Some of HWS&

Notation: A = B means A is isomorphic to B.

3.19a.

3.19b

Suppose our language contains a single unary relation symbol S.

Prove there is a countable family F of countable structures, such that every countable structure in
this language is isomorphic to a structure in the family.

Prove also that the structures in the family F are pairwise non-isomorphic.

Proof: For n € w, define A(n,c0) to be the structure (|A(n, c0)|, SA4™)) = (w,{0,1,...,n — 1})
For m € w define A(co,m) to be the structure (|A(co,m)|, SA>™)) = (w,{m,m +1,...}).
Define A(co, ) = (w,{0,2,4,...}).

Claim 1: If A is a countably infinite structure in this language, then there are x,y € {0,1,...,00} such
that A is isomorphic to A(z,y).

Proof: There are three possibilities: S is finite, |A| — S4 is finite, both A and S4 are infinite.

Suppose we are in case 1, and S4 is of size n. Choose an enumeration |A| = {ag, a1, ..., @n_1,0n, ...}
so that S4 = {ag,...,a,_1} Define 7 : A(n,00) — A by 7(i) = a;.
Then 7 is an isomorphism since it is a bijection and i € SA4(>) iff § € {0,....,n — 1} iff a; €

{ag,...,an_1} iff (i) € {7(ap),...,n(a,_1)} iff 7(i) € S4.
Similarly for the other cases.
Claim 2: The structures in F are pairwise non-isomorphic.

Proof: Fix A(z,y) and A(2’,y’) in our family s.t. (x,y) # (2/,y). (at least one of z,y is co and at
least one of 2’3y’ is 00.)

WLOG z # 2’ and = < . Hence z is finite, say £ = n. Then S4@¥) = {0,... ,n—1}.

Let 7 : |[A(z',y")| = |A(x,y)| be any bijection. We know SA@¥) = {0,...,n — 1} And SAE"Y) =
{0,...,n—1,n,...} is of size 2’ > n (2 possibly infinite).

Hence {7(0),...,m(n — 1),7m(n),...} is of size 2’ as well. Thus there must be some N such that
N € 849 but n(N) ¢ SA=¥) . Hence 7 is not an isomorphism. Since 7 was arbitrary, there is no
isomorphism.

Consider the language with a single binary relation symbol R. Construct a family of uncountably many
pairwise non-isomorphic countable structures in this language.
Proof: First, an example.

A useful way to think about isomorphisms is: if A, B structures and 7 : |A| — | B| a bijection then
is an isomorphism if when you “apply 7" to ¢, R4, f4 for all the symbols in your language you get
cB,RB, B,

Consider the structures in this language A = (|A], R4) = ({1,2,3},(1,2),(1,3)), B = (|B|,R?) =
({17 2, 3}’ {(27 3), (27 1)})7 C= (|C|’ RC) = ({17 2, 3}7 {<17 1)7 (27 2)})

Then A is isomorphic to B. Bijection is given by n(1) = 2, n(2) = 3, n(3) = 1; is an isomorphism
because when you apply 7 to R4 = {(1,2),(2,3)} you get {(2,3),(3,1)} = RE.

But A is not isomorphic to C. For any bijection 7 from {1, 2,3} we have
“alRAT = {(x(1), 7(2)), (x(1), w(3))} # RC.

Now we prove the problem.

For every infinite X C w, we list X in increasing order: X = {ng,nq,...}
There are uncountably many infinite subsets of w.

For every such X, we define a relation



RAx ={(0,0),(0,1),...,(0,n9 — 1),(1,0),(1,1),...,(1,ny — 1),...}
The point: for every k € w, there are exactly nx many tuples of the form (k,-) in the relation.

Notice: if k < I then than number of tuples (k,-) is ny which is less than n; which is the number of
tuples of the form (I, -)

E.g. if X = {2,4,6,...} Then RAx = {(0,0),(0,1),(1,0), (1,1),(1,2),(1,3),...}
We now define a structure Ax with |[Ax| = w and RAX as just defined.
Claim: if X # Y then Ax is not isomorphic to Ay .

Proof: We write X = {ng,n1,...}, Y = {mg, my,...} in increasing order.

Wilog there is n € Ax such that n € Ay. Then n = ny for some k. Hence the number of tuples of the
form (k,-) in RAX is ny = n.

If there were an isomorphism 7 : A — B we would have to have that number of tuples of the form
(m(k),-) in R is n also.
But since n € Y, for every k we have that the number of tuples of the form (k,-) in R4Y is my, # n

Hence there is no isomorphism, i.e. Ax and Ay not isomorphic.
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