Homework #12

- 1. Fix $a, b \in \mathbb{Z}$, not both 0, and $m \in \mathbb{Z}$. Prove that gcd(a, b) = gcd(a + bm, b) by proving $gcd(a, b) \leq gcd(a + bm, b)$ and $gcd(a, b) \geq gcd(a + bm, b)$.
- 2. Fix $a, b \in \mathbb{Z}$, not both 0, and $m \in \mathbb{N}$. Prove that gcd(am, bm) = m gcd(a, b). (One approach: prove $gcd(am, bm) \le m gcd(a, b)$ using Bezout's theorem, and $gcd(am, bm) \ge m gcd(a, b)$ directly.)
- 3. Fix $a, b \in \mathbb{Z}$ and suppose that gcd(a, b) = 1. Prove that gcd(a + b, a b) is either 1 or 2.
- 4. Fix $p \in \mathbb{N}$ a prime, with p > 3. Prove that $p^2 \equiv 1 \pmod{24}$.