## Homework \#9

1. Define functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $g \circ f=\operatorname{id}_{\mathbb{N}}$ but $f \circ g \neq \mathrm{id} \mathrm{N}_{\mathbb{N}}$. Prove that your functions satisfy these identities.
2. Suppose that $A$ and $B$ are sets. Suppose further that $|A|=|B|$, that is, there exists a bijection $f: A \rightarrow B$. Show that $|\mathcal{P}(A)|=|\mathcal{P}(B)|$ by constructing a bijection $F: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$. Prove that the function $F$ you construct is a bijection.
3. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rule $f(x, y)=(3 x+2 y, 4 x+y)$. Show that $f$ is a bijection by explicitly defining an inverse function for $f$ and proving it is the inverse.
4. (Representing subsets of $\mathbb{N}$ as infinite strings).
a. Prove that the set $A=\left\{f \subseteq \mathbb{N}^{2} \mid f: \mathbb{N} \rightarrow \mathbb{N}\right.$ is a function $\}$ is uncountably infinite by constructing an injection $F: \mathcal{P}(\mathbb{N}) \rightarrow A$. Prove that the function $F$ you construct is an injection.
b. Prove that the set $B=\{f \subseteq \mathbb{N} \times\{0,1\} \mid f: \mathbb{N} \rightarrow\{0,1\}$ is a function $\}$ is uncountably infinite by constructing a bijection $G: \mathcal{P}(\mathbb{N}) \rightarrow B$. Prove that the function $G$ you construct is a bijection.
5. Let $C=\left\{f \subseteq \mathbb{R}^{2} \mid f: \mathbb{R} \rightarrow \mathbb{R}\right.$ is a function $\}$. Prove that $|\mathbb{R}|<|C|$ by showing there is no surjection $F: \mathbb{R} \rightarrow C$.
