Homework #6

- 1. Let P(n) be a variable proposition. In each of the following cases, assume that both BC (the base case(s)) and IP (the inductive principle) hold. Determine the largest subset $S \subseteq \mathbb{Z}$ for which, from these assumptions, we can conclude $(\forall n \in S)P(n)$.
 - a. BC: P(-3). IP: $(\forall n \in \mathbb{Z})(P(n) \Rightarrow P(n+1))$.
 - b. BC: P(1). IP: $(\forall n \in \mathbb{N})(P(n) \Rightarrow P(2n))$.
 - c. BC: P(0). IP: $(\forall n \in \mathbb{Z})(P(n) \Rightarrow P(n-1) \land P(n+1))$.
 - d. BC: $P(0) \wedge P(1)$. IP: $(\forall n \in \mathbb{Z})(P(n) \Rightarrow P(n+3))$.
- 2. Prove that, for every $n \in \mathbb{N}$, the integer

$$2 \cdot 7^n + 3 \cdot 5^n - 5$$

is a multiple of 24.

3. Define a sequence a_n recursively, as follows:

$$a_0 = 4, a_1 = 9$$
, and $a_n = 5a_{n-1} - 6a_{n-2}$ for all $n \ge 2$.

Use strong induction to prove that, for all $n \in \mathbb{N} \cup \{0\}$, we have $a_n = 3 \cdot 2^n + 3^n$.

4. Let R be a relation defined on $\mathcal{P}(\mathbb{Z})$ defined by

 $(A, B) \in R$ if and only if $A \cap B \neq \emptyset$.

Prove or disprove each of the following statements:

- a. R is reflexive.
- b. R is symmetric.
- c. R is transitive.
- 5. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a function on \mathbb{R} . Define a relation R_f on \mathbb{R} by the rule $(x, y) \in R_f$ if and only if f(x) = f(y).
 - a. Prove that R_f is an equivalence relation.
 - b. Suppose that f is the squaring function defined by $f(x) = x^2$. For a fixed real number $r \in \mathbb{R}$, determine the equivalence class $[r]_{R_f}$.