Some of HW8

<u>Notation</u>: $A \cong B$ means A is isomorphic to B.

3.19a. Suppose our language contains a single unary relation symbol S.

Prove there is a countable family \mathcal{F} of countable structures, such that *every* countable structure in this language is isomorphic to a structure in the family.

Prove also that the structures in the family \mathcal{F} are pairwise non-isomorphic.

Proof: For $n \in \omega$, define $A(n, \infty)$ to be the structure $(|A(n, \infty)|, S^{A(n,\infty)}) = (\omega, \{0, 1, \dots, n-1\})$

For $m \in \omega$ define $A(\infty, m)$ to be the structure $(|A(\infty, m)|, S^{A(\infty, m)}) = (\omega, \{m, m+1, \ldots\}).$

Define $A(\infty, \infty) = (\omega, \{0, 2, 4, ...\}).$

<u>Claim 1</u>: If A is a countably infinite structure in this language, then there are $x, y \in \{0, 1, ..., \infty\}$ such that A is isomorphic to A(x, y).

Proof: There are three possibilities: S^A is finite, $|A| - S^A$ is finite, both A and S^A are infinite.

Suppose we are in case 1, and S^A is of size n. Choose an enumeration $|A| = \{a_0, a_1, \ldots, a_{n-1}, a_n, \ldots\}$ so that $S^A = \{a_0, \ldots, a_{n-1}\}$ Define $\pi : A(n, \infty) \to A$ by $\pi(i) = a_i$.

Then π is an isomorphism since it is a bijection and $i \in S^{A(n,\infty)}$ iff $i \in \{0,\ldots,n-1\}$ iff $a_i \in \{a_0,\ldots,a_{n-1}\}$ iff $\pi(i) \in \{\pi(a_0),\ldots,\pi(a_{n-1})\}$ iff $\pi(i) \in S^A$.

Similarly for the other cases.

<u>Claim 2</u>: The structures in \mathcal{F} are pairwise non-isomorphic.

Proof: Fix A(x, y) and A(x', y') in our family s.t. $(x, y) \neq (x', y')$. (at least one of x, y is ∞ and at least one of x', y' is ∞ .)

WLOG $x \neq x'$ and x < x'. Hence x is finite, say x = n. Then $S^{A(x,y)} = \{0, \ldots, n-1\}$.

Let $\pi : |A(x',y')| \to |A(x,y)|$ be any bijection. We know $S^{A(x,y)} = \{0,\ldots,n-1\}$ And $S^{A(x',y')} = \{0,\ldots,n-1,n,\ldots\}$ is of size x' > n (x' possibly infinite).

Hence $\{\pi(0), \ldots, \pi(n-1), \pi(n), \ldots\}$ is of size x' as well. Thus there must be some N such that $N \in S^{A(x',y')}$ but $\pi(N) \notin S^{A(x,y)}$. Hence π is not an isomorphism. Since π was arbitrary, there is no isomorphism.

3.19b Consider the language with a single binary relation symbol R. Construct a family of uncountably many pairwise non-isomorphic countable structures in this language.

Proof: First, an example.

A useful way to think about isomorphisms is: if A, B structures and $\pi : |A| \to |B|$ a bijection then π is an isomorphism if when you "apply π " to c^A, R^A, f^A for all the symbols in your language you get c^B, R^B, f^B .

Consider the structures in this language $A = (|A|, R^A) = (\{1, 2, 3\}, (1, 2), (1, 3)), B = (|B|, R^B) = (\{1, 2, 3\}, \{(2, 3), (2, 1)\}), C = (|C|, R^C) = (\{1, 2, 3\}, \{(1, 1), (2, 2)\}).$

Then A is isomorphic to B. Bijection is given by $\pi(1) = 2$, $\pi(2) = 3$, $\pi(3) = 1$; is an isomorphism because when you apply π to $\mathbb{R}^A = \{(1,2), (2,3)\}$ you get $\{(2,3), (3,1)\} = \mathbb{R}^B$.

But A is not isomorphic to C. For any bijection π from $\{1, 2, 3\}$ we have

$$"\pi[R^A]" = \{(\pi(1), \pi(2)), (\pi(1), \pi(3))\} \neq R^C.$$

Now we prove the problem.

For every infinite $X \subseteq \omega$, we list X in increasing order: $X = \{n_0, n_1, \ldots\}$

There are uncountably many infinite subsets of ω .

For every such X, we define a relation

 $R^{A_X} = \{(0,0), (0,1), \dots, (0,n_0-1), (1,0), (1,1), \dots, (1,n_1-1), \dots\}$

The point: for every $k \in \omega$, there are exactly n_k many tuples of the form (k, \cdot) in the relation.

Notice: if k < l then than number of tuples (k, \cdot) is n_k which is less than n_l which is the number of tuples of the form (l, \cdot)

E.g. if $X = \{2, 4, 6, ...\}$ Then $R^{A_X} = \{(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (1, 3), ...\}$

We now define a structure A_X with $|A_X| = \omega$ and R^{A_X} as just defined.

<u>Claim</u>: if $X \neq Y$ then A_X is not isomorphic to A_Y .

Proof: We write $X = \{n_0, n_1, \ldots\}, Y = \{m_0, m_1, \ldots\}$ in increasing order.

Wlog there is $n \in A_X$ such that $n \notin A_Y$. Then $n = n_k$ for some k. Hence the number of tuples of the form (k, \cdot) in \mathbb{R}^{A_X} is $n_k = n$.

If there were an isomorphism $\pi : A \to B$ we would have to have that number of tuples of the form $(\pi(k), \cdot)$ in \mathbb{R}^{A_Y} is n also.

