Some of HW8

Notation: $A \cong B$ means A is isomorphic to B.
3.19a. Suppose our language contains a single unary relation symbol S.

Prove there is a countable family \mathcal{F} of countable structures, such that every countable structure in this language is isomorphic to a structure in the family.

Prove also that the structures in the family \mathcal{F} are pairwise non-isomorphic.
Proof: For $n \in \omega$, define $A(n, \infty)$ to be the structure $\left(|A(n, \infty)|, S^{A(n, \infty)}\right)=(\omega,\{0,1, \ldots, n-1\})$
For $m \in \omega$ define $A(\infty, m)$ to be the structure $\left(|A(\infty, m)|, S^{A(\infty, m)}\right)=(\omega,\{m, m+1, \ldots\})$.
Define $A(\infty, \infty)=(\omega,\{0,2,4, \ldots\})$.
Claim 1: If A is a countably infinite structure in this language, then there are $x, y \in\{0,1, \ldots, \infty\}$ such that A is isomorphic to $A(x, y)$.
Proof: There are three possibilities: S^{A} is finite, $|A|-S^{A}$ is finite, both A and S^{A} are infinite.
Suppose we are in case 1 , and S^{A} is of size n. Choose an enumeration $|A|=\left\{a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}, \ldots\right\}$ so that $S^{A}=\left\{a_{0}, \ldots, a_{n-1}\right\}$ Define $\pi: A(n, \infty) \rightarrow A$ by $\pi(i)=a_{i}$.
Then π is an isomorphism since it is a bijection and $i \in S^{A(n, \infty)}$ iff $i \in\{0, \ldots, n-1\}$ iff $a_{i} \in$ $\left\{a_{0}, \ldots, a_{n-1}\right\}$ iff $\pi(i) \in\left\{\pi\left(a_{0}\right), \ldots, \pi\left(a_{n-1}\right)\right\}$ iff $\pi(i) \in S^{A}$.
Similarly for the other cases.
Claim 2: The structures in \mathcal{F} are pairwise non-isomorphic.
Proof: Fix $A(x, y)$ and $A\left(x^{\prime}, y^{\prime}\right)$ in our family s.t. $(x, y) \neq\left(x^{\prime}, y^{\prime}\right)$. (at least one of x, y is ∞ and at least one of x^{\prime}, y^{\prime} is ∞.)
WLOG $x \neq x^{\prime}$ and $x<x^{\prime}$. Hence x is finite, say $x=n$. Then $S^{A(x, y)}=\{0, \ldots, n-1\}$.
Let $\pi:\left|A\left(x^{\prime}, y^{\prime}\right)\right| \rightarrow|A(x, y)|$ be any bijection. We know $S^{A(x, y)}=\{0, \ldots, n-1\}$ And $S^{A\left(x^{\prime}, y^{\prime}\right)}=$ $\{0, \ldots, n-1, n, \ldots\}$ is of size $x^{\prime}>n\left(x^{\prime}\right.$ possibly infinite $)$.
Hence $\{\pi(0), \ldots, \pi(n-1), \pi(n), \ldots\}$ is of size x^{\prime} as well. Thus there must be some N such that $N \in S^{A\left(x^{\prime}, y^{\prime}\right)}$ but $\pi(N) \notin S^{A(x, y)}$. Hence π is not an isomorphism. Since π was arbitrary, there is no isomorphism.
3.19b Consider the language with a single binary relation symbol R. Construct a family of uncountably many pairwise non-isomorphic countable structures in this language.
Proof: First, an example.
A useful way to think about isomorphisms is: if A, B structures and $\pi:|A| \rightarrow|B|$ a bijection then π is an isomorphism if when you "apply $\pi^{\text {" }}$ to c^{A}, R^{A}, f^{A} for all the symbols in your language you get c^{B}, R^{B}, f^{B}.
Consider the structures in this language $A=\left(|A|, R^{A}\right)=(\{1,2,3\},(1,2),(1,3)), B=\left(|B|, R^{B}\right)=$ $(\{1,2,3\},\{(2,3),(2,1)\}), C=\left(|C|, R^{C}\right)=(\{1,2,3\},\{(1,1),(2,2)\})$.
Then A is isomorphic to B. Bijection is given by $\pi(1)=2, \pi(2)=3, \pi(3)=1$; is an isomorphism because when you apply π to $R^{A}=\{(1,2),(2,3)\}$ you get $\{(2,3),(3,1)\}=R^{B}$.
But A is not isomorphic to C. For any bijection π from $\{1,2,3\}$ we have
$" \pi\left[R^{A}\right] "=\{(\pi(1), \pi(2)),(\pi(1), \pi(3))\} \neq R^{C}$.
Now we prove the problem.
For every infinite $X \subseteq \omega$, we list X in increasing order: $X=\left\{n_{0}, n_{1}, \ldots\right\}$
There are uncountably many infinite subsets of ω.
For every such X, we define a relation
$R^{A_{X}}=\left\{(0,0),(0,1), \ldots,\left(0, n_{0}-1\right),(1,0),(1,1), \ldots,\left(1, n_{1}-1\right), \ldots\right\}$
The point: for every $k \in \omega$, there are exactly n_{k} many tuples of the form (k, \cdot) in the relation.
Notice: if $k<l$ then than number of tuples (k, \cdot) is n_{k} which is less than n_{l} which is the number of tuples of the form (l, \cdot)
E.g. if $X=\{2,4,6, \ldots\}$ Then $R^{A_{X}}=\{(0,0),(0,1),(1,0),(1,1),(1,2),(1,3), \ldots\}$

