Homework \#3

1. Consider the following proposition P :

$$
(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})\left(x^{2}-y^{2} \geq 0\right)
$$

Write $\neg P$ in positive form, that is, write down a statement logically equivalent to $\neg P$ with the negation symbol inside the quantifiers (or, better yet, with no negation symbol). Then determine if P or $\neg P$ is true. If P is true, prove it. If $\neg P$ is true, then prove $\neg P$.
2. Write out the following statements symbolically in positive form and determine whether they are true or false (no proof required).

- There is no real number whose squared is -1 .
- If an integer n has a multiplicative inverse in the integers, then n must be 0 or 1 .
- For any real numbers x and y, if x and y are both nonpositive then their product is nonnegative.
- The product of two odd integers is not even.

3. Let P denote the set of strictly positive real numbers, that is

$$
P=\{x \in \mathbb{R} \mid x>0\}
$$

For every $x \in P$, define the set S_{x} as follows

$$
S_{x}=\{z \in \mathbb{R} \mid-x \leq z \leq x\}
$$

Prove the following propositions:
a.) $(\forall x, y \in P)\left(S_{x} \subseteq S_{y} \Leftrightarrow x \leq y\right)$
b.) $\bigcap_{x \in P} S_{x}=\{0\}$
4. Use a chain of logical equivalences to prove the following propositions.
a.) Given a universal set U and sets $A, B \subseteq U$, it is the case that $(A \cup B) \cap \bar{A}=B-A$.
b.) For all sets A, B, and C, it is the case that $A \cap(B-C)=(A \cap B)-(A \cap C)$.

