Homework #7

1. (Contructing the rationals) Define a relation \sim on $\mathbb{Z} \times \mathbb{N}$ such that for any two pairs $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{N}$ we have:

 $(a,b) \sim (c,d) \Leftrightarrow ad = bc$

- a. Prove that \sim is an equivalence relation
- b. Determine the set $[(0,3)]_{\sim}$. That is, define a set using set-builder notation and then prove that this set is $[(0,3)]_{\sim}$.
- c. Write out three elements of $[(2,5)]_{\sim}$.
- d. We can naturally identify $(\mathbb{Z} \times \mathbb{N}) / \sim$ with one of our standard sets. Which set is this?
- 2. For a fixed $r \in \mathbb{R}$, the graph of the equation y = r is a horizontal line in the plane \mathbb{R}^2 . The collection of all such lines is a partition of \mathbb{R}^2 . Define an equivalence relation on \mathbb{R}^2 whose equivalence classes are precisely these horizontal lines.
- 3. (Modular arithmetic) A key property of the relation of congruence modulo n is that it is preserved by addition and multiplication. In this sense, congruence behaves like equality. For example, from the relation $2 \equiv 5 \pmod{3}$ we can, by adding 13 to both sides, deduce $15 \equiv 18 \pmod{3}$. And by multiplying both sides by 2 we obtain $4 \equiv 10 \pmod{3}$.

Prove that this works in general. That is, fix $n \in \mathbb{N}$ and prove that for any $x, y, k \in \mathbb{Z}$ we have

i. if $x \equiv y \pmod{n}$, then $k + x \equiv k + y \pmod{n}$

ii. if $x \equiv y \pmod{n}$, then $kx \equiv ky \pmod{n}$

4. Let A be a set and suppose R is a partial order on A (that is, R is a reflexive, transitive, and antisymmetric relation on A). For $x \in A$ define the *cone of* x, denoted $\langle x \rangle_R$, as follows

 $\langle x \rangle_R = \{ a \in A \mid (a, x) \in R \}$

Prove that for all $x, y \in A$, we have $\langle x \rangle_R \subseteq \langle y \rangle_R$ if and only if $(x, y) \in R$.

5. Let A be a set and suppose R is an equivalence relation on A. Prove that set of equivalences classes, A/R, is a partition of A.