Suppose $A \in \mathbb{R}^{m \times n}$ (linear map $\mathbb{R}^n \to \mathbb{R}^m$)

Key Fact 1: It's possible to maximize $\|A\vec{v}\|$ over the n-sphere,

i.e., let $\sigma_1 = \sup_{\|\vec{v}\|=1} \|A\vec{v}\|$

Then: σ_1 is realized, i.e.

$\exists \vec{v} \in \mathbb{R}^n$ s.t. $\|A\vec{v}\| = \sigma_1$

with $\|\vec{v}\|=1$

Why: The function $\vec{v} \mapsto \|A\vec{v}\|$ is continuous and the n-sphere $\{\vec{v} \in \mathbb{R}^n : \|\vec{v}\|=1\}$ is compact.

Let's functions realize their extrema on compact domain

Since $\|A\vec{v}\| = \sigma_1$, we can find $\vec{u} \in \mathbb{R}^m$ with $\|\vec{u}\|=1$

so that $A\vec{v} = \sigma_1 \vec{u}$.
Key fact 2: if \(\frac{\vec{V}}{||\vec{V}||} + \frac{\vec{V}_1}{||\vec{V}_1||} \) (i.e. \(\frac{\vec{V}}{||\vec{V}||} \vec{V}_1 \)) then \(A\vec{V}_2 \perp A\vec{V}_1 \)

!!! This is the crux

Of course it's not in general true that if \(A\vec{v} \perp \vec{V} \) then \(A\vec{v} \perp A\vec{V} \)

It's true here because if \(A\vec{v}_2 \) were not orthogonal to \(A\vec{v} \), would be possible to find a unit vector \(\vec{v} \) ("leaning toward" \(\vec{v}_2 \)) s.t. \(||A\vec{v}|| > ||A\vec{v}_2|| \), contradicting maximality of \(||A\vec{v}|| \) among unit vectors.

\(\vec{V} \) and \(\vec{V}_1 \) can assume \(||\vec{V}|| = 1 \) longer than \(A\vec{v}_1 \), contradiction

(THis is only a sketchy pictorial justification - but we'll fill fck for grounded)
Another way of saying this:
A maps the space \(R^{n} \perp \) into \(R^{m} \perp \) (of dims \(n-1, m-1 \) resp.)

Now we can repeat this process within \(R^{n} \perp \)

i.e., we can find a \(v_{2} \in R^{n} \perp \) with \(||v_{2}|| = 1 \)
so that \(||A v_{2}|| = \sigma_{2} \)
is max possible

\[1 - \sigma_{2} = \sup_{||v|| = 1} ||A v|| \]

(possible to find \(\sigma_{2} \): again by

The point: by key fact 2
\[A \hat{v}_{2} + A \hat{u}_{1} = \sigma_{1} \hat{u}_{1} \Rightarrow \hat{u}_{1} + \hat{u}_{2} \]

can write \(A \hat{v}_{2} = \sigma_{2} \hat{u}_{2} \) \(\Rightarrow \hat{v}_{2} ||\hat{v}_{2}|| \)

notice \(\sigma_{2} \leq \sigma_{1} \) since we maximized over smaller set.
end again: because \mathbf{v}_2

maximizes $\mathbf{u}^T \mathbf{A} \mathbf{u}$ over $\{\mathbf{u}^1, \mathbf{u}^2\}$

if $\mathbf{v}_2 \in \{\mathbf{u}^1, \mathbf{u}^2\}^+$

then $\mathbf{A} \mathbf{v}_2 \in \{\mathbf{A} \mathbf{u}^1, \mathbf{A} \mathbf{u}^2\}^+$

$\{\mathbf{u}^1, \mathbf{u}^2\}^+$

so continue...

summary: Given \mathbf{A} an $m \times n$ matrix:

1. Find $\mathbf{v}_1 \in \mathbb{R}^n$, $\|\mathbf{v}_1\|_2 = 1$
 s.t. $\|\mathbf{A} \mathbf{v}_1\|_2 = \sigma_1$ is max possible
 for $\mathbf{v} \in \mathbb{R}^n$, $\|\mathbf{v}\|_2 = 1$

 Can write $\mathbf{A} \mathbf{v}_1 = \sigma_1 \mathbf{u}^1$ for some $\mathbf{u}^1 \in \mathbb{R}^m$
 (possible by key fact 1) $\|\mathbf{u}^1\|_2 = 1$

2. Find $\mathbf{v}_2 \perp \mathbf{v}_1$, $\|\mathbf{v}_2\|_2 = 1$
 s.t. $\|\mathbf{A} \mathbf{v}_2\|_2 = \sigma_2$ is max possible
 for $\mathbf{v} \in \{\mathbf{v}_1\}^+$, $\|\mathbf{v}\|_2 = 1$

