Homework #3

- 1. i. Spell out the details of the proof of the following fact (that we've used several times in class): if V is a subspace of \mathbb{R}^n of dimension k, there is an orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}$ of \mathbb{R}^n such that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis of V.
 - ii. Find a basis for \mathbb{R}^3 as above with V the subspace of \mathbb{R}^3 spanned by the vectors $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$.
- 2. (Trefethen and Bau 4.1) Determine the SVDs of the following matrices by hand:

 $\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$

- 3. (Trefethen and Bau 4.2) Suppose that A is an $m \times n$ matrix and B is the $n \times m$ matrix obtained by rotating A ninety degrees clockwise on paper. Do A and B have the same singular values? Either prove the answer is yes or find a counterexample.
- 4. (Trefethen and Bau 4.4) Two square matrices $A, B \in \mathbb{R}^{n \times n}$ are called *unitarily equivalent* if $A = QBQ^T$ for some orthogonal matrix Q. For each statement below, either prove it or find a counterexample.
 - i. If A and B are unitarily equivalent then they have the same singular values.
 - ii. If A and B have the same singular values then they are unitarily equivalent.
- 5. (Trefethen and Bau 5.3) Consider the following matrix:

$$A = \begin{bmatrix} -2 & 11\\ -10 & 5 \end{bmatrix}$$

- a. Find the SVD of $A = U\Sigma V^T$. The SVD is not (quite) unique, so find the one that has the minimal number of minus signs in U and V.
- b. Draw a labeled picture of the unit ball in \mathbb{R}^2 and its image under A.
- c. Find A^{-1} not directly, but using the SVD.
- d. Find the eigenvalues λ_1, λ_2 of A.
- e. Verify that det $A = \lambda_1 \lambda_2$ and $|\det A| = \sigma_1 \sigma_2$.
- f. What is the area of the "ellipsoid" onto which A maps the unit ball of \mathbb{R}^2 ?
- 6. (Trefethen and Bau 5.4) Suppose that $A \in \mathbb{R}^{n \times n}$ has SVD $A = U\Sigma V^T$. Find the eigenvalues and associated eigenvectors of the following symmetric matrix:

$$\begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix}$$

Write down the eigenvalue decomposition (i.e. diagonalize the matrix).

(*Hint*: By taking the transpose of $A = U\Sigma V^T$ we see: if $A\mathbf{v}_k = \sigma_k \mathbf{u}_k$ then $A^T \mathbf{u}_k = \sigma_k \mathbf{v}_k$. Use these equations to find the sought after eigenvectors.)

7. (Strang I.7.20) From $S = QDQ^T$ compute the positive definite symmetric square root $A = Q\sqrt{D}Q^T$ of the following matrix S.

$$S = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

8. (Strang I.7.22) Compute the Cholesky factorization $S = A^T A$ with $A = \sqrt{D}L^T$ for the following matrix:

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 7 \end{bmatrix}.$$