## Homework \#6

1. Let $P(n)$ be a variable proposition. In each of the following cases, assume that both BC (the base case(s)) and IP (the inductive principle) hold. Determine the largest subset $S \subseteq \mathbb{Z}$ for which, from these assumptions, we can conclude $(\forall n \in S) P(n)$.
a. BC: $P(-3)$. IP: $(\forall n \in \mathbb{Z})(P(n) \Rightarrow P(n+1))$.
b. BC: $P(1)$. IP: $(\forall n \in \mathbb{N})(P(n) \Rightarrow P(2 n))$.
c. BC: $P(0)$. IP: $(\forall n \in \mathbb{Z})(P(n) \Rightarrow P(n-1) \wedge P(n+1))$.
d. BC: $P(0) \wedge P(1)$. IP: $(\forall n \in \mathbb{Z})(P(n) \Rightarrow P(n+3))$.
2. Prove that, for every $n \in \mathbb{N}$, the integer

$$
2 \cdot 7^{n}+3 \cdot 5^{n}-5
$$

is a multiple of 24 .
3. Define a sequence $a_{n}$ recursively, as follows:

$$
a_{0}=4, a_{1}=9, \text { and } a_{n}=5 a_{n-1}-6 a_{n-2} \text { for all } n \geq 2
$$

Use strong induction to prove that, for all $n \in \mathbb{N} \cup\{0\}$, we have $a_{n}=3 \cdot 2^{n}+3^{n}$.
4. Let $R$ be a relation defined on $\mathcal{P}(\mathbb{Z})$ defined by

$$
(A, B) \in R \text { if and only if } A \cap B \neq \emptyset
$$

Prove or disprove each of the following statements:
a. $R$ is reflexive.
b. $R$ is symmetric.
c. $R$ is transitive.
5. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function on $\mathbb{R}$. Define a relation $R_{f}$ on $\mathbb{R}$ by the rule $(x, y) \in R_{f}$ if and only if $f(x)=f(y)$.
a. Prove that $R_{f}$ is an equivalence relation.
b. Suppose that $f$ is the squaring function defined by $f(x)=x^{2}$. For a fixed real number $r \in \mathbb{R}$, determine the equivalence class $[r]_{R_{f}}$.