We now define a structure A_{X} with $\left|A_{X}\right|=\omega$ and $R^{A_{X}}$ as just defined.
Claim: if $X \neq Y$ then A_{X} is not isomorphic to A_{Y}.
Proof: We write $X=\left\{n_{0}, n_{1}, \ldots\right\}, Y=\left\{m_{0}, m_{1}, \ldots\right\}$ in increasing order.
Wlog there is $n \in A_{X}$ such that $n \notin A_{Y}$. Then $n=n_{k}$ for some k. Hence the number of tuples of the form (k, \cdot) in $R^{A_{X}}$ is $n_{k}=n$.
If there were an isomorphism $\pi: A \rightarrow B$ we would have to have that number of tuples of the form $(\pi(k), \cdot)$ in $R^{A_{Y}}$ is n also.
But since $n \notin Y$, for every k we have that the number of tuples of the form (k, \cdot) in $R^{A_{Y}}$ is $m_{k} \neq n$ Hence there is no isomorphism, i.e. A_{X} and A_{Y} not isomorphic.
(i)

Interlude: Mare en structures + isomorphism.
Graphy
Consider lang. w/ single Dinary relaten symbel R. a graph is a structure
A satysuging the following theery e :
$\Sigma=\tau \quad \forall u \neg R(u, u)$

$$
\forall u \forall v(R(u, v) \Rightarrow R(v, u)\}
$$

- wesay: a groph us a set equipped w) ax irreflexive, symmetrie riden

$$
\begin{aligned}
&-e \cdot g \cdot A=\left(|A|, R^{A}\right) \\
&=(\{1,2,3\}, 2(1,2),(2,1),(1,3) \\
&(3,1)\})
\end{aligned}
$$

is a groph
Ple:

draw on edge befwan a, b if $(a, b) \in R$

A
Wo say x, y are adjacent in
a groph A, if $(x, y) \in R^{3}$.
(ii)

Another groph:

Another:

Observe: $A \cong A^{\prime \prime}$ but $A \not \equiv A^{\prime}$ (why?)
Consider $B=\left(|B|, R^{B}\right)$

$$
=(\{1,2,3\},\}(1,2),(2,1),(1,3)\}
$$

Then B u a sfrecture in this (ono but us not a graph! (R'B not symmetry)
CTCLT: $-C=\left(|C|, R^{C}\right)$

$$
=(\{1,2\},\{(1,2),(2,1)\})
$$

is a graph of Ag since lack C is a substrature $R^{C}=R^{A} \times 101$
(iii)

Nete: A^{\prime} above is net a subsineture of A since $\left|A^{\prime}\right|=|A|$ bat $R^{A} \neq R^{A}$.

Claini: There is on unetbl fomily F of parwise non-lsomorphie etbly infirut graphy
Pf: For $n \in w, n \geq 1$ on n-stor "the". graph thet looks Tike

e.g.

$$
\begin{aligned}
A=\left(|A|, R^{A}\right) & (1,2,3,4\},\{(1,2),(2,1) \\
& (1,3),(3,1) \\
& (1,4\},(4,1)\}
\end{aligned}
$$

is a 3-stor:

(iv)
$\operatorname{Sps} x=\left[n_{0}, n_{1}, \ldots\right\} \leqslant \omega$ on infinito subset of is not containing o.
ut A_{x} be the groph consisting of intinituy many stors, onefor eah $n \in X$.
e.g. if $x=\{2,4,6, \ldots\}, A_{x}$ (odasilia)

Actudly derinim A_{x} expliaithy lsn't so impartat, could de:

$$
\begin{aligned}
& A_{x}=(\omega,\{(0,1),(1, c),(3,4),(4,3)
\end{aligned}
$$

(88) 8 isfon

Clain: if $x \neq Y$ then A_{x} and Ay on ret cromerphie.
PE. wlog thare y $n \in X$ s.t. $n \notin Y$
(v)

Hence ther is $x \in|A| x$ thet is adjacut to exactry n-many

For any $g \in\left|A_{y}\right|$, ady out to m poirbs for sen may, or adyocele to exacthy 1.
Hence $A_{x} \nexists^{*}$
Hunce $F=$ ¿Ax: $x \leq$ wliok infinkt\} is as dusived.
Linear crders
A lineer order us any sfructure A sclesfying the theory:

$$
\begin{aligned}
& \forall u(\neg R(a, u)) \\
& \forall a \forall v(R(u, v) \Rightarrow \neg R(v, u)) \\
& \forall u \forall v \forall \sim(R(u, u) \wedge R(v, u) \Rightarrow R(u, w))
\end{aligned}
$$

