Homework \#1

1. Rewrite the following sentences, using set-builder notation to define the set. Then, if possible, write out the set in roster notation.
a.) Let A be the set of all natural numbers whose squares are strictly less than 39 .
b.) Let B be the set of all real numbers that are roots of the equation $x^{2}-3 x-10=0$.
2. Let $I=\{-1,0,1\}$. For each $i \in I$, define $A_{i}=\{i-2, i-1, i, i+1, i+2\}$ and $B_{i}=\{-2 i,-i, i, 2 i\}$. Write out the following sets in roster notation (no justification is required):
a.) $\bigcup_{i \in I} A_{i}$ and $\bigcap_{i \in I} A_{i}$
b.) $\bigcup_{i \in I} B_{i}$ and $\bigcap_{i \in I} B_{i}$
c.) $\left(\bigcup_{i \in I} A_{i}\right)-\left(\bigcup_{i \in I} B_{i}\right)$ and $\left(\bigcap_{i \in I} A_{i}\right)-\left(\bigcap_{i \in I} B_{i}\right)$
d.) $\bigcup_{i \in I}\left(A_{i}-B_{i}\right)$ and $\bigcap_{i \in I}\left(A_{i}-B_{i}\right)$
3. For each $x \in \mathbb{R}$, define the set P_{x} as follows:

$$
P_{x}=\left\{y \in \mathbb{R} \mid y=x^{n} \text { for some } n \in \mathbb{N}\right\}
$$

a.) There are exactly 3 values of x for which P_{x} is finite. What are they and why?
b.) Determine the sets

$$
\bigcap_{0<x<1} P_{x} \text { and } \bigcup_{0<x<1} P_{x} .
$$

Provide a brief justification for your answers. (A full proof is not necessary.)
c.) Determine the sets

$$
\bigcap_{k \in[3]} P_{2^{k}} \text { and } \bigcap_{k \in \mathbb{N}} P_{2^{k}}
$$

Provide a brief justification for your answers. (A full proof is not necessary.)
4. Let $(a, b) \in \mathbb{R}^{2}$ and fix $\epsilon \in \mathbb{R}$ with $\epsilon>0$. Define $C_{(a, b), \epsilon}$ as the set of real numbers "within ϵ " of (a, b) :

$$
C_{(a, b), \epsilon}=\left\{(x, y) \in \mathbb{R}^{2} \mid \sqrt{(x-a)^{2}+(y-b)^{2}}<\epsilon\right\} .
$$

a.) Give a geometric description of $C_{(a, b), \epsilon}$.
b.) Identify the following sets. Write your answer in the form of $C_{(a, b), \epsilon}$ or as one of the standard sets discussed in class.
i. $C_{(0,0), 1} \cap C_{(0,0), 2}$
ii. $C_{(0,0), 1} \cup C_{(0,0), 2}$
iii. $C_{(0,0), 1} \cap C_{(2,2), 1}$
c.) For a given $\epsilon>0$, define $D_{(a, b), \epsilon}$ as follows:

$$
D_{(a, b), \epsilon}=\left\{(x, y) \in \mathbb{R}^{2} \mid \sqrt{(x-a)^{2}+(y-b)^{2}} \leq \epsilon\right\}
$$

What is $D_{(a, b), \epsilon}-C_{(a, b), \epsilon}$ geometrically? Write a definition for this set using set-builder notation.