But since $n \notin Y$, for every k we have that the number of tuples of the form (k, \cdot) in \mathbb{R}^{A_Y} is $m_k \neq n$ Hence there is no isomorphism, i.e. A_X and A_Y not isomorphic.

 \cap (i)Intrivde. More en structures + isomorphism. Erraphy - Consider long. w/ Single Dinory relation symbol R. - C graph is a structure A Saturying the Fellowing theory E: $Z = \left[\forall u \neg R(u, u) \\ \forall u \forall v (R(u, v) \Rightarrow R(v, u) \right]$ -wesay: a graph is a set equipped is/an irreflexive, symmetric relation $-e.g. A = (1A1, R^{A})$ = (1,2,33, 1(1,2), (2,1), (1,2)(3,1)3)D Z Stoph Pic: draw on edge beforcen e, b (f (a,b) FR A a groph A, IF (2, y) ERA.

(ii) Another groph: $R^{A'} = \{(1,3), (3,1)\}$ Another $R^{A''} = [(1,2),(2,1) (2,3), (2,3)]$ 3 A4 Observe: A = A" but A = A' (uhy!) (ansider B = (1B1, R^e) = (11,2,37, 7(1,2), (31), (1,2)) then BU a structure in this long. but is not a graph. (R^B not symmetric) $\underline{CTC(H)} = (1C1, R^{c}) = (1C1, R^{c}) = (1C1, R^{c})$ 13 c graph - In Fact C is a substracture cf Ag since Icl SIAI pc = RAMICI

(iii) Nete: A about is not a substructure of A since IAI = IAI bat RN 7 RA Claim: There is an Unethel family F cf pairwise non-womorphie etty infinite graphy PF. For new, n>1 cn n-stor is a graph that looks tike this: The point. the point. in on n-ster: Contor is adjocate te n points; di attur pts adjocate any tead te n points, de chur pris adjact only to cetur. e.g. $A = (IAI, R^A)$ = (21,2,3,43, ((1,2), (2,1)) (1,3) (3,1)(1,4) (4,1)3-stor. 15

~ (iv) Sps X = Eno, n, _] S W V an infinite subset of w not containing let Ar be the graph consisting of infinitury many stors, one for each nex. -e.g. if X = 22, 4, 6, ... ?, Ax lookslike, Actually defining A explicitly isn't so important, could do: $A_{\chi} = (\omega, [(e_{1}), (1_{e}), (3, u), (4_{3})] \\ (c_{2}), (2_{2}o), (3, 5), (5, 3) \\ (3, 6), (6, 3), \dots) \\ (3, 7, (7_{2}))$ CALL CALLER CONTROL Clain: if X ≠ Y then Ax and Ay on not wonerphie. PE. wlog there is nex s.t. nex

(U) Hence there is x ∈ IAI, that is adjacut to exactly n-many points (center of n-stor) For any yeldyl, adjout to m paints Parson me Y, or adjourn to exactly 1. Hence Ax ZAy Hence J= ZAX: XS while infinited Linear orders A linear order is any structure A Schofying the theory: Vu (¬Rlaju)) Vu Vv (Rlaju) => ¬R(vju)) Vu Vv Vu (Rlaju) AR(vju) => Rlyma)) (L.O.'s gre wreflying antisymmetrici transiture relations) This defin is for strict orders e.g. (R, c) is a linear order by this disch but (R, E) is net.

(vi) - Visudia an L.C. by drawing V_{-} points in then a left e.g. A = (A, PA) = (21,2,3), 1(1,2) (2,3) (1,3))points in a line: if (a,b) ER then a left of b. No edges. W a 1.0. o ø B A. ? - Now consider A = (w, <) A. e 7 0 Ø 1.2 3 0 - And B = (Z, c) 6 1 0 ١ 2 3 Then IAI SIBI and RA=REPIAI SE AU Q Substructure FB

~ (vii) S A on elementary statutore CF B? No; A = ∃y tr(¬R(y,y)) B ≠ " - Consider $R = (|c|, R^{c})$ where |c| = w u(x) $R^{c} = R^{A} u((n, x)) : xew$ Picture: x 0 Then A.U. a substructure in C - IS A elementary in C? No again: A = Vu = V (R(u,v))0 elements have successors Opport Kikabersis C¥ " since to has no successor.

(inic) What doot C'. o o o o o o 012 xo x, 15 A elementary in C? Still no. "A has a vinque minimil elevent. Every other elevent has a vinque prederessor" c' 17 in in xons re predecessor However us will prove (later). Thing there is a linear order B S.J. - A = 0000 (w c) us an elim substructure of B - I x c [B] SL For dlinew n cx

~ (ix) - For new something weeker - For every new which be a new constant -let At be expansion of A = (w,c) that interprets chat = n - ut T* be the st of all Sentency e s.L. A* = e. e.g. Tt contains origins For a linear order, indeed all sentinces tracinA, as well as the following: - Vu luteo) - Sentincy of the form Cn 2 Cnt, MJ Ju (en cu nu cent) Hence any medil BETH va linear order that lades like is "at the beginning" Question if BETT is B Bomerphic to At? = (w, c, ...)

 (χ) - We preve no! - let c be a new constant symbol let 2 the fire set of sentimery of the form Cn < C - We prove T* UE is schiftable. - Cet D S T UE ba Finite = DOUD, where DOCTA DIEE - let Chossin, Che be set et cris appearing in Di - WE N= METI - let A' be the exponnen of At the intorprets e as N - Then A' = Do because achelly A' = T* - and A F D, Since ct really Us larger than $e_n^{A'=n}$ for all ch's appearing in B, - Hence by compactures the

let B be a medel. Then: B: C^B Since BETA WC knew way element in 131 except CB has a unique succidor del pres predec ~ shift? Sa eß **P** . 0 Cep copy cf w