Homework \#8

1. Suppose X and Y are nonempty sets and $f: X \rightarrow Y$ is a function. Define a new function $F: \mathcal{P}(Y) \rightarrow$ $\mathcal{P}(X)$ by $F(B)=\operatorname{PreIm}_{f}(B)$. Prove that F is injective if and only if f is surjective.
2. Suppose that A, B, and C are nonempty sets and $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
a. Prove that if f and g are surjections then so is $g \circ f$.
b. Prove that if f and g are injections then so is $g \circ f$.
c. Use your results from parts (a.) and (b.) to prove that if f and g are bijections then so is $g \circ f$.
3. Define a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $f(x, y, z)=(x y, x z)$. Prove or disprove the following statements.
a. f is injective.
b. f is surjective.
4. Fix $m, n \in \mathbb{N}$. Define a mapping $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ by $f\left([a]_{n}\right)=[a]_{m}$.
a. Prove that if $m \mid n$ then f is a well-defined function. That is, prove that if $[a]_{n}=[b]_{n}$ then $f\left([a]_{n}\right)=f\left([b]_{n}\right)$.
b. Let $n=12$ and $m=3$. Write $\operatorname{PreIm}_{f}\left(\left\{[1]_{3},[2]_{3}\right\}\right)$ in roster notation.
c. Suppose $m \nmid n$. Show that f is ill-defined. That is, show there exist $a, b \in \mathbb{Z}$ such that $[a]_{n}=[b]_{n}$ but $f\left([a]_{n}\right) \neq f\left([b]_{n}\right)$.