 Can write $\mathbf{A} \mathbf{v}_2 = \sigma_2 \mathbf{u}_2$ for some $\mathbf{u}_2 \in \mathbb{R}^m$

 and we have (by key fact 2) $\|\mathbf{u}_2\|_2 = 1$

$\mathbf{A} \mathbf{v}_1 \perp \mathbf{A} \mathbf{v}_2$ (so $\mathbf{u}_1, \mathbf{u}_2$)
(3) Find \(\mathbf{v}_3 \perp \{ \mathbf{v}_1, \mathbf{v}_2 \} \) with \(\| \mathbf{v}_3 \| = 1 \)

\[\| \mathbf{A} \mathbf{v}_3 \| = \sigma_3 \| \mathbf{v}_3 \| \text{ max pos.} \]

For \(\mathbf{v} \in \{ \mathbf{v}_1, \mathbf{v}_2 \}^\perp \) with \(\| \mathbf{v} \| = 1 \)

then \(\mathbf{A} \mathbf{v}_3 = \sigma_3 \mathbf{u}_3 \) for some \(\mathbf{u}_3 \) with \(\| \mathbf{u}_3 \| = 1 \)

and \(\mathbf{u}_3 \in \mathbb{F} \mathbf{v}_1, \mathbf{v}_2 \) \(\perp \)

\[\mathbf{A} \mathbf{v}_2 = \sigma_2 \mathbf{u}_2 \]

\[\mathbf{A} \mathbf{v}_1 = \sigma_1 \mathbf{u}_1 \]

\[\mathbf{A} \mathbf{v}_3 = \sigma_3 \mathbf{v}_3 = 0 \mathbf{v}_3 = 0 \]

* when we say "we can find \(\mathbf{u}_3 \) of \(\| \mathbf{u}_3 \| = 1 \) s.t. \(\mathbf{A} \mathbf{u}_3 = \sigma_3 \mathbf{u}_3 \)" we're assuming \(\text{det} \mathbf{A} \neq 0 \) and \(\mathbf{A} \mathbf{u}_3 = \sigma_3 \mathbf{u}_3 \neq 0 \)
- If $A\mathbf{v}_i = 0$, we either
 let $\mathbf{v}_i = 0$ (in case where
 we've already spanned
 \mathbb{R}^m by $A\mathbf{v}_1, \ldots, A\mathbf{v}_{i-1}$)

 or pick $\mathbf{v}_i \in \mathbb{R}^m$
 to be some unit vector
 ($\|\mathbf{v}_i\| = 1$) orthonormal to
 $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$.
In general, we end up with an orthonormal set \(\{ v_1, \ldots, v_n \} \) of \(\mathbb{R}^n \) and orthonormal set (up to some \(\sigma_i \)'s perhaps) \(\{ \hat{u}_1, \ldots, \hat{u}_n \} \) in \(\mathbb{R}^m \), s.t.

\[
\hat{A} \hat{v}_1 = \sigma_1 \hat{u}_1, \quad \hat{A} \hat{v}_2 = \sigma_2 \hat{u}_2, \quad \ldots \quad \hat{A} \hat{v}_n = \sigma_n \hat{u}_n
\]

and \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0 \)

In matrix form:

\[
\begin{align*}
\text{Let } V &= \begin{bmatrix} \hat{v}_1 & \cdots & \hat{v}_n \end{bmatrix} \in \mathbb{R}^{m \times n} \\
\hat{U} &= \begin{bmatrix} \hat{u}_1 & \cdots & \hat{u}_n \end{bmatrix} \in \mathbb{R}^{n \times n} \\
\text{So: } AV &= \begin{bmatrix} A\hat{v}_1 & \cdots & A\hat{v}_n \end{bmatrix} \\
&= \begin{bmatrix} \sigma_1 \hat{u}_1 & \cdots & \sigma_n \hat{u}_n \end{bmatrix} \\
&= \hat{U} \Sigma \\
&= \hat{U} \Sigma \Theta
\end{align*}
\]
V is always orthonormal (i.e., orthonormal columns + square)

\tilde{U} has orthonormal columns (up to some \hat{c}'s)

to get full SVD we

"make \tilde{U} square" (keeping columns orthonormal) and

adjust \hat{c} accordingly

by adding some \hat{c}'s or extra orthonormal columns.

If $m \geq n$:

- add columns $\tilde{u}_{n+1}, \ldots, \tilde{u}_m$ to \tilde{U} so that $\tilde{u}_1, \ldots, \tilde{u}_m$ orthonormal (hence a basis for IRm)

- add rows of \hat{c}'s to \hat{c}

 to preserve $E \hat{c}$

\[
U = \begin{bmatrix} \tilde{u}_1 & \cdots & \tilde{u}_n & \tilde{u}_{n+1} & \cdots & \tilde{u}_m \end{bmatrix}
\]

\[
E = \begin{bmatrix} \hat{c}_1 & \cdots & \hat{c}_n \end{bmatrix}
\]