(L.O.'s are ser wr irreflexave antisymmetrei trassiture reletions)
Thus def/n u for struct erders e.g. (\mathbb{R}, c) is a linear order by (\mathbb{R}, \leq) is net.
(vi)

- Visudize on L.O. by drawing points in a line: if $(a, b) \in R$ then a left \&bs. No edges!

$$
\text { ens. } \begin{aligned}
A= & \left(A, R^{A}\right)^{(1,2,3\},\{(1,2)} \\
= & (2,3) \\
& (1,3\}))
\end{aligned}
$$

us a 1.0.
-Now consider $A=(\omega,<)$
A: $\begin{array}{cccc}0 & 0 & 0 \\ 0 & 1 & 2 & 3\end{array}$

- And $B=(\mathbb{Z}, c)$

Then $|A| \subseteq|B|$ and $R^{A}=R^{B} \Gamma|A|$ so A is a substructure of B
(vii)

- is A on elementary substructure of θ ?

$$
\begin{aligned}
& A \\
& \text { No: } A F=\exists u \forall v(\neg R(v, u)) \\
& B \notin
\end{aligned}
$$

- Consider $e=\left(|c|, R^{c}\right)$
where $|c|=\omega \cup\{x\}$

$$
\begin{aligned}
& \mid u_{1}=w \cup\{x\} \\
& R^{c}=R^{A} \cup\{(n, x): x \in w\}
\end{aligned}
$$

Puncture:

$$
\begin{array}{llllll}
0 & i & 2 & 3 & \cdots & i
\end{array}
$$

- Then A us a substructure in C
- Is A elementary in C?

No again:
again:

C\& "ll in ce hos ne successor.
(viii)

Whet gout C':
is A elementary in C?
still no.

$$
\begin{aligned}
& A \& \exists u \forall v(u \neq v \Rightarrow {[R(u, v) \hat{}} \\
& \exists \omega\left(R(w, v) \wedge \forall x \neg\binom{(w, x)}{R(x, w))}\right]
\end{aligned}
$$

"A has a unique minimal elenur. Every other element has a unique preduesser"
$c^{\prime} \neq$
x_{0} hes n preduesser
However wo will prove(later):
This there is a linear order Sit. $A=000(\omega,<)$ is on elem substructure of B - $\begin{aligned} & x \in|p| \text { sh }\end{aligned}$
$(i x)$

- Fer res something weeder
- For every new wo c_{n} be a new constant
- Let A^{-x} be exportien of $A=(\omega, c)$ that inturprets $\mathrm{Cn}^{* *}=n$
- er T^{*} be the set of all sentences e S.L. $A^{*}=c$.
eng. T* contains axioms for a linear order, indeed de sentences trueinA, as well as the following:
- $\forall u\left(u f c_{0}\right)$
- sentences of the form

$$
c_{n}<c_{n+1} \wedge 7 \exists u\left(c_{n}<u \wedge u<c_{n+1}\right)
$$

Hence any model $B F T^{*}$ is a linear order that looks like o "at the beginners"

$$
c_{0}^{B} \quad c_{1}^{B} \quad c_{2}^{B}
$$

Question: if $B=T^{*}$ is B

$$
\begin{aligned}
& A^{+} ? \\
& = \\
& (\omega,<, \ldots)
\end{aligned}
$$

(x)

- We prore ne!
- Let c be a new censtant syubol Let \mathcal{E} be the set ot sentches of the form $c_{n}<c$
- We prove T^{*} UE is schsfidble.
- cet $\Delta \subseteq T^{*} \cup E$ ba finite

$$
\begin{aligned}
&=\Delta_{0} \cup \Delta_{1} \\
& \text { where } \Delta_{0} \subseteq T^{*} \\
& \Delta_{1} \subseteq E
\end{aligned}
$$

- let $c_{n_{0}}, \ldots, c_{n_{k}}$ be set of c_{n} 's appearny in Δ_{1}
$-\omega \in=n_{k}+1$
- Cet A^{\prime} be the exponnen of A^{*} thet intorprets e as N
- Then $A^{\prime} F D_{0}$ becase catucles $A^{\prime} F T^{*} \quad$,N
- and $A^{\prime} F \Delta^{\prime}$ since A^{A} redly is lorger then $e_{n}^{A^{\prime}}=n$ for fll c_{n} 's oppearios in A,
- Hence bay compactren TOUE
- Let B be a medel. Then:

$$
B:
$$

$$
\begin{array}{ccccc}
0 & 0 & 0 & \cdots & c^{B} \\
c_{0}^{B} & c_{1}^{B} & c_{2}^{B} & & c^{B}
\end{array}
$$

- Sina $B F T$ we krew wory elemat in $|B|$ exoupt C^{B} hos a unque sucuster a-d predecser 8

$$
B:
$$

$$
\begin{aligned}
& \text { otherstaft? } \\
& \overbrace{\operatorname{copy} d^{2}}^{c} \\
& \text { w }
\end{aligned}
$$

