Homework \#5

1. Determine the set of natural numbers n for which the following inequality holds:

$$
5^{n}+6^{n}<7^{n}
$$

State your claim and prove it using induction.
2. Use induction to prove that for every $n \in \mathbb{N}$, the number of subsets of $[n]$ is exactly 2^{n}.
3. For $n \in \mathbb{N} \cup\{0\}$, let f_{n} denote the nth Fibonacci number.
a. Determine the values of n for which $2 n<f_{n}$. Prove your claim.
b. Prove that

$$
\sum_{k=0}^{n} f_{2 k}=f_{2 n+1}-1
$$

4. In class we proved that if n is a multiple of 3 , then f_{n} is even. Prove the converse of this statement. That is, prove that if n is not a multiple of 3 , then f_{n} is odd.
5. Prove that for every $n \in \mathbb{N}$ we have

$$
\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}
$$

