1. (Strang I.7.23) Suppose that C is symmetric and positive definite (so $x^TCx > 0$ for all $x \neq 0$) and A has independent columns. Check that the matrix $S = A^TCA$ is also positive definite.

2. (Strang I.7.28) Suppose that S is symmetric positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n > 0$.

 a) What are the eigenvalues of the matrix $\lambda_1 I - S$? Conclude that this matrix is positive semi-definite.

 b) It follows that $\lambda_1 x^T x \geq x^T S x$ for all x. Why? Conclude that the maximum value of the function $f(x) = \frac{x^T S x}{x^T x}$ is λ_1.

 (Equivalently, this gives that the maximum value of the quadratic form $P(x) = x^T S x$ subject to the constraint $x^T x = 1$ is λ_1.)

3. (Strang I.7.21) Draw the tilted ellipse $x^2 + xy + y^2 = 1$ and find the half-lengths of its axes from the eigenvalues of the corresponding symmetric matrix S.

4. (Strang I.9.2) Find a closest rank-1 approximation to the following matrices:

 \[
 \begin{bmatrix}
 3 & 0 & 0 \\
 0 & 2 & 0 \\
 0 & 0 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 3 \\
 2 & 0
 \end{bmatrix},
 \begin{bmatrix}
 1 & \frac{1}{2} \\
 \frac{1}{2} & 1
 \end{bmatrix},
 \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
 \end{bmatrix}
 \]

 Following up on the third matrix: what are the singular values of a symmetric matrix, in general? On the fourth: what about of an orthogonal matrix?

5. (Strang I.12.10) Suppose all entries are 1 in a $2 \times 2 \times 2$ tensor T, except the first entry $t_{111} = 0$. Write T as a sum of two rank-1 tensors.

 Solve the following optimization problem:

 Find the closest rank-1 tensor $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \circ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \circ \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ to T (in the Frobenius norm), assuming that $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

 (This is a least squares problem – can you see how to frame it that way?)

6. (Strang I.12.8) The largest possible rank of a $2 \times 2 \times 2$ tensor is 3. Can you find an example?