

I am also in the process of writing up these results.

5. Directions for Further Work

5.1. Sierpiński’s other problems. Two questions from Cardinal and Ordinal
Numbers remain unresolved.

Q1. Do there exist linear orders X,Y such that X3 ∼= Y 3 but X2 6∼= Y 2?
Q2. Do there exist linear orders X,Y such that X2 ∼= Y 2 but X3 6∼= Y 3?

These questions, as well as those discussed in the first section, are instances of
a much more general problem. Given a class of structures (C,×) and a semigroup
(S, ·), we say that S can be represented in C if there is a map i : S → C such that for
all a, b ∈ S, we have i(a·b) ∼= i(a)×i(b) and a 6= b implies i(a) 6∼= i(b). The statement
that there is an X ∈ C isomorphic to its cube but not its square is equivalent to
the statement that Z2 can be represented in C. It is typical that when the cube
property fails for C that it is possible to prove much more general representation
results. For example, Ketonen showed that every countable commutative semigroup
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can be represented in the class (BA,×) of countable Boolean algebras under the
cartesian product.

Theorem 1 is equivalent to the statement that Zn cannot be represented in
(LO,×) for any n > 1.

Q3. Which semigroups can be represented in (LO,×)?
Q4. Can any non-trivial group be represented in (LO,×)?

A complete answer to Question 3 would yield answers to Question 1, 2, and 4,
but may be difficult to find. I am interested in working on all of these problems.

5.2. Cantor Algebras and Thompson’s Group. Given an infinite set X and
bijection F : X × X → X, one may view (X,F ) as an algebraic structure with a
binary operation given by F . Such structures are sometimes called Cantor algebras.
Theorem 5 can be viewed as a representation theorem for Cantor algebras, and it
can be used to give simpler proofs of many of the fundamental results concerning
such algebras, proved by Tarski and Jónsson [11] and Smirnov [17] [18].

Automorphism groups of Cantor algebras are sometimes of interest. The well-
known Thompson group F is such a group. It may be far-fetched, but perhaps
Theorem 5 can give information about Thompson’s group and the question of its
amenability, which is notoriously open.

Q5. Is Thompson’s group amenable?
Q6. For which classes of structures C can Theorem 5 be adapted to characterize

those X ∈ C such that X ∼= X2?

5.3. Binary Trees in Groups of Exponential Growth. Another reasonable
sounding but false conjecture concerning groups is the following: every group of ex-
ponential growth contains a subsemigroup isomorphic to the free semigroup on two
generators. However, like the geometric versions of the Von Neumann conjecture
and Burnside conjecture, it may be that the geometric version of this conjecture
has a positive answer. The following question is open.

Q7. Does every group Γ of exponential growth have a Cayley graph G containing
a complete binary tree?

Using Theorem 7 above, I can prove the following partial result.

Theorem 10. (E.) Suppose Γ is a group of exponential growth, and Bn is the ball
of radius n around the identity. Let G be a Cayley graph of Γ satisfying |Bn| > 2n

for all n. Then there is a partition of G (up to some finite pockets) into one-sided
paths, such that the number of path sources in Bn is at least 2n for every n.

Such a partition is implied by the existence of a binary tree as a subgraph, but
I do not know if the converse is true.
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[22] V. Trnková, V. Koubek, Isomorphisms of products of infinite graphs, Commentationes Math-

ematicae Universitatis Carolinae, 19.4 (1978): 639-652.

[23] K. Whyte, Amenability, Bilipschitz Equivalence, and the Von Neumann Conjecture, Duke
mathematical journal 99.1 (1999): 93-112


