Homework \#7

1. (Contructing the rationals) Define a relation \sim on $\mathbb{Z} \times \mathbb{N}$ such that for any two pairs $(a, b),(c, d) \in \mathbb{Z} \times \mathbb{N}$ we have:

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b c
$$

a. Prove that \sim is an equivalence relation
b. Determine the set $[(0,3)]_{\sim}$. That is, define a set using set-builder notation and then prove that this set is $[(0,3)]_{\sim}$.
c. Write out three elements of $[(2,5)]_{\sim}$.
d. We can naturally identify $(\mathbb{Z} \times \mathbb{N}) / \sim$ with one of our standard sets. Which set is this?
2. For a fixed $r \in \mathbb{R}$, the graph of the equation $y=r$ is a horizontal line in the plane \mathbb{R}^{2}. The collection of all such lines is a partition of \mathbb{R}^{2}. Define an equivalence relation on \mathbb{R}^{2} whose equivalence classes are precisely these horizontal lines.
3. (Modular arithmetic) A key property of the relation of congruence modulo n is that it is preserved by addition and multiplication. In this sense, congruence behaves like equality. For example, from the relation $2 \equiv 5(\bmod 3)$ we can, by adding 13 to both sides, deduce $15 \equiv 18(\bmod 3)$. And by multiplying both sides by 2 we obtain $4 \equiv 10(\bmod 3)$.
Prove that this works in general. That is, fix $n \in \mathbb{N}$ and prove that for any $x, y, k \in \mathbb{Z}$ we have
i. if $x \equiv y(\bmod n)$, then $k+x \equiv k+y(\bmod n)$
ii. if $x \equiv y(\bmod n)$, then $k x \equiv k y(\bmod n)$
4. Let A be a set and suppose R is a partial order on A (that is, R is a reflexive, transitive, and antisymmetric relation on A). For $x \in A$ define the cone of x, denoted $\langle x\rangle_{R}$, as follows

$$
\langle x\rangle_{R}=\{a \in A \mid(a, x) \in R\}
$$

Prove that for all $x, y \in A$, we have $\langle x\rangle_{R} \subseteq\langle y\rangle_{R}$ if and only if $(x, y) \in R$.
5. Let A be a set and suppose R is an equivalence relation on A. Prove that set of equivalences classes, A / R, is a partition of A.

