1. Prove the following facts about matrix ranks:
 i. \(\text{rank}(AB) \leq \text{rank}(A) \) and \(\text{rank}(AB) \leq \text{rank}(B) \)
 ii. \(\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B) \)
 iii. \(\text{rank}(A^T A) = \text{rank}(AA^T) = \text{rank}(A) = \text{rank}(A^T) \) \(\text{(Hint: recall HW1 #3)} \)

2. (Strang I.3.4) If \(S = S^T \) is symmetric then of course \(C(S) = C(S^T) \) (i.e. the column and row spaces of \(S \) coincide) and also \(N(S) = N(S^T) \). Does the converse hold? That is, if \(A \) is square with \(C(A) = C(A^T) \) and \(N(A) = N(A^T) \), is \(A \) necessarily symmetric? Either prove the answer is yes or find a counterexample.

3. (Trefethen and Bau 2.1) Show that if a square matrix \(A \) is both triangular and orthogonal, then it is diagonal.

4. (Strang I.5.4) Suppose \(Q \) is \(n \times n \) and orthogonal. Check that \(||Qx|| = ||x|| \) for any \(x \in \mathbb{R}^n \) (so orthogonal matrices don’t change lengths of vectors). Check that in fact \((Qx)^T (Qy) = x^T y \) for any \(x, y \in \mathbb{R}^n \) (so orthogonal matrices don’t change angles between vectors).

5. (Trefethen and Bau 2.4) What are the possible eigenvalues of an orthogonal matrix \(Q \)? Remember, though its entries are real, \(Q \) may have complex eigenvalues.

6. Prove that eigenvectors associated to distinct eigenvalues of an orthogonal matrix \(Q \) are orthogonal. Remember, vectors \(x, y \) with possibly complex entries are orthogonal when \(x^* y = 0 \), where \(x^* = x^T \) is the complex conjugate of the transpose of \(x \).

7. (Trefethen and Bau 2.3) Suppose that \(S = S^T \) is a symmetric matrix (entries from \(\mathbb{R} \)).
 i. Prove that all eigenvalues of \(S \) are real. Conclude that for every eigenvalue we can find an associated eigenvector which is real.
 \(\text{(Hint: use the identity (AB)* = B*A* and the symmetry of S to prove \(\lambda x^* x = \lambda x^* x \) for a given eigenvalue \(\lambda \) and an associated eigenvector \(x \). For the conclusion about real eigenvectors, it may help to use that \(Sx = \lambda x \) iff \((S - \lambda I)x = 0 \).) } \)
 ii. Prove that eigenvectors associated to distinct eigenvalues of \(S \) are orthogonal.
 \(\text{(One way: say why this holds when the first eigenvalue \(\lambda_1 = 0 \). In the general case consider the shifted matrix \(S - \lambda_1 I \).) } \)

8. (Strang I.6.22) Consider the following matrix:
 \[
 A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}
 \]
 Diagonalize \(A \) (i.e. factor \(A = XDX^{-1} \) where \(D \) is diagonal) and use this diagonalization to find a formula for \(A^k \).

9. (Strang I.6.12) The matrix \(A \) below is singular of rank one. Find three eigenvalues and three corresponding eigenvectors for \(A \):
 \[
 A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}.
 \]