Homework \#4

1. Consider the following variable propositions:

Let $P(x)$ be the proposition " $1 \leq x \leq 3$ "
Let $Q(x)$ be the proposition " $(\exists k \in \mathbb{Z})(x=2 k)$ "
Let $R(x)$ be the proposition " $x^{2}=4$ "

For each of the following statements, write the logical negation in positive form. Then decide which claim (the original or the negation) is true (no proof required).
a.) $(\forall x \in \mathbb{Z})(P(x) \Rightarrow Q(x))$
b.) $(\exists x \in \mathbb{Z})(R(x) \wedge P(x))$
c.) $(\forall x \in \mathbb{Z})(R(x) \Rightarrow P(x))$
d.) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x \neq y \wedge P(x) \wedge Q(x))$
e.) $(\forall x \in \mathbb{Z})((P(x) \wedge R(x)) \Leftrightarrow x=2)$
2. For every $i \in \mathbb{N}$, define a set $A_{i} \subseteq \mathbb{N}$ such that the indexed family of sets $\left\{A_{i}: i \in \mathbb{N}\right\}$ satisfies all of the following properties (recall that " \subsetneq " means "is a strict subset of"):
a.) $(\forall n \in \mathbb{N})(\exists i \in \mathbb{N})\left(n \in A_{i}\right)$
b.) $(\forall i \in \mathbb{N})(\exists n \in \mathbb{N})\left(n \notin A_{i}\right)$
c.) $(\forall i, m \in \mathbb{N})(\exists n \in \mathbb{N})\left(n>m \wedge n \in A_{i}\right)$
d.) $(\exists j \in \mathbb{N})(\forall i \in \mathbb{N})\left(i \neq j \Rightarrow A_{j} \subsetneq A_{i}\right)$

Then, prove that the family you've defined satisfies each of these properties.
3. Consider the following proposition, which asserts that the rational numbers \mathbb{Q} are dense:

Strictly between any two distinct rational numbers lies a third rational number.
Write this proposition using only logical symbols and the set \mathbb{Q}. Then, prove the proposition.
4. Consider the following proposition:

For all integers n, n is an integer multiple of 3 if and only if $n^{2}-1$ is not a multiple of 3.
a.) Write out this proposition symbolically, using only logical symbols and the set \mathbb{Z}.
b.) Prove the proposition. (You should be able to prove it using nothing more than the definition of being a multiple of 3 , and the fact that every integer has a remainder of 0,1 , or 2 when divided by 3 .)

