Homework \#2

1. Let A, B, and C be sets. Prove that

$$
A-(B-C) \subseteq(A-B) \cup C
$$

and then provide an example of sets A, B, and C for which the containment is strict.
2. Let A and B be sets, and suppose that $\mathcal{P}(A)=\mathcal{P}(B)$. Is it necessarily the case that $A=B$? If so, prove it. If not, provide a counterexample.
3. For each $n \in \mathbb{N}$, let $A_{n}=[n] \times[n]$. Define $B=\bigcup_{n \in \mathbb{N}} A_{n}$. Does $B=\mathbb{N} \times \mathbb{N}$? Either prove that it does, or show why it does not.
4. Let $I=\{x \in \mathbb{R} \mid 0<x<1\}$. For each $x \in I$, define $S_{x}=\{y \in \mathbb{R} \mid x<y<x+1\}$. Provide a double containment proof that

$$
\bigcup_{x \in I} S_{x}=\{z \in \mathbb{R} \mid 0<z<2\}
$$

5. Prove or disprove each of the following statements:
(i.) $\bigcup_{n \in \mathbb{N}} \mathcal{P}([n]) \subseteq \mathcal{P}(\mathbb{N})$

$$
\text { (ii.) } \mathcal{P}(\mathbb{N}) \subseteq \bigcup_{n \in \mathbb{N}} \mathcal{P}([n])
$$